
Chapter 11

Convergence

In this chapter we offer an introduction to several of the convergence ideas for

Riemannian manifolds. The goal is to understand what it means for a sequence

of Riemannian manifolds or metric spaces to converge to a metric space. The first

section centers on the weakest convergence concept: Gromov-Hausdorff conver-

gence. The next section covers some of the elliptic regularity theory needed for the

later developments that use stronger types of convergence. In the third section we

develop the idea of norms of Riemannian manifolds as an intermediate step towards

understanding convergence theory as an analogue to the easier Hölder theory for

functions. Finally, in the fourth section we establish the geometric version of the

convergence theorem of Riemannian geometry by Cheeger and Gromov as well as

its generalizations by Anderson and others. These convergence theorems contain

Cheeger’s finiteness theorem stating that certain very general classes of Riemannian

manifolds contain only finitely many diffeomorphism types.

The idea of measuring the distance between subspaces of a given space goes

back to Hausdorff and was extensively studied in the Polish and Russian schools of

topology. The more abstract versions used here go back to Shikata’s proof of the

differentiable sphere theorem. Cheeger’s thesis also contains the idea that abstract

manifolds can converge to each other. In fact, he proved his finiteness theorem by

showing that certain classes of manifolds are precompact in various topologies.

Gromov further developed the theory of convergence to the form presented here

that starts with the weaker Gromov-Hausdorff convergence of metric spaces. His

first use of this new idea was to prove a group-theoretic question about the

nilpotency of groups with polynomial growth. Soon after the introduction of this

weak convergence, the earlier ideas on strong convergence by Cheeger resurfaced.

© Springer International Publishing AG 2016

P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,

DOI 10.1007/978-3-319-26654-1_11

395



396 11 Convergence

11.1 Gromov-Hausdorff Convergence

11.1.1 Hausdorff Versus Gromov Convergence

At the beginning of the twentieth century, Hausdorff introduced what is now called

the Hausdorff distance between subsets of a metric space. If .X; j��j/ is the metric

space and A;B � X; then

d .A;B/ D inf fjabj j a 2 A; b 2 Bg ;
B .A; "/ D fx 2 X j jxAj < "g ;

dH .A;B/ D inf f" j A � B .B; "/ ; B � B .A; "/g :

Thus, d .A;B/ is small if some points in these sets are close, while the Hausdorff

distance dH .A;B/ is small if and only if every point of A is close to a point in B and

vice versa. One can easily see that the Hausdorff distance defines a metric on the

compact subsets of X and that this collection is compact when X is compact.

We shall concern ourselves only with compact or proper metric spaces. The latter

by definition have proper distance functions, i.e., all closed balls are compact. This

implies, in particular, that the spaces are separable, complete, and locally compact.

Around 1980, Gromov extended the Hausdorff distance concept to a distance

between abstract metric spaces. If X and Y are metric spaces, then an admissible

metric on the disjoint union X [ Y is a metric that extends the given metrics on X

and Y:

With this the Gromov-Hausdorff distance is defined as

dG�H .X;Y/ D inf fdH .X;Y/ j admissible metrics on X [ Yg :

Thus, we try to place a metric on X [ Y that extends the metrics on X and Y,

such that X and Y are as close as possible in the Hausdorff distance. In other words,

we are trying to define distances between points in X and Y without violating the

triangle inequality.

Example 11.1.1. If Y is the one-point space, then

dG�H .X;Y/ � radX

D inf
y2X

sup
x2X

jxyj

D radius of smallest ball covering X:

Example 11.1.2. Using jxyj D D=2 for all x 2 X; y 2 Y, where diamX; diamY � D

shows that

dG�H .X;Y/ � D=2:
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Let .M ; dG�H/ denote the collection of compact metric spaces. We wish to

consider this class as a metric space in its own right. To justify this we must show

that only isometric spaces are within distance zero of each other.

Proposition 11.1.3. If X and Y are compact metric spaces with dG�H .X;Y/ D 0;

then X and Y are isometric.

Proof. Choose a sequence of metrics j��ji on X [ Y such that the Hausdorff distance

between X and Y in this metric is < i�1: Then we can find (possibly discontinuous)

maps

Ii W X ! Y; where jxIi .x/ji � i�1;

Ji W Y ! X; where jyJi .y/ji � i�1:

Using the triangle inequality and that j��ji restricted to either X or Y is the given

metric j��j on these spaces yields

jIi.x1/ Ii.x2/j � 2i�1 C jx1x2j ;
jJi.y1/ Ji.y2/j � 2i�1 C jy1y2j ;

jx Ji ı Ii.x/j � 2i�1;

jy Ii ı Ji.y/j � 2i�1:

We construct I W X ! Y and J W Y ! X as limits of these maps in the same

way the Arzela-Ascoli lemma is proved. For each x the sequence .Ii .x// in Y has an

accumulation point since Y is compact. Let A � X be select a countable dense set.

Using a diagonal argument select a subsequence Iij such that Iij .a/ ! I .a/ for all

a 2 A: The first inequality shows that I is distance decreasing on A: In particular, it

is uniformly continuous and thus has a unique extension to a map I W X ! Y; which

is also distance decreasing. In a similar fashion we also get a distance decreasing

map J W Y ! X:

The last two inequalities imply that I and J are inverses to each other. Thus, both

I and J are isometries. ut
The symmetry and the triangle inequality are easily established for dG�H : Thus,

.M ; dG�H/ becomes a pseudo-metric space, i.e., the equivalence classes form a

metric space. We prove below that this metric space is complete and separable. First

we show how spaces can be approximated by finite metric spaces.

Example 11.1.4. Let X be compact and A � X a finite subset such that every point

in X is within distance " of some element in A; i.e., dH .A;X/ � ": Such sets A are

called "-dense in X: It is clear that if we use the metric on A induced by X; then

dG�H .X;A/ � ": The importance of this remark is that for any " > 0 there exist

finite �-dense subsets of X since X is compact. To be consistent with our definition

of the abstract distance we should put a metric on X [A. We can do this by selecting



398 11 Convergence

very small ı > 0 and defining jxajX[A D ı C jxajX for x 2 X and a 2 A. Thus

dG�H .X;A/ � � C ı. Finally, let ı ! 0 to get the estimate.

Example 11.1.5. Suppose we have "-dense subsets

A D fx1; : : : ; xkg � X; B D fy1; : : : ; ykg � Y;

with the further property that

ˇ

ˇ

ˇ

ˇxixj

ˇ

ˇ�
ˇ

ˇyiyj

ˇ

ˇ

ˇ

ˇ � "; 1 � i; j � k:

Then dG�H .X;Y/ � 3": We already have that the finite subsets are "-close to the

spaces, so by the triangle inequality it suffices to show that dG�H .A;B/ � ": For

this we must exhibit a metric on A[B that makes A and B "-Hausdorff close. Define

jxiyij D ";
ˇ

ˇxiyj

ˇ

ˇ D min
k

˚

jxixkj C "C
ˇ

ˇyjyk

ˇ

ˇ

�

:

Thus, we have extended the given metrics on A and B in such a way that no points

from A and B get identified, and in addition the potential metric is symmetric. It then

remains to check the triangle inequality. Here we must show

ˇ

ˇxiyj

ˇ

ˇ � jxizj C
ˇ

ˇyjz
ˇ

ˇ ;
ˇ

ˇxixj

ˇ

ˇ � jykxij C
ˇ

ˇykxj

ˇ

ˇ ;
ˇ

ˇyiyj

ˇ

ˇ � jxkyij C
ˇ

ˇxkyj

ˇ

ˇ :

It suffices to check the first two cases as the third is similar to the second. For the

first we can assume that z D xk and find l such that

ˇ

ˇyjxk

ˇ

ˇ D "C
ˇ

ˇyjyl

ˇ

ˇC jxlxkj :

Hence,

jxixkj C
ˇ

ˇyjxk

ˇ

ˇ D jxixkj C "C
ˇ

ˇyjyl

ˇ

ˇC jxlxkj
� jxixlj C "C

ˇ

ˇyjyl

ˇ

ˇ

�
ˇ

ˇxiyj

ˇ

ˇ :

For the second case select l;m with

jykxij D jykylj C "C jxlxij ;
ˇ

ˇykxj

ˇ

ˇ D jykymj C "C
ˇ

ˇxmxj

ˇ

ˇ :
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The assumption about the metrics on A and B then lead to

jykxij C
ˇ

ˇykxj

ˇ

ˇ D jykylj C "C jxlxij C jykymj C "C
ˇ

ˇxmxj

ˇ

ˇ

� jxkxlj C jxlxij C jxkxmj C
ˇ

ˇxmxj

ˇ

ˇ

�
ˇ

ˇxixj

ˇ

ˇ :

Example 11.1.6. Suppose Mk D S3=Zk with the usual metric induced from S3 .1/ :

Then we have a Riemannian submersion Mk ! S2 .1=2/whose fibers have diameter

2�=k ! 0 as k ! 1: Using the previous example it follows that Mk ! S2 .1=2/

in the Gromov-Hausdorff topology.

Example 11.1.7. One can similarly see that the Berger metrics
�

S3; g"
�

! S2 .1=2/

as " ! 0: Notice that in both cases the volume goes to zero, but the curvatures and

diameters are uniformly bounded. In the second case the manifolds are even simply

connected. It should also be noted that the topology changes rather drastically from

the sequence to the limit, and in the first case the elements of the sequence even

have mutually different fundamental groups.

Proposition 11.1.8. The “metric space” .M ; dG�H/ is separable and complete.

Proof. To see that it is separable, first observe that the collection of all finite metric

spaces is dense in this collection. Now take the countable collection of all finite

metric spaces that in addition have the property that all distances are rational.

Clearly, this collection is dense as well.

To show completeness, select a Cauchy sequence fXng : To establish convergence

of this sequence, it suffices to check that some subsequence is convergent. Select a

subsequence fXig such that dG�H .Xi;XiC1/ < 2�i for all i: Then select metrics

j��ji;iC1 on Xi [ XiC1 making these spaces 2�i-Hausdorff close. Now define a metric

j��ji;iCj on Xi [ XiCj by

ˇ

ˇxixiCj

ˇ

ˇ

i;iCj
D min

fxiCk2XiCkg

(

j�1
X

kD0
jxiCkxiCkC1j

)

:

This defines a metric j��j on Y D [iXi with the property that dH

�

Xi;XiCj

�

� 2�iC1:
The metric space is not complete, but the “boundary” of the completion is exactly

our desired limit space. To define it, first consider

OX D
˚

fxig j xi 2 Xi and
ˇ

ˇxixj

ˇ

ˇ ! 0 as i; j ! 1
�

:

This space has a pseudo-metric defined by

jfxig fyigj D lim
i!1

jxiyij :
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Given that we are only considering Cauchy sequences fxig ; this must yield a metric

on the quotient space X; obtained by the equivalence relation

fxig � fyig iff jfxig fyigj D 0:

Now we can extend the metric on Y to one on X [ Y by declaring

jxk fxigj D lim
i!1

jxkxij :

Using that dH

�

Xj;XjC1
�

� 2�j; we can for any xi 2 Xi find a sequence
˚

xiCj

�

2 OX
such that xiC0 D xi and

ˇ

ˇxiCjxiCjC1
ˇ

ˇ � 2�j: Then we must have
ˇ

ˇxi

˚

xiCj

�
ˇ

ˇ � 2�iC1:
Thus, every Xi is 2�iC1-close to the limit space X: Conversely, for any given

sequence fxig we can find an equivalent sequence fyig with the property that

jyk fyigj � 2�kC1 for all k: Thus, X is 2�iC1-close to Xi: ut
From the proof of this theorem we obtain the useful information that Gromov-

Hausdorff convergence can always be thought of as Hausdorff convergence. In other

words, if we know that Xi ! X in the Gromov-Hausdorff sense, then after possibly

passing to a subsequence, we can assume that there is a metric on X [ .[iXi/ in

which Xi Hausdorff converges to X:With a choice of such a metric it makes sense to

say that xi ! x; where xi 2 Xi and x 2 X: We shall often use this without explicitly

mentioning a choice of ambient metric on X [ .[iXi/ :

There is an equivalent way of picturing convergence. For a compact metric

space X define C .X/ as the continuous functions on X and L1 .X/ as the bounded

measurable functions with the sup-norm (not the essential sup-norm). We know that

L1 .X/ is a Banach space. When X is bounded construct a map X ! L1 .X/ ; by

sending x to the continuous function z 7! jxzj. This is usually called the Kuratowski

embedding when we consider it as a map into C .X/ : The triangle inequality implies

that this is a distance preserving map. Thus, any compact metric space is isometric to

a subset of some Banach space L1 .X/ : The important observation is that two such

spaces L1 .X/ and L1 .Y/ are isometric if the spaces X and Y are Borel equivalent

(there exists a measurable bijection). Moreover, if X � Y, then L1 .X/ � L1 .Y/,

by extending a function on X to vanish on Y � X. Moreover, any compact metric

space is Borel equivalent to a subset of Œ0; 1� : In particular, any compact metric

space is isometric to a subset of L1 .Œ0; 1�/ : We can then define

dG�H .X;Y/ D inf dH .i .X/ ; j .Y// ;

where i W X ! L1 .Œ0; 1�/ and j W Y ! L1 .Œ0; 1�/ are distance preserving maps.



11.1 Gromov-Hausdorff Convergence 401

11.1.2 Pointed Convergence

So far, we haven’t dealt with noncompact spaces. There is, of course, nothing wrong

with defining the Gromov-Hausdorff distance between unbounded spaces, but it will

almost never be finite. In order to change this, we should have in mind what is done

for convergence of functions on unbounded domains. There, one usually speaks

about convergence on compact subsets. To do something similar, we first define the

pointed Gromov-Hausdorff distance

dG�H ..X; x/ ; .Y; y// D inf fdH .X;Y/C jxyjg :

Here we take as usual the infimum over all Hausdorff distances and in addition

require the selected points to be close. The above results are still true for this

modified distance. We can then introduce the Gromov-Hausdorff topology on the

collection of proper pointed metric spaces M� D f.X; x; j��j/g in the following way:

We say that

.Xi; xi; j��ji/ ! .X; x; j��j/

in the pointed Gromov-Hausdorff topology if for all R there is a sequence Ri ! R

such that the closed metric balls

� NB .xi;Ri/ ; xi; j��ji
�

!
� NB .x;R/ ; x; j��j

�

converge with respect to the pointed Gromov-Hausdorff metric.

11.1.3 Convergence of Maps

We also need to address convergence of maps. Suppose we have

fk W Xk ! Yk;

Xk ! X;

Yk ! Y.

Then we say that fk converges to f W X ! Y if for every sequence xk 2 Xk

converging to x 2 X it follows that fk .xk/ ! f .x/ : This definition obviously

depends in some sort of way on having the spaces converge in the Hausdorff sense,

but we shall ignore this. It is also a very strong type of convergence, for if we

assume that Xk D X; Yk D Y; and fk D f ; then f can converge to itself only if

it is continuous.
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Note also that convergence of maps preserves such properties as being distance

preserving or submetries.

Another useful observation is that we can regard the sequence of maps fk as one

continuous map

F W
 

[

i

Xi

!

! Y [
 

[

i

Yi

!

:

The sequence converges if and only if this map has an extension

X [
 

[

i

Xi

!

! Y [
 

[

i

Yi

!

;

in which case the limit map is the restriction to X: Thus, when Xi are compact it

follows that a sequence is convergent if and only if the map

F W
 

[

i

Xi

!

! Y [
 

[

i

Yi

!

is uniformly continuous.

A sequence of functions as above is called equicontinuous, if for every " > 0 and

xk 2 Xk there is an ı > 0 such that fk .B .xk; ı// � B .fk .xk/ ; "/ for all k. A sequence

is equicontinuous when, for example, all the functions are Lipschitz continuous with

the same Lipschitz constant. As for standard equicontinuous sequences, we have the

Arzela-Ascoli lemma:

Lemma 11.1.9. An equicontinuous family fk W Xk ! Yk; where Xk ! X; and

Yk ! Y in the (pointed) Gromov-Hausdorff topology, has a convergent subse-

quence. When the spaces are pointed we also assume that fk preserves the base

point.

Proof. The standard proof carries over without much change. Namely, first choose

dense subsets Ai D
˚

ai
1; a

i
2; : : :

�

� Xi such that ai
j ! aj 2 X as i ! 1. Then

also, A D
˚

aj

�

� X is dense. Next, use a diagonal argument to find a subsequence

of functions that converge on the above sequences. Finally, show that this sequence

converges as promised. ut

11.1.4 Compactness of Classes of Metric Spaces

We now turn our attention to conditions that ensure convergence of spaces. More

precisely we want some good criteria for when a collection of (pointed) spaces is

precompact (i.e., closure is compact).
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For a compact metric space X; define the capacity and covering functions as

follows

Cap ."/ D CapX ."/ D maximum number of disjoint �
2
-balls in X;

Cov ."/ D CovX ."/ D minimum number of "-balls it takes to cover X:

First, note that Cov ."/ � Cap ."/. To see this, select a maximum number of

disjoint balls B .xi; �=2/ and consider the collection B .xi; "/. In case the latter balls

do not cover X there exists x 2 X � [B .xi; "/ : This would imply that B .x; �=2/ is

disjoint from all of the balls B .xi; �=2/ : Thus showing that the original �=2-balls did

not form a maximal disjoint family.

Another important observation is that if two compact metric spaces X and Y

satisfy dG�H .X;Y/ < ı; then it follows from the triangle inequality that:

CovX ."C 2ı/ � CovY ."/ ;

CapX ."/ � CapY ."C 2ı/ :

With this information we can characterize precompact classes of compact metric

spaces.

Proposition 11.1.10 (Gromov, 1980). For a class C � .M ; dG�H/ all of whose

diameters are bounded by D < 1, the following statements are equivalent:

(1) C is precompact, i.e., every sequence in C has a subsequence that is convergent

in .M ; dG�H/ :

(2) There is a function N1 ."/ W .0; ˛/ ! .0;1/ such that CapX ."/ � N1 ."/ for all

X 2 C :

(3) There is a function N2 ."/ W .0; ˛/ ! .0;1/ such that CovX ."/ � N2 ."/ for all

X 2 C :

Proof. .1/ ) .2/: If C is precompact, then for every " > 0 we can find

X1; : : : ;Xk 2 C such that for any X 2 C we have that dG�H .X;Xi/ < �=4 for

some i: Then

CapX ."/ � CapXi

�

�
2

�

� max
i

CapXi

�

�
2

�

:

This gives a bound for CapX ."/ for each " > 0:

.2/ ) .3/ Use N2 D N1.

.3/ ) .1/: It suffices to show that C is totally bounded, i.e., for each " > 0 we

can find finitely many metric spaces X1; : : : ;Xk 2 M such that any metric space

in C is within " of some Xi in the Gromov-Hausdorff metric. Since CovX .�=2/ �
N .�=2/, we know that any X 2 C is within "

2
of a finite subset with at most

N
�

"
2

�

elements in it. Using the induced metric we think of these finite subsets as

finite metric spaces. The metric on such a finite metric space consists of a matrix
�

dij

�

; 1 � i; j � N .�=2/, where each entry satisfies dij 2 Œ0;D�. From among all such
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finite metric spaces, it is possible to select a finite number of them such that any of

the matrices
�

dij

�

is within �=2 of one matrix from the finite selection of matrices.

This means that the spaces are within �=2 of each other. We have then found the

desired finite collection of metric spaces. ut
As a corollary we also obtain a precompactness theorem in the pointed category.

Corollary 11.1.11. A collection C � M� is precompact if and only if for each

R > 0 the collection

˚ NB .x;R/ j NB .x;R/ � .X; x/ 2 C
�

� .M ; dG�H/

is precompact.

In order to achieve compactness we need a condition that is relatively easy to

check.

We say that a metric space X satisfies the metric doubling condition with constant

C, if each metric ball B .p;R/ can be covered by at most C balls of radius R=2.

Proposition 11.1.12. If all metric spaces in a class C � .M ; dG�H/ satisfy the

metric doubling condition with constant C < 1 and all have diameters bounded by

D < 1, then the class is precompact in the Gromov-Hausdorff metric.

Proof. Every metric space X 2 C can be covered by at most CN balls of

radius 2�ND. Consequently, X can be covered by at most CN balls of radius

" 2
�

2�ND; 2�NC1D
�

. This gives us the desired estimate on CovX ."/. ut
Using the relative volume comparison theorem we can show

Corollary 11.1.13. For any integer n � 2, k 2 R; and D > 0 the following classes

are precompact:

(1) The collection of closed Riemannian n-manifolds with Ric � .n � 1/ k and

diam � D:

(2) The collection of pointed complete Riemannian n-manifolds with Ric �
.n � 1/ k:

Proof. It suffices to prove (2). Fix R > 0: We have to show that there

can’t be too many disjoint balls inside NB .x;R/ � M: To see this, suppose

B .x1; "/ ; : : : ; B .xN ; "/ � NB .x;R/ are disjoint. If B .xi; "/ is the ball with the

smallest volume, we have

N � volB .x;R/

volB .xi; "/
� volB .xi; 2R/

volB .xi; "/
� v .n; k; 2R/

v .n; k; "/
:

This gives the desired bound. ut
It seems intuitively clear that an n-dimensional space should have Cov ."/ � "�n

as " ! 0: The Minkowski dimension of a metric space is defined as
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dimX D lim sup
"!0

log Cov ."/

� log "
:

This definition will in fact give the right answer for Riemannian manifolds. Some

fractal spaces might, however, have non-integral dimension. Now observe that

v .n; k; 2R/

v .n; k; "/
� "�n:

Therefore, if we can show that covering functions carry over to limit spaces, then

we will have shown that manifolds with lower curvature bounds can only collapse

in dimension.

Lemma 11.1.14. Let C .N ."// be the collection of metric spaces with Cov ."/ �
N ."/ : If N is continuous, then C .N ."// is compact.

Proof. We already know that this class is precompact. So we only have to show that

if Xi ! X and CovXi
."/ � N ."/ ; then also CovX ."/ � N ."/ : This follows easily

from

CovX ."/ � CovXi
." � 2dG�H .X;Xi// � N ." � 2dG�H .X;Xi//

and

N ." � 2dG�H .X;Xi// ! N ."/ as i ! 1:

ut

11.2 Hölder Spaces and Schauder Estimates

First, we define the Hölder norms and Hölder spaces, and then briefly discuss

the necessary estimates we need for elliptic operators for later applications. The

standard reference for all the material here is the classic book by Courant and Hilbert

[35], especially chapter IV, and the thorough text [50], especially chapters 1–6.

A more modern text that also explains how PDEs are used in geometry, including

some of the facts we need is [99], especially vol. III.

11.2.1 Hölder Spaces

Fix a bounded domain � � R
n. The bounded continuous functions from � to R

k

are denoted by C0
�

�;Rk
�

; and we use the sup-norm

kukC0 D sup
x2�

ju .x/j
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on this space. This makes C0
�

�;Rk
�

into a Banach space. We wish to generalize

this so that we still have a Banach space, but in addition also take into account

derivatives of the functions. The first natural thing to do is to define Cm
�

�;Rk
�

as

the functions with m continuous partial derivatives. Using multi-index notation, we

define

@Iu D @
i1
1 � � � @in

n u D @jIju

@ .x1/
i1 � � � @ .xn/in

;

where I D .i1; : : : ; in/ and jIj D i1 C � � � C in. Then the Cm-norm is

kukCm D kukC0 C
X

1�jIj�m





@Iu






C0
:

This norm does result in a Banach space, but the inclusions

Cm
�

�;Rk
�

� Cm�1 ��;Rk
�

are not closed subspaces. For instance, f .x/ D jxj is in the closure of

C1 .Œ�1; 1� ;R/ � C0 .Œ�1; 1� ;R/ :

To accommodate this problem, we define for each ˛ 2 .0; 1� the C˛-pseudo-norm

of u W � ! R
k as

kuk˛ D sup
x;y2�

ju .x/ � u .y/j
jx � yj˛ :

When ˛ D 1; this gives the best Lipschitz constant for u:

Define the Hölder space Cm;˛
�

�;Rk
�

as being the functions in Cm
�

�;Rk
�

such

that all mth-order partial derivatives have finite C˛-pseudo-norm. On this space we

use the norm

kukCm;˛ D kukCm C
X

jIjDm





@Iu






˛
:

If we wish to be specific about the domain, then we write kukCm;˛ ;� : With this

notation we can show

Lemma 11.2.1. Cm;˛
�

�;Rk
�

is a Banach space with the Cm;˛-norm. Furthermore,

the inclusion

Cm;˛
�

�;Rk
�

� Cm;ˇ
�

�;Rk
�

;

where ˇ < ˛ is always compact, i.e., it maps closed bounded sets to compact sets.
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Proof. We only need to show this in the case where m D 0I the more general case

is then a fairly immediate consequence.

First, we must show that any Cauchy sequence fuig in C˛
�

�;Rk
�

converges.

Since it is also a Cauchy sequence in C0
�

�;Rk
�

we have that ui ! u 2 C0 in the

C0-norm. For fixed x ¤ y observe that

jui .x/ � ui .y/j
jx � yj˛ ! ju .x/ � u .y/j

jx � yj˛ :

As the left-hand side is uniformly bounded, we also get that the right-hand side is

bounded, thus showing that u 2 C˛:

Finally select " > 0 and N so that for i; j � N and x ¤ y

ˇ

ˇ

�

ui .x/� uj .x/
�

�
�

ui .y/� uj .y/
�
ˇ

ˇ

jx � yj˛ � ":

If we let j ! 1; this shows that

j.ui .x/ � u .x// � .ui .y/ � u .y//j
jx � yj˛ � ":

Hence ui ! u in the C˛-topology.

Now for the last statement. A bounded sequence in C˛
�

�;Rk
�

is equicontinuous

so the Arzela-Ascoli lemma shows that the inclusion C˛
�

�;Rk
�

� C0
�

�;Rk
�

is

compact. We then use

ju .x/ � u .y/j
jx � yjˇ

D
� ju .x/ � u .y/j

jx � yj˛
�ˇ=˛

� ju .x/� u .y/j1�ˇ=˛

to conclude that

kukˇ � .kuk˛/ˇ=˛ � .2 � kukC0/
1�ˇ=˛ :

Therefore, a sequence that converges in C0 and is bounded in C˛; also converges in

Cˇ , as long as ˇ < ˛ � 1: ut

11.2.2 Elliptic Estimates

We now turn our attention to elliptic operators of the form

Lu D aij@i@ju C bi@iu D f ;
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where aij D aji and aij; bi are functions. The operator is called elliptic when the

matrix
�

aij
�

is positive definite. Throughout we assume that all eigenvalues for
�

aij
�

lie in some interval
�

�; ��1� ; � > 0; and that the coefficients satisfy




aij






˛
� ��1

and




bi






˛
� ��1. We state without proof the a priori estimates, usually called the

Schauder or elliptic estimates, that we need.

Theorem 11.2.2. Let � � R
n be an open domain of diameter � D and K � �

a subdomain such that d .K; @�/ � ı: If ˛ 2 .0; 1/ ; then there is a constant C D
C .n; ˛; �; ı;D/ such that

kukC2;˛ ;K � C
�

kLukC˛ ;� C kukC˛ ;�

�

;

kukC1;˛ ;K � C
�

kLukC0;� C kukC˛ ;�

�

:

Furthermore, if � has smooth boundary and u D ' on @�; then there is a constant

C D C .n; ˛; �;D/ such that on all of � we have

kukC2;˛ ;� � C
�

kLukC˛ ;� C k'kC2;˛ ;@�

�

:

One way of proving these results is to establish them first for the simplest

operator:

Lu D �u D ıij@i@ju:

Then observe that a linear change of coordinates shows that we can handle operators

with constant coefficients:

Lu D �u D aij@i@ju:

Finally, Schauder’s trick is that the assumptions about the functions aij imply that

they are locally almost constant. A partition of unity type argument then finishes the

analysis.

The first-order term doesn’t cause much trouble and can even be swept under the

rug in the case where the operator is in divergence form:

Lu D aij@i@ju C bi@iu D @i

�

aij@ju
�

:

Such operators are particularly nice when one wishes to use integration by parts, as

we have

Z

�

�

@i

�

aij@ju
��

h D �
Z

�

aij@ju@ih
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when h D 0 on @�: This is interesting in the context of geometric operators, as the

Laplacian on manifolds in local coordinates is of that form

Lu D �gu D 1
p

detgij

@i

�

p

detgij � gij � @ju
�

:

Thus

Z

vLuvol D
Z

v@i

�

p

detgij � gij � @ju
�

:

The above theorem has an almost immediate corollary.

Corollary 11.2.3. If in addition we assume that




aij






Cm;˛ ,




bi






Cm;˛ � ��1, then

there is a constant C D C .n;m; ˛; �; ı;D/ such that

kukCmC2;˛ ;K � C
�

kLukCm;˛ ;� C kukC˛ ;�

�

:

And on a domain with smooth boundary,

kukCmC2;˛ ;� � C
�

kLukCm;˛ ;� C k'kCmC2;˛ ;@�

�

:

The Schauder estimates can be used to show that the Dirichlet problem always

has a unique solution.

Theorem 11.2.4. Suppose � � R
n is a bounded domain with smooth boundary.

Then the Dirichlet problem

Lu D f ; uj@� D '

always has a unique solution u 2 C2;˛ .�/ if f 2 C˛ .�/ and ' 2 C2;˛ .@�/ :

Observe that uniqueness is an immediate consequence of the maximum principle.

The existence part requires more work.

11.2.3 Harmonic Coordinates

The above theorems make it possible to introduce harmonic coordinates on

Riemannian manifolds.

Lemma 11.2.5. If .M; g/ is an n-dimensional Riemannian manifold and p 2 M;

then there is a neighborhood U 3 p on which we can find a harmonic coordinate

system x D
�

x1; : : : ; xn
�

W U ! R
n, i.e., a coordinate system such that the functions

xi are harmonic with respect to the Laplacian on .M; g/ :
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Proof. First select a coordinate system y D
�

y1; : : : ; yn
�

on a neighborhood around

p such that y .p/ D 0: We can then think of M as being an open subset of R
n

and p D 0: The metric g is written as gij D g
�

@i; @j

�

D g
�

@
@yi ;

@
@yj

�

in the standard

Cartesian coordinates
�

y1; : : : ; yn
�

: We must then find a coordinate transformation

y 7! x such that

�xk D 1p
detgij

@i

�

p

detgij � gij � @jx
k
�

D 0:

To find these coordinates, fix a small ball B .0; "/ and solve the Dirichlet problem

�xk D 0; xk D yk on @B .0; "/ :

We have then found n harmonic functions that should be close to the original

coordinates. The only problem is that we don’t know if they actually are coordinates.

The Schauder estimates tell us that

kx � ykC2;˛ ;B.0;"/ � C
�

k�.x � y/kC˛ ;B.0;"/ C




.x � y/j@B.0;"/







C2;˛ ;@B.0;"/

�

D C k�ykC˛ ;B.0;"/ :

If matters were arranged such that k�ykC˛ ;B.0;"/ ! 0 as " ! 0, then we could

conclude that Dx and Dy are close for small ": Since y does form a coordinate

system, we would then also be able to conclude that x formed a coordinate system.

Now observe that if y were chosen as exponential Cartesian coordinates, then

we would have that @kgij D 0 at p: The formula for �y then shows that �y D 0

at p: Hence, k�ykC˛ ;B.0;"/ ! 0 as " ! 0. Finally recall that the constant C depends

only on an upper bound for the diameter of the domain aside from ˛; n; �: Thus,

kx � ykC2;˛ ;B.0;"/ ! 0 as " ! 0. ut
One reason for using harmonic coordinates on Riemannian manifolds is that both

the Laplacian and Ricci curvature tensor have particularly elegant expressions in

such coordinates.

Lemma 11.2.6. Let .M; g/ be an n-dimensional Riemannian manifold with a

harmonic coordinate system x W U ! R
n: Then

(1)

�u D 1p
detgst

@i

�

p

detgst � gij � @ju
�

D gij@i@ju:

(2)

1

2
�gij C Q .g; @g/ D �Ricij D �Ric

�

@i; @j

�

:
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Here Q is a universal rational expression where the numerator is polynomial

in the matrix g and quadratic in @g, while the denominator depends only

on
p

detgij.

Proof. (1) By definition:

0 D �xk

D 1p
detgst

@i

�

p

detgst � gij � @jx
k
�

D gij@i@jx
k C 1p

detgst
@i

�

p

detgst � gij
�

� @jx
k

D gij@iı
k
j C 1p

detgst
@i

�

p

detgst � gij
�

� ık
j

D 0C 1p
detgst

@i

�

p

detgst � gik
�

D 1p
detgst

@i

�

p

detgst � gik
�

:

Thus, it follows that

�u D 1p
detgst

@i

�

p

detgst � gij � @ju
�

D gij@i@ju C 1p
detgst

@i

�

p

detgst � gij
�

� @ju

D gij@i@ju:

(2) Recall that if u is harmonic, then the Bochner formula for ru is

�
�

1
2

jruj2
�

D jHessuj2 C Ric .ru;ru/ :

Here the term jHessuj2 can be computed explicitly and depends only on the

metric and its first derivatives. In particular,

1
2
�g

�

rxk;rxk
�

�
ˇ

ˇHessxk
ˇ

ˇ

2 D Ric
�

rxk;rxk
�

:

Polarizing this quadratic expression gives us an identity of the form

1
2
�g

�

rxi;rxj
�

� g
�

Hessxi;Hessxj
�

D Ric
�

rxi;rxj
�

:

Now use that rxk D gij@jx
k@i D gik@i to see that g

�

rxi;rxj
�

D gij: We then have

1
2
�gij � g

�

Hessxi;Hessxj
�

D Ric
�

rxi;rxj
�

;
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which in matrix form looks like

1
2

�

�gij
�

�
�

g
�

Hessxi;Hessxj
��

D
�

gik
�

� ŒRic .@k; @l/� �
�

glj
�

:

This is, of course, not the promised formula. Instead, it is a similar formula for the

inverse of Œgij�. Now use the matrix equation Œgik� � Œgkj� D Œı
j

i � to conclude that

0 D �
�

Œgik� �
�

gkj
��

D Œ�gik� �
�

gkj
�

C 2

"

X

k

g
�

rgik;rgkj
�

#

C Œgik� �
�

�gkj
�

D Œ�gik� �
�

gkj
�

C 2 Œrgik� �
�

rgkj
�

C Œgik� �
�

�gkj
�

:

Inserting this in the above equation yields

�

�gij

�

D �2 Œrgik� �
�

rgkl
�

�
�

glj

�

� Œgik� �
�

�gkl
�

�
�

glj

�

D �2 Œrgik� �
�

rgkl
�

�
�

glj

�

�2 Œgik� �
�

g
�

Hessxk;Hessxl
��

�
�

glj

�

�2 Œgik� �
�

gks
�

� ŒRic .@s; @t/� �
�

gtl
�

�
�

glj

�

D �2 Œrgik� �
�

rgkl
�

�
�

glj

�

� 2 Œgik� �
�

g
�

Hessxk;Hessxl
��

�
�

glj

�

�2
�

Ric
�

@i; @j

��

:

Each entry in these matrices then satisfies

1
2
�gij C Qij .g; @g/ D �Ricij;

Qij D �2
X

k;l

g
�

rgik;rgkl
�

glj

�2
X

k;l

gikg
�

Hessxk;Hessxl
�

glj:

ut
It is interesting to apply this formula to the case of an Einstein metric, where

Ricij D .n � 1/ kgij. In this case, it reads

1
2
�gij D � .n � 1/ kgij � Q .g; @g/ :

The right-hand side makes sense as long as gij is C1. The equation can then

be understood in the weak sense: Multiply by some test function, integrate, and

use integration by parts to obtain a formula that uses only first derivatives of gij on

the left-hand side. If gij is C1;˛; then the left-hand side lies in some Cˇ; but then our

elliptic estimates show that gij must be in C2;ˇ . This can be bootstrapped until we
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have that the metric is C1: In fact, one can even show that it is analytic. Therefore,

we can conclude that any metric which in harmonic coordinates is a weak solution

to the Einstein equation must in fact be smooth. We have obviously left out a few

details about weak solutions. A detailed account can be found in [99, vol. III].

11.3 Norms and Convergence of Manifolds

We next explain how the Cm;˛ norm and convergence concepts for functions

generalize to Riemannian manifolds. These ideas can be used to prove various

compactness and finiteness theorems for classes of Riemannian manifolds.

11.3.1 Norms of Riemannian Manifolds

Before defining norms for manifolds, let us discuss which spaces should have

norm zero. Clearly Euclidean space is a candidate. But what about open subsets

of Euclidean space and other flat manifolds? If we agree that all open subsets of

Euclidean space also have norm zero, then any flat manifold becomes a union of

manifolds with norm zero and therefore should also have norm zero. In order to

create a useful theory, it is often best to have only one space with vanishing norm.

Thus we must agree that subsets of Euclidean space cannot have norm zero. To

accommodate this problem, we define a family of norms of a Riemannian manifold,

i.e., we use a function N W .0;1/ ! .0;1/ rather than just a number. The number

N .r/ then measures the degree of flatness on the scale of r; where the standard

measure of flatness on the scale of r is the Euclidean ball B .0; r/ : For small r; all

flat manifolds then have norm zero; but as r increases we see that the space looks

less and less like B .0; r/ and therefore the norm will become positive unless the

space is Euclidean space.

Let .M; g; p/ be a pointed Riemannian n-manifold. We say that the Cm;˛-norm on

the scale of r at p:

k.M; g; p/kCm;˛ ;r � Q;

provided there exists a CmC1;˛ chart ' W .B .0; r/ ; 0/ � R
n ! .U; p/ � M such

that

(n1) jD'j � eQ on B .0; r/ and
ˇ

ˇD'�1ˇ
ˇ � eQ on U. Equivalently, for all

v 2 R
n the metric coefficients satisfy

e�2Qıklv
kvl � gklv

kvl � e2Qıklv
kvl:
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(n2) For all multi-indices I with 0 � jIj � m

rjIjC˛ 


@Igkl







˛
� Q:

Globally we define

k.M; g/kCm;˛ ;r D sup
p2M

k.M; g; p/kCm;˛ ;r :

Observe that we think of the charts as maps from the fixed space B .0; r/ into

the manifold. This is in order to have domains for the functions which do not

refer to M itself. This simplifies some technical issues and makes it more clear

that we are trying to measure how the manifolds differ from the standard objects,

namely, Euclidean balls. The first condition tells us that in the chosen coordinates

the metric coefficients are bounded from below and above (in particular, we have

uniform ellipticity for the Laplacian). The second condition gives us bounds on the

derivatives of the metric.

It will be necessary on occasion to work with Riemannian manifolds that are

not smooth. The above definition clearly only requires that the metric be Cm;˛ in

the coordinates we use, and so there is no reason to assume more about the metric.

Some of the basic constructions, like exponential maps, then come into question,

and indeed, if m � 1 these concepts might not be well-defined. Therefore, we shall

have to be a little careful in some situations.

The norm at a point is always finite, but when M is not compact the global norm

might not be finite on any scale.

Example 11.3.1. If .M; g/ is a complete flat manifold, then k.M; g/kCm;˛ ;r D 0 for

all r � inj .M; g/ : In particular, k.Rn; gRn/kCm;˛ ;r D 0 for all r: We will show that

these properties characterize flat manifolds and Euclidean space.

11.3.2 Convergence of Riemannian Manifolds

Now for the convergence concept that relates to this new norm. As we can’t subtract

manifolds, we have to resort to a different method for defining this. If we fix a

closed manifold M; or more generally a precompact subset A � M; then we say

that a sequence of functions on A converges in Cm;˛; if they converge in the charts

for some fixed finite covering of coordinate patches that are uniformly bi-Lipschitz.

This definition is clearly independent of the finite covering we choose. We can then

more generally say that a sequence of tensors converges in Cm;˛ if the components

of the tensors converge in these patches. This makes it possible to speak about

convergence of Riemannian metrics on compact subsets of a fixed manifold.

A sequence of pointed complete Riemannian manifolds is said to converge in

the pointed Cm;˛ topology, .Mi; gi; pi/ ! .M; g; p/, if for every R > 0 we can

find a domain � � B .p;R/ � M and embeddings Fi W � ! Mi for large i such
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that Fi .p/ D pi, Fi .�/ � B .pi;R/, and F�
i gi ! g on � in the Cm;˛ topology.

It is easy to see that this type of convergence implies pointed Gromov-Hausdorff

convergence. When all manifolds in question are closed with a uniform bound on

the diameter, then the maps Fi are diffeomorphisms. For closed manifolds we can

also speak about unpointed convergence. In this case, convergence can evidently

only occur if all the manifolds in the tail end of the sequence are diffeomorphic. In

particular, we have that classes of closed Riemannian manifolds that are precompact

in some Cm;˛ topology contain at most finitely many diffeomorphism types.

A warning about this kind of convergence is in order here. Suppose we have

a sequence of metrics gi on a fixed manifold M: It is possible that these metrics

might converge in the sense just defined, without converging in the traditional sense

of converging in some fixed coordinate systems. To be more specific, let g be the

standard metric on M D S2: Now define diffeomorphisms Ft coming from the flow

corresponding to the vector field that is 0 at the two poles and otherwise points in

the direction of the south pole. As t increases, the diffeomorphisms will try to map

the whole sphere down to a small neighborhood of the south pole. Therefore, away

from the poles the metrics F�
t g will converge to 0 in some fixed coordinates. So

they cannot converge in the classical sense. If, however, we pull these metrics back

by the diffeomorphisms F�t, then we just get back to g: Thus the sequence .M; gt/ ;

from the new point of view we are considering, is a constant sequence. This is really

the right way to think about this as the spaces
�

S2;F�
t g
�

are all isometric as abstract

metric spaces.

11.3.3 Properties of the Norm

Let us now consider some of the elementary properties of norms and their relation

to convergence.

Proposition 11.3.2. Given .M; g; p/, m � 0, ˛ 2 .0; 1� we have:

(1) k.M; g; p/kCm;˛ ;r D






�

M; �2g; p
�





Cm;˛ ;�r
for all � > 0:

(2) The function r 7! k.M; g; p/kCm;˛ ;r is increasing, continuous, and converges to

0 as r ! 0:

(3) Suppose .Mi; gi; pi/ ! .M; g; p/ in Cm;˛ : Then

k.Mi; gi; pi/kCm;˛ ;r ! k.M; g; p/kCm;˛ ;r for all r > 0:

Moreover, when all the manifolds have uniformly bounded diameter

k.Mi; gi/kCm;˛ ;r ! k.M; g/kCm;˛ ;r for all r > 0:

(4) If k.M; g; p/kCm;˛ ;r < Q, then for all x1; x2 2 B .0; r/ we have

e�Q min fjx1 � x2j ; 2r � jx1j � jx2jg � j'.x1/ '.x2/j � eQ jx1 � x2j :
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(5) The norm k.M; g; p/kCm;˛ ;r is realized by a CmC1;˛-chart.

(6) If M is compact, then k.M; g/kCm;˛ ;r D k.M; g; p/kCm;˛ ;r for some p 2 M.

Proof. (1) If we change the metric g to �2g; then we can change the chart ' W
B .0; r/ ! M to '� .x/ D '

�

��1x
�

W B .0; �r/ ! M. Since we scale the metric

at the same time, the conditions n1 and n2 will still hold with the same Q:

(2) By restricting ' W B .0; r/ ! M to a smaller ball we immediately get that

r 7! k.M; g; p/kCm;˛ ;r is increasing. Next, consider again the chart '� .x/ D
'
�

��1x
�

W B .0; �r/ ! M, without changing the metric g: If we assume that

k.M; g; p/kCm;˛ ;r < Q, then

k.M; g; p/kCm;˛ ;�r � max
˚

Q ˙ jlog�j ;Q � �2
�

:

Denoting N .r/ D k.M; g; p/kCm;˛ ;r, we obtain

N .�r/ � max
˚

N .r/˙ jlog�j ;N .r/ � �2
�

:

By letting � D ri

r
; where ri ! r; we see that this implies

lim sup N .ri/ � N .r/ :

Conversely,

N .r/ D N

�

r

ri

ri

�

� max

(

N .ri/˙
ˇ

ˇ

ˇ

ˇ

log
r

ri

ˇ

ˇ

ˇ

ˇ

;N .ri/ �
�

r

ri

�2
)

:

So

N .r/ � lim inf max

(

N .ri/˙
ˇ

ˇ

ˇ

ˇ

log
r

ri

ˇ

ˇ

ˇ

ˇ

;N .ri/ �
�

r

ri

�2
)

D lim inf N .ri/ :

This shows that N .r/ is continuous. To see that N .r/ ! 0 as r ! 0; just

observe that any coordinate system around a point p 2 M can, after a linear

change, be assumed to have the property that the metric gkl D ıkl at p: In

particular
ˇ

ˇD'jp

ˇ

ˇ D
ˇ

ˇD'�1jp

ˇ

ˇ D 1: Using these coordinates on sufficiently

small balls will yield the desired charts.

(3) Fix r > 0 and Q > k.M; g; p/kCm;˛ ;r . Pick a domain � � B
�

p; eQr
�

such that

for large i we have embeddings Fi W � ! Mi with the property that: F�
i gi ! g

in Cm;˛ on � and Fi .p/ D pi.
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Choose a chart ' W B .0; r/ ! M with properties n1 and n2. Then define

charts in Mi by 'i D Fi ı ' W B .0; r/ ! Mi and note that since F�
i gi ! g

in Cm;˛ , these charts satisfy properties n1 and n2 for constants Qi ! Q. This

shows that

lim sup k.Mi; gi; pi/kCm;˛ ;r � k.M; g; p/kCm;˛ ;r :

On the other hand, if Q > k.Mi; gi; pi/kCm;˛ ;r for a sufficiently large i, then

select a chart 'i W B .0; r/ ! Mi and consider ' D F�1
i ı 'i on M. As before,

we have

k.M; g; p/kCm;˛ ;r � Qi;

where Qi is close to Q. This implies

lim inf k.Mi; gi; pi/kCm;˛ ;r � k.M; g; p/kCm;˛ ;r

and proves the result.

When all the spaces have uniformly bounded diameter we choose diffeomor-

phisms Fi W M ! Mi for large i such that F�
i gi ! g. For every choice of p 2 M

select pi D Fi .p/ 2 Mi and use what we just proved to conclude that

lim inf k.Mi; gi/kCm;˛ ;r � sup
p

k.M; g; p/kCm;˛ ;r :

Similarly, when pi 2 Mi and p D F�1
i .pi/, it follows that

lim sup k.Mi; gi; pi/kCm;˛ ;r � sup
p

k.M; g/kCm;˛ ;r :

(4) The condition jD'j � eQ; together with convexity of B.0; r/; immediately

implies the second inequality. For the other, first observe that if any segment

from ' .x1/ to ' .x2/ lies in U, then
ˇ

ˇD'�1ˇ
ˇ � eQ implies, that

jx1 � x2j � eQ j'.x1/ '.x2/j :

So we may assume that '.x1/ and '.x2/ are joined by a segment c W Œ0; 1� ! M

that leaves U. Split c into c W Œ0; t1/ ! U and c W .t2; 1� ! U with c.ti/ 2 @U.

Then we clearly have

j'.x1/ '.x2/j D L.c/ � L.cjŒ0;t1//C L.cj.t2;1�/
� e�Q.L.'�1 ı cjŒ0;t1//C L.'�1 ı cj.t2;1�//
� e�Q .2r � jx1j � jx2j/ :
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The last inequality follows from the fact that '�1 ı c.0/ D x1 and '�1 ı c.1/ D
x2; and that '�1 ı c .t/ approaches @B .0; r/ as t approaches t1 and t2.

(5) Given a sequence of charts 'i W B .0; r/ ! M that satisfy n1 and n2 with Qi !
Q we can use the Arzela-Ascoli lemma to find a subsequence that converges

to a CmC1;˛ map ' W B .0; r/ ! M. Property (4) shows that ' is injective

and becomes a homeomorphism onto its image. This makes ' a chart. We can,

after passing to another subsequence, also assume that the metric coefficients

converge. This implies that ' satisfies n1 and n2 for Q.

(6) Property (3) implies that p 7! k.M; g; p/kCm;˛ ;r is continuous. Compactness then

shows that the supremum is a maximum.

ut
Corollary 11.3.3. If k.M; g; p/kCm;˛ ;r � Q, then B

�

p; e�Qr
�

� U.

Proof. Let q 2 @U be the closest point to p so that B .p; jqpj/ � U. If c W Œ0; jpqj� !
M is a segment from p to q, then c .s/ 2 B .p; jqpj/ for all s < jqpj and we

can write c .s/ D ' .Nc .s//, where Nc W Œ0; jqpj/ 2 B .0; r/ has the property that

limt!jqpj jNc .t/j D r. Property (4) from proposition 11.3.2 then shows that

jqpj � lim
s!jqpj

j' .Nc .s// ' .0/j

� lim
s!jqpj

e�Q min fjNc .s/j ; 2r � jNc .s/jg

� lim
s!jqpj

e�Q jNc .s/j

D e�Qr:

ut
Corollary 11.3.4. If k.M; g; p/kCm;˛ ;r D 0 for some r, then p is contained in a

neighborhood that is flat.

Proof. It follows from proposition 11.3.2 that there is a CmC1;˛ chart ' W B .0; r/ !
U � B

�

p; e�Qr
�

with Q D 0. This implies that it is a C1 Riemannian isometry and

then by theorem 5.6.15 a Riemannian isometry. ut

11.3.4 The Harmonic Norm

We define a more restrictive norm, called the harmonic norm and denoted

k.M; g; p/khar
Cm;˛ ;r :

The only change in our previous definition is that '�1 W U ! R
n is also assumed to

be harmonic with respect to the Riemannian metric g on M, i.e., for each j
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1
p

det Œgst�
@i

�

p

det Œgst� � gij
�

D 0:

Proposition 11.3.5 (Anderson, 1990). Proposition 11.3.2 also holds for the har-

monic norm when m � 1.

Proof. The proof is mostly identical so we only mention the necessary changes.

For the statement in (2) that the norm goes to zero as the scale decreases, just

solve the Dirichlet problem as we did when establishing the existence of harmonic

coordinates in lemma 11.2.5. There it was necessary to have coordinates around

every point p 2 M such that in these coordinates the metric satisfies gij D ıij

and @kgij D 0 at p: If m � 1; then it is easy to show that any coordinate system

around p can be changed in such a way that the metric has the desired properties

(see exercise 2.5.20).

The proof of (3) is necessarily somewhat different, as we must use and produce

harmonic coordinates. Let the set-up be as before. First we show the easy part:

lim inf k.Mi; gi; pi/khar
Cm;˛ ;r � k.M; g; p/khar

Cm;˛ ;r :

To this end, select Q > lim inf k.Mi; gi; pi/khar
Cm;˛ ;r. For large i we can then select

charts 'i W B .0; r/ ! Mi with the requisite properties. After passing to a

subsequence, we can make these charts converge to a chart

' D lim F�1
i ı 'i W B .0; r/ ! M:

Since the metrics converge in Cm;˛; the Laplacians of the inverse functions must

also converge. Hence, the limit charts are harmonic as well. We can then conclude

that k.M; g; p/khar
Cm;˛ ;r � Q.

For the reverse inequality

lim sup k.Mi; gi; pi/khar
Cm;˛ ;r � k.M; g; p/khar

Cm;˛ ;r ;

select Q > k.M; g; p/khar
Cm;˛ ;r. Then, from the continuity of the norm we can find

" > 0 such that also k.M; g; p/khar
Cm;˛ ;rC" < Q. For this scale, select

' W B .0; r C "/ ! U � M

satisfying the usual conditions. Now define

Ui D Fi .' .B .0; r C "=2/// � Mi:

This is clearly a closed disc with smooth boundary

@Ui D Fi .' .@B .0; r C "=2/// :
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On each Ui solve the Dirichlet problem

 i W Ui ! R
n;

�gi
 i D 0;

 i D '�1 ı F�1
i on @Ui:

The inverse of  i; if it exists, will then be a coordinate map B .0; r/ ! Ui: On the

set B .0; r C "=2/ we can compare  i ı Fi ı ' with the identity map I. Note that

these maps agree on the boundary of B .0; r C "=2/ :We know that F�
i gi ! g in the

fixed coordinate system ': Now pull these metrics back to B
�

0; r C "
2

�

and refer to

them as g .D '�g/ and gi

�

D '�F�
i gi

�

. In this way the harmonicity conditions read

�gI D 0 and �gi
 i ı Fi ı ' D 0: In these coordinates we have the correct bounds

for the operator

�gi
D gkl

i @k@l C 1
p

det Œgi�
@k

�

p

det Œgi� � gkl
i

�

@l

to use the elliptic estimates for domains with smooth boundary. Note that this is

where the condition m � 1 becomes important so that we can bound

1
p

det Œgi�
@k

�

p

det Œgi� � gkl
i

�

in C˛ : The estimates then imply

kI �  i ı Fi ı 'kCmC1;˛ � C




�gi
.I �  i ı Fi ı '/







Cm�1;˛

D C




�gi
I






Cm�1;˛ :

However, we have that





�gi
I






Cm�1;˛ D















1
p

det Œgi�
@k

�

p

det Œgi� � gkl
i

�
















Cm�1;˛

!















1
p

det Œg�
@k

�

p

det Œg� � gkl
�
















Cm�1;˛

D




�gI






Cm�1;˛ D 0:

In particular,

kI �  i ı Fi ı 'kCmC1;˛ ! 0:

It follows that  i must become coordinates for large i: Also, these coordinates

will show that k.Mi; gi; pi/khar
Cm;˛ ;r < Q for large i: ut
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11.3.5 Compact Classes of Riemannian Manifolds

We can now state and prove the result that is our manifold equivalent of the Arzela-

Ascoli lemma. This theorem is essentially due to J. Cheeger.

Theorem 11.3.6 (Fundamental Theorem of Convergence Theory). For given

Q > 0, n � 2, m � 0; ˛ 2 .0; 1�, and r > 0 consider the class M m;˛.n;Q; r/

of complete, pointed Riemannian n-manifolds .M; g; p/ with k.M; g/kCm;˛ ;r � Q.

The class M m;˛.n;Q; r/ is compact in the pointed Cm;ˇ topology for all ˇ < ˛.

Proof. First we show that M D M m;˛.n;Q; r/ is precompact in the pointed

Gromov-Hausdorff topology. Next we prove that M is closed in the Gromov-

Hausdorff topology. The last and longest part is devoted to getting improved

convergence from Gromov-Hausdorff convergence.

Setup: Whenever we select M 2 M ; we can by proposition 11.3.2 assume that it

comes equipped with charts around all points satisfying n1 and n2.

(A) M is precompact in the pointed Gromov-Hausdorff topology.

Define ı D e�Qr and note that there exists an N.n;Q/ such that B.0; r/ can be

covered by at most N balls of radius e�Q � ı=4. Since ' W B.0; r/ ! U is a Lipschitz

map with Lipschitz constant � eQ, this implies that U � B .p; ı/ can be covered by

N balls of radius ı=4.

Next we claim that every ball B.x; ` � ı=2/ � M can be covered by � N` balls of

radius ı=4. For ` D 1 we just proved this. If B.x; ` � ı=2/ is covered by B.x1; ı=4/,: : :,

B.xN` ; ı=4/, then B .x; ` � ı=2 C ı=2/ �
S

B.xi; ı/. Now each B.xi; ı/ can be covered

by � N balls of radius ı=4, and hence B .x; .`C 1/ı=2/ can be covered by � N � N` D
N`C1 balls of radius ı=4.

The precompactness claim is equivalent to showing that we can find a function

C."/ D C.";R;K; r; n/ such that each B.p;R/ can contain at most C."/ disjoint

"-balls. To check this, let B.x1; "/,. . . ,B.xs; "/ be a collection of disjoint balls in

B.p;R/. Suppose that ` � ı=2 < R � .`C 1/ı=2. Then

volB.p;R/ � N`C1 � .maximal volume of ı=4-ball/

� N`C1 � .maximal volume of chart/

� N`C1 � enK � volB.0; r/

� V.R/ D V.R; n;K; r/:

As long as " < ı each B.xi; "/ lies in some chart ' W B.0; r/ ! U � M whose

pre-image in B.0; r/ contains an e�K � "-ball. Thus

volB.pi; "/ � e�nKvolB.0; "/:



422 11 Convergence

All in all, we get

V.R/ � volB.p;R/

�
X

volB.pi; "/

� s � e�nK � volB.0; "/:

Thus,

s � C."/ D V.R/ � enK � .volB.0; "//�1:

Now select a sequence .Mi; gi; pi/ in M . From the previous considerations we

can assume that .Mi; gi; pi/ ! .X; j��j ; p/ in the Gromov-Hausdorff topology. It will

be necessary in many places to pass to subsequences of .Mi; gi; pi/ using various

diagonal processes. Whenever this happens, we do not reindex the family, but

merely assume that the sequence was chosen to have the desired properties from

the beginning.

(B) .X; j��j ; p/ is a Riemannian manifold of class Cm;˛ with k.X; g/kCm;˛ ;r � Q

For each q 2 X we need to find a chart ' W B.0; r/ ! U � X with q D ' .0/.

To construct this chart consider qi ! q and charts 'i W B.0; r/ ! Ui � Mi with

qi D 'i .0/. These charts are uniformly Lipschitz and so must subconverge to a map

' W B .0; r/ ! U � X. This map will satisfy property (4) in proposition 11.3.2 and

thus be a homeomorphism onto its image. This makes X a topological manifold.

We next construct a compatible Riemannian metric on X that satisfies n1 and n2.

For each q 2 X consider the metrics '�
i gi D gi�� written out in components on B.0; r/

with respect to the chart 'i. Since all of the gi�� satisfy n1 and n2, we can again use

Arzela-Ascoli to insure that the components gi�� ! g�� in the Cm;ˇ topology on

B.0; r/ to functions g�� that also satisfy n1 and n2. These local Riemannian metrics

are possibly only Hölder continuous. Nevertheless, they define a distance as we

defined it in section 5.3. Moreover this distance is locally the same as the metric

on X. To see this, note that we work entirely on B.0; r/ and both the Riemannian

structures and the metric structures converge to the limit structures.

Finally, we need to show that the transition function '�1 ı for two such charts

'; W B .0; r/ ! X with overlapping images are at least C1 so as to obtain a

differentiable structure on X. As it stands '�1 ı  is locally Lipschitz with respect

to the Euclidean metrics. However, it is distance preserving with respect to the

pull back metrics from X. Calabi-Hartman in [22] generalized theorem 5.6.15 to

this context. Specifically, they claim that a distance preserving map between C˛

Riemannian metrics is C1;˛ . The proof, however, only seems to prove that the map

is C1; ˛2 , which is more than enough for our purposes.
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(C) .Mi; gi; pi/ ! .X; j��j ; p/ D .X; g; p/ in the pointed Cm;ˇ topology.

We assume that X is equipped with a countable atlas of charts 's W B .0; r/ ! Us,

s D 1; 2:3; : : : that are limits of charts 'is W B .0; r/ ! Uis � Mi that also form

an atlas for each Mi. We can further assume that transitions converge: '�1
is ı 'it !

'�1
s ı 't and that the metrics converge: gis�� ! gs��. We say that two maps F1;F2

between subsets in Mi and X are CmC1;ˇ close if all the coordinate compositions

'�1
s ı F1 ı 'is and 's ı F2 ı 'is are CmC1;ˇ close. Thus, we have a well-defined

CmC1;ˇ topology on maps from Mi to X. Our first observation is that

fis D 'is ı '�1
s W Us ! Uis;

fit D 'it ı '�1
t W Ut ! Uit

“converge to each other” in the CmC1;ˇ topology. Furthermore,

.fis/
�gijUis

! gjUs

in the Cm;ˇ topology. These are just restatements of what we already assumed. In

order to finish the proof, we construct maps

Fi` W �` D
[̀

sD1
Us ! �i` D

[̀

sD1
Uis

that are closer and closer to the fis, s D 1; : : : ; ` maps (and therefore all fis) as

i ! 1. We will construct Fi` by induction on ` and large i depending on `.

For ` D 1 simply define Fi1 D fi1:

Suppose we have Fi` W �` ! �i` for large i that are arbitrarily close to fis,

s D 1; : : : ; ` as i ! 1. If U`C1 \ �` D ¿; then we just define Fi`C1 D Fi` on

�i` and Fi`C1 D fi`C1 on U`C1. In case U`C1 � �`; we simply let Fi`C1 D Fi`.

Otherwise, we know that Fi` and fi`C1 are as close as we like in the CmC1;ˇ topology

as i ! 1. So the natural thing to do is to average them on U`C1. Define Fi`C1 on

U`C1 by

Fi`C1.x/ D 'i`C1 ı .�1.x/ � '�1
i`C1 ı fi`C1.x/C �2.x/ � '�1

i`C1 ı Fi`.x//;

where �1; �2 are a partition of unity for U`C1; �`. This map is clearly well-defined

on U`C1, since �2.x/ D 0 on U`C1 ��`: Now consider this map in coordinates

'�1
i`C1 ı Fi`C1 ı '`C1.y/ D .�1 ı '`C1.y// � '�1

`C1 ı fi`C1 ı '`C1.y/

C .�2 ı '`C1.y// � '�1
i`C1 ı Fi` ı '`C1.y/

D Q�1.y/F1.y/C Q�2.y/F2.y/:

Then

k Q�1F1 C Q�2F2 � F1kCmC1;ˇ D k Q�1.F1 � F1/C Q�2.F2 � F1/kCmC1;ˇ

� C .n;m/ k Q�2kCmC1;ˇ � kF2 � F1kCmC1;ˇ :
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This inequality is valid on all of B.0; r/, despite the fact that F2 is not defined on all

of B.0; r/, since Q�1 � F1 C Q�2 � F2 D F1 on the region where F2 is undefined. By

assumption

kF2 � F1kCmC1;ˇ ! 0 as i ! 1;

so Fi`C1 is CmC1;ˇ-close to fis, s D 1; : : : ; `C 1 as i ! 1.

Finally we see that the closeness of Fi` to the coordinate charts shows that it is

an embedding on all compact subsets of the domain. ut
Corollary 11.3.7. Any subclasses of M m;˛.n;Q; r/; where the elements in addition

satisfy diam � D, respectively vol � V, is compact in the Cm;ˇ topology. In

particular, it contains only finitely many diffeomorphism types.

Proof. We use notation as in the fundamental theorem. If diam.M; g; p/ � D; then

clearly M � B .p; k � ı=2/ for k > D � 2=ı. Hence, each element in M m;˛.n;Q; r/ can

be covered by � Nk charts. Thus, Cm;ˇ-convergence is actually in the unpointed

topology, as desired.

If instead, volM � V; then we can use part (A) in the proof to see that we can

never have more than k D V � e2nK � .volB.0; "//�1 disjoint "-balls. In particular,

diam � 2" � k, and we can use the above argument.

Finally, compactness in any Cm;ˇ topology implies that the class cannot contain

infinitely many diffeomorphism types. ut
Clearly there is also a harmonic analogue to the fundamental theorem.

Corollary 11.3.8. Given Q > 0, n � 2, m � 0, ˛ 2 .0; 1�, and r > 0 the class

of complete, pointed Riemannian n-manifolds .M; g; p/ with k.M; g/khar
Cm;˛ ;r � Q is

closed in the pointed Cm;˛ topology and compact in the pointed Cm;ˇ topology for

all ˇ < ˛.

The only issue to worry about is whether it is really true that limit spaces

have k.M; g/khar
Cm;˛ ;r � Q: But one can easily see that harmonic charts converge

to harmonic charts as in proposition 11.3.5.

11.3.6 Alternative Norms

Finally, we mention that the norm concept and its properties do not change if n1 and

n2 are altered as follows:

(n1’) jD'j;
ˇ

ˇD'�1ˇ
ˇ � f1.n;Q/,

(n2’) rjjjC˛k@jg��k˛ � f2.n;Q/; 0 � jjj � m,

where f1 and f2 are continuous, f1.n; 0; r/ D 1, and f2.n; 0/ D 0. The key properties

we want to preserve are continuity of k.M; g/k with respect to r, the fundamental

theorem, and the characterization of flat manifolds and Euclidean space.
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Another interesting thing happens if in the definition of k.M; g/kCm;˛ ;r we let

m D ˛ D 0. Then n2 no longer makes sense since ˛ D 0, however, we still have

a C0-norm concept. The class M 0.n;Q; r/ is now only precompact in the pointed

Gromov-Hausdorff topology, but the characterization of flat manifolds is still valid.

The subclasses with bounded diameter, or volume, are also only precompact with

respect to the Gromov-Hausdorff topology, and the finiteness of diffeomorphism

types apparently fails. It is, however, possible to say more. If we investigate the

proof of the fundamental theorem, we see that the problem lies in constructing

the maps Fik W �k ! �ik, because we only have convergence of the coordinates

only in the C0 (actually C˛; ˛ < 1/ topology, and so the averaging process fails

as it is described. We can, however, use a deep theorem from topology about local

contractibility of homeomorphism groups (see [39]) to conclude that two C0-close

topological embeddings can be “glued” together in some way without altering

them too much in the C0 topology. This makes it possible to exhibit topological

embeddings Fik W � ,! Mi such that the pullback metrics (not Riemannian metrics)

converge. As a consequence, we see that the classes with bounded diameter or

volume contain only finitely many homeomorphism types. This closely mirrors the

content of the original version of Cheeger’s finiteness theorem, including the proof

as we have outlined it. But, as we have pointed out earlier, Cheeger also considered

the easier to prove finiteness theorem for diffeomorphism types given better bounds

on the coordinates.

Notice that we cannot easily use the fact that the charts converge in C˛.˛ < 1/.

But it is possible to do something interesting along these lines. There is an even

weaker norm concept called the Reifenberg norm that is related to the Gromov-

Hausdorff distance. For a metric space .X; j��j/ we define the n-dimensional norm

on the scale of r as

k.X; j��j/kn
r D 1

r
sup
p2X

dG�H .B .p; r/ ;B .0; r// ;

where B .0;R/ � R
n: The the r�1 factor insures that we don’t have small distance

between B .p; r/ and B .0; r/ just because r is small. Note also that if .Xi; j��ji/ !
.X; j��j/ in the Gromov-Hausdorff topology then

k.Xi; j��ji/kn
r ! k.X; j��j/kn

r

for fixed n; r:

For an n-dimensional Riemannian manifold one sees immediately that

lim
r!0

k.M; g/kn
r ! 0 D 0:

Cheeger and Colding have proven a converse to this (see [29]). There is an " .n/ > 0

such that if k.X; j��j/kn
r � " .n/ for all small r; then X is in a weak sense an n-

dimensional Riemannian manifold. Among other things, they show that for small

r the ˛-Hölder distance between B .p; r/ and B .0; r/ is small. Here the ˛-Hölder

distance d˛ .X;Y/ between metric spaces is defined as the infimum of
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log max

(

sup
x1¤x2

jF .x1/F .x2/j
jx1x2j˛

; sup
y1¤y2

ˇ

ˇF�1 .y1/F�1 .y2/
ˇ

ˇ

jy1y2j˛

)

;

where F W X ! Y runs over all homeomorphisms. They also show that if .Mi; gi/ !
.X; j��j/ in the Gromov-Hausdorff distance and k.Mi; gi/kn

r � " .n/ for all i and small

r; then .Mi; gi/ ! .X; j��j/ in the Hölder distance. In particular, all of the Mis have

to be homeomorphic (and in fact diffeomorphic) to X for large i:

This is enhanced by an earlier result of Colding (see [34]) stating that for a

Riemannian manifold .M; g/ with Ric � .n � 1/ k we have that k.M; g/kn
r is small

if and only if and only if

volB .p; r/ � .1 � ı/ volB .0; r/

for some small ı. Relative volume comparison tells us that the volume condition

holds for all small r if it holds for just one r: Thus the smallness condition for the

norm holds for all small r provided we have the volume condition for just some r:

11.4 Geometric Applications

To obtain better estimates on the norms it is convenient to use more analysis. The

idea of using harmonic coordinates for similar purposes goes back to [37]. In [66]

it was shown that manifolds with bounded sectional curvature and lower bounds

for the injectivity radius admit harmonic coordinates on balls of an a priori size.

This result was immediately seized by the geometry community and put to use

in improving the theorems from the previous section. At the same time, Nikolaev

developed a different, more synthetic approach to these ideas. For the whole story

we refer the reader to Greene’s survey in [51]. Here we shall develop these ideas

from a different point of view due to Anderson.

11.4.1 Ricci Curvature

The most important feature about harmonic coordinates is that the metric is

apparently controlled by the Ricci curvature. This is exploited in the next lemma,

where we show how one can bound the harmonic C1;˛ norm in terms of the harmonic

C1 norm and Ricci curvature.

Lemma 11.4.1 (Anderson, 1990). Suppose that a Riemannian manifold .M; g/

has bounded Ricci curvature jRicj � ƒ: For any r1 < r2; K � k.M; g; p/khar
C1 ;r2

;

and ˛ 2 .0; 1/ we can find C .n; ˛;K; r1; r2; ƒ/ such that
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k.M; g; p/khar
C1;˛ ;r1

� C .n; ˛;K; r1; r2; ƒ/ :

Moreover, if g is an Einstein metric Ric D kg; then for each integer m we can find a

constant C .n; ˛;K; r1; r2; k;m/ such that

k.M; g; p/khar

CmC1;˛ ;r1
� C .n; ˛;K; r1; r2; k;m/ :

Proof. We just need to bound the metric components gij in some fixed harmonic

coordinates. In such coordinates � D gij@i@j. Given that k.M; g; p/khar
C1;r2

� K, we

can conclude that we have the necessary conditions on the coefficients of � D
gij@i@j to use the elliptic estimate
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Since

�gij D �2Ricij � 2Q .g; @g/

it follows that
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gij







C1;B.0;r2/
:

Using this we obtain





gij







C1;˛ ;B.0;r1/
� C .n; ˛;K; r1; r2/

�





�gij







C0;B.0;r2/
C




gij







C˛ ;B.0;r2/

�

� C .n; ˛;K; r1; r2/
�

2ƒC OC C 1
�





gij







C1;B.0;r2/
:

For the Einstein case we can use a bootstrap method as we get C1;˛ bounds on

the Ricci tensor from the Einstein equation Ric D kg: Thus, we have that �gij is

bounded in C˛ rather than just C0: Hence,





gij







C2;˛ ;B.0;r1/
� C .n; ˛;K; r1; r2/

�





�gij







C˛ ;B.0;r2/
C




gij







C˛ ;B.0;r2/

�

� C .n; ˛;K; r1; r2; k/ � C �




gij







C1;˛ ;B.0;r2/
:

This gives C2;˛ bounds on the metric. Then, of course,�gij is bounded in C1;˛; and

thus the metric will be bounded in C3;˛ : Clearly, one can iterate this until one gets

CmC1;˛ bounds on the metric for any m. ut
Combining this with the fundamental theorem gives a very interesting compact-

ness result.
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Corollary 11.4.2. For given n � 2, Q; r; ƒ 2 .0;1/ consider the class of

Riemannian n-manifolds with

k.M; g/khar
C1;r � Q;

jRicj � ƒ:

This class is precompact in the pointed C1;˛ topology for any ˛ 2 .0; 1/ : Moreover,

if we take the subclass of Einstein manifolds, then this class is compact in the Cm;˛

topology for any m � 1 and ˛ 2 .0; 1/ :
Next we show how the injectivity radius can be used to control the harmonic

norm.

Theorem 11.4.3 (Anderson, 1990). Given n � 2 and ˛ 2 .0; 1/ ; ƒ; R > 0;

one can for each Q > 0 find r .n; ˛;ƒ;R/ > 0 such that any compact Riemannian

n-manifold .M; g/ with

jRicj � ƒ;

inj � R

satisfies k.M; g/khar
C1;˛ ;r � Q:

Proof. The proof goes by contradiction. So suppose that there is a Q > 0 such that

for each i � 1 there is a Riemannian manifold .Mi; gi/ with

jRicj � ƒ;

inj � R;

k.Mi; gi/khar
C1;˛ ;i�1 > Q:

Using that the norm goes to zero as the scale goes to zero, and that it is continuous

as a function of the scale, we can for each i find ri 2
�

0; i�1
�

such that

k.Mi; gi/khar
C1;˛ ;ri

D Q: Now rescale these manifolds: Ngi D r�2
i gi: Then we have that

.Mi; Ngi/ satisfies

jRicj � riƒ;

inj � r�1
i R;

k.Mi; Ngi/khar
C1;˛ ;1 D Q:

We can then select pi 2 Mi such that

k.Mi; Ngi; pi/khar
C1;˛ ;1 2

�

Q

2
;Q

�

:
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The first important step is to use the bounded Ricci curvature of .Mi; Ngi/ to

conclude that the C1;
 norm must be bounded for any 
 2 .˛; 1/ : Then we can

assume by the fundamental theorem that the sequence .Mi; Ngi; pi/ converges in the

pointed C1;˛ topology, to a Riemannian manifold .M; g; p/ of class C1;
 : Since the

C1;˛ norm is continuous in the C1;˛ topology we can conclude that

k.M; g; p/khar
C1;˛ ;1 2

�

Q

2
;Q

�

:

The second thing we can prove is that .M; g/ D .Rn; gRn/ : This clearly violates

what we just established about the norm of the limit space. To see that the limit space

is Euclidean space, recall that the manifolds in the sequence .Mi; Ngi/ are covered by

harmonic coordinates that converge to harmonic coordinates in the limit space. In

these harmonic coordinates the metric components satisfy

1

2
�Ngkl C Q .Ng; @Ng/ D �Rickl:

But we know that

j�Ricj � r�2
i ƒNgi

and that the Ngkl converge in the C1;˛ topology to the metric coefficients gkl for the

limit metric. Consequently, the limit manifold is covered by harmonic coordinates

and in these coordinates the metric satisfies:

1

2
�gkl C Q .g; @g/ D 0:

Thus the limit metric is a weak solution to the Einstein equation Ric D 0 and

therefore must be a smooth Ricci flat Riemannian manifold. Finally, we use that:

inj .Mi; Ngi/ ! 1: In the limit space any geodesic is a limit of geodesics from the

sequence .Mi; Ngi/ ; since the Riemannian metrics converge in the C1;˛ topology. If

a geodesic in the limit is a limit of segments, then it must itself be a segment. We

can then conclude that as inj .Mi; Ngi/ ! 1 any finite length geodesic must be a

segment. This, however, implies that inj .M; g/ D 1: The splitting theorem 7.3.5

then shows that the limit space is Euclidean space. ut
From this theorem we immediately get

Corollary 11.4.4 (Anderson, 1990). Let n � 2 and ƒ;D;R > 0 be given. The

class of closed Riemannian n-manifolds satisfying

jRicj � ƒ;

diam � D;

inj � R
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is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular contains

only finitely many diffeomorphism types.

Notice how the above theorem depended on the characterization of Euclidean

space we obtained from the splitting theorem. There are other similar characteriza-

tions of Euclidean space. One of the most interesting ones uses volume pinching.

11.4.2 Volume Pinching

The idea is to use the relative volume comparison (see lemma 7.1.4) rather than the

splitting theorem. It is relatively easy to prove that Euclidean space is the only space

with

Ric � 0;

lim
r!1

volB .p; r/

!nrn
D 1;

where !nrn is the volume of a Euclidean ball of radius r (see also exercises 7.5.8

and 7.5.10). This result has a very interesting gap phenomenon associated to it under

the stronger hypothesis that the space is Ricci flat.

Lemma 11.4.5 (Anderson, 1990). For each n � 2 there is an " .n/ > 0 such that

any complete Ricci flat manifold .M; g/ that satisfies

volB .p; r/ � .1 � "/!nrn

for some p 2 M is isometric to Euclidean space.

Proof. First observe that on any complete Riemannian manifold with Ric � 0;

relative volume comparison can be used to show that

volB .p; r/ � .1 � "/!nrn

as long as

lim
r!1

volB .p; r/

!nrn
� .1� "/ :

Therefore, if this holds for one p; then it must hold for all p: Moreover, if we scale

the metric to
�

M; �2g
�

; then the same volume comparison still holds, as the lower

curvature bound Ric � 0 isn’t changed by scaling.

If our assertion is assumed to be false, then for each integer i there is a Ricci flat

manifold .Mi; gi/ with
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lim
r!1

volB .pi; r/

!nrn
�
�

1 � i�1
�

;

k.Mi; gi/khar
C1;˛ ;r ¤ 0 for all r > 0:

By scaling these metrics suitably, it is then possible to arrange it so that we have a

sequence of Ricci flat manifolds .Mi; Ngi; qi/ with

lim
r!1

volB .qi; r/

!nrn
�
�

1 � i�1
�

;

k.Mi; Ngi/khar
C1;˛ ;1 � 1;

k.Mi; Ngi; qi/khar
C1;˛ ;1 2 Œ0:5; 1� :

From what we already know, we can then extract a subsequence that converges in

the Cm;˛ topology to a Ricci flat manifold .M; g; q/. In particular, we must have that

metric balls of a given radius converge and that the volume forms converge. Thus,

the limit space must satisfy

lim
r!1

volB .q; r/

!nrn
D 1:

This means that we have maximal possible volume for all metric balls, and thus the

manifold must be Euclidean. This, however, violates the continuity of the norm in

the C1;˛ topology, as the norm for the limit space would then have to be zero. ut
Corollary 11.4.6. Let n � 2; �1 < � � ƒ < 1; and D; R 2 .0;1/ be given.

There is a ı D ı
�

n; � � R2
�

such that the class of closed Riemannian n-manifolds

satisfying

.n � 1/ƒ � Ric � .n � 1/ �;

diam � D;

volB .p;R/ � .1 � ı/ v .n; �;R/

is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular contains

only finitely many diffeomorphism types.

Proof. We use the same techniques as when we had an injectivity radius bound.

Observe that if we have a sequence .Mi; Ngi; pi/ where Ngi D k2i gi; ki ! 1; and the

.Mi; gi/ lie in the above class, then the volume condition reads

volBNgi
.pi;R � ki/ D kn

i volBgi
.pi;R/

� kn
i .1 � ı/ v .n; �;R/

D .1 � ı/ v
�

n; � � k�2
i ;R � ki

�

:
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From relative volume comparison we can then conclude that for r � R � ki and very

large i;

volBNgi
.pi; r/ � .1 � ı/ v

�

n; � � k�2
i ; r

�

� .1 � ı/ !nrn:

In the limit space we must therefore have

volB .p; r/ � .1 � ı/ !nrn for all r:

This limit space is also Ricci flat and is therefore Euclidean space. The rest of the

proof goes as before, by getting a contradiction with the continuity of the norms.

ut

11.4.3 Sectional Curvature

Given the results for Ricci curvature we immediately obtain.

Theorem 11.4.7 (The Convergence Theorem of Riemannian Geometry). Given

R, K > 0, there exist Q; r > 0 such that any .M; g/ with

inj � R;

jsecj � K

has k.M; g/khar
C1;˛ ;r

� Q. In particular, this class is compact in the pointed C1;˛

topology for all ˛ < 1:

Using the diameter bound in positive curvature and Klingenberg’s estimate for

the injectivity radius from theorem 6.5.1 we get

Corollary 11.4.8 (Cheeger, 1967). For given n � 1 and k > 0; the class of

Riemannian 2n-manifolds with k � sec � 1 is compact in the C˛ topology and

consequently contains only finitely many diffeomorphism types.

A similar result was also proven by A. Weinstein at the same time. The

hypotheses are the same, but Weinstein showed that the class contained finitely

many homotopy types.

Our next result shows that one can bound the injectivity radius provided that one

has lower volume bounds and bounded curvature. This result is usually referred to

as Cheeger’s lemma. With a little extra work one can actually prove this lemma

for complete manifolds. This requires that we work with pointed spaces and also

to some extent incomplete manifolds as it isn’t clear from the beginning that the

complete manifolds in question have global lower bounds for the injectivity radius.
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Lemma 11.4.9 (Cheeger, 1967). Given n � 2, v;K > 0, and a compact

n-manifold .M; g/ with

j sec j � K;

volB .p; 1/ � v;

for all p 2 M, then injM � R, where R depends only on n;K; and v.

Proof. As for Ricci curvature we can use a contradiction type argument. So assume

we have .Mi; gi/ with injMi ! 0 and satisfying the assumptions of the lemma. Find

pi 2 Mi with injpi
D inj .Mi; gi/ and consider the pointed sequence .Mi; pi; Ngi/;

where Ngi D .injMi/
�2gi is rescaled so that

inj.Mi; Ngi/ D 1;

j sec.Mi; Ngi/j � .inj.Mi; gi//
2 � K D Ki ! 0:

Now some subsequence of .Mi; Ngi; pi/ will converge in the pointed C1;˛; ˛ < 1;

topology to a manifold .M; g; p/. Moreover, this manifold is flat since

k.M; g/kC1;˛ ;1 D 0.

The first observation about .M; g; p/ is that inj.p/ � 1. This follows because

the conjugate radius for .Mi; Ngi/ is � �=
p

Ki ! 1, so Klingenberg’s estimate for

the injectivity radius (lemma 6.4.7) implies that there must be a geodesic loop of

length 2 at pi 2 Mi. Since .Mi; Ngi; pi/ ! .M; g; p/ in the pointed C1;˛ topology, the

geodesic loops must converge to a geodesic loop of length 2 in M based at p. Hence,

inj.M/ � 1.

The other contradictory observation is that .M; g/ D .Rn; gRn/. Using the

assumption volB.pi; 1/ � v the relative volume comparison (see lemma 7.1.4)

shows that there is a v0.n;K; v/ such that volB.pi; r/ � v0 � rn, for r � 1. The

rescaled manifold .Mi; Ngi/ then satisfies volB.pi; r/ � v0 � rn, for r � .inj.Mi; gi//
�1.

Using again that .Mi; Ngi; pi/ ! .M; g; p/ in the pointed C˛ topology, we get

volB.p; r/ � v0 � rn for all r. Since .M; g/ is flat, this shows that it must be Euclidean

space.

To justify the last statement let M be a complete flat manifold. As the elements

of the fundamental group act by isometries on Euclidean space, we know that they

must have infinite order (any isometry of finite order is a rotation around a point

and therefore has a fixed point). So if M is not simply connected, then there is

an intermediate covering R
n ! OM ! M, where �1

�

OM
�

D Z: This means that

OM D R
n�1 � S1 .R/ for some R > 0. Hence, for any p 2 OM we must have

lim
r!1

volB .p; r/

rn�1 < 1:

The same must then also hold for M itself, contradicting our volume growth

assumption. ut
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This lemma was proved with a more direct method by Cheeger. We have included

this proof in order to show how our convergence theory can be used. The lemma

also shows that the convergence theorem of Riemannian geometry remains true if

the injectivity radius bound is replaced by a lower bound on the volume of 1-balls.

The following result is now immediate.

Corollary 11.4.10 (Cheeger, 1967). Let n � 2, K;D; v > 0 be given. The class of

closed Riemannian n-manifolds with

jsecj � K;

diam � D;

vol � v

is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular, contains

only finitely many diffeomorphism types.

11.4.4 Lower Curvature Bounds

It is also possible to obtain similar compactness results for manifolds that only

have lower curvature bounds as long as we also assume that the injectivity radius is

bounded from below.

We give a proof in the case of lower sectional curvature bounds and mention the

analogous result for lower Ricci curvature bounds.

Theorem 11.4.11. Given R; k > 0; there exist Q; r depending on R; k such that

any manifold .M; g/ with

sec � �k2;

inj � R

satisfies k.M; g/kC1;r � Q.

Proof. It suffices to get a Hessian estimate for distance functions r.x/ D jxpj.
Lemma 6.4.3 shows that

Hessr.x/ � k � coth.k � r.x//gr

for all x 2 B .p;R/ � fpg. Conversely, if r.x0/ < R; then r.x/ is supported from

below by f .x/ D R � jxy0j, where y0 D c.R/ and c is the unique unit speed geodesic

that minimizes the distance from p to x0. Thus

Hessr � Hessf � �k � coth.jx0y0j � k/gr D �k � coth.k.R � r.x0///gr



11.4 Geometric Applications 435

at x0. Hence jHessrj � Q .k;R/ on metric balls B .x; r/ where jxpj � R=4 and r � R=4.

For fixed p 2 M choose an orthonormal basis e1; : : : ; en for TpM and geodesics

ci.t/ with ci.0/ D p, Pci.0/ D ei. We use the distance functions

ri.x/ D
ˇ

ˇx ci

�

� R
2

�
ˇ

ˇ W B
�

p; R
4

�

! R

to create a potential coordinate system

 .x/ D
�

r1 .x/ ; : : : ; rn .x/
�

�
�

r1 .p/ ; : : : ; rn .p/
�

:

By construction D jp .ei/ is the standard basis for T0R
n. In particular,  defines

a coordinate chart on some neighborhood of p with gijjp D ıij. While we can’t

define gij on B .p; R=4/, the potential inverse gij D g
�

rri;rrj
�

is defined on the

entire region. The Hessian estimates combined with the fact that
ˇ

ˇrrk
ˇ

ˇ D 1 imply

that
ˇ

ˇdgij
ˇ

ˇ � Q .n; k;R/ on B .p; R=4/. In particular,
ˇ

ˇ

�

ıij � gijjx

�
ˇ

ˇ < 1=10 for x 2
B .p; ı .n; k;R//. This implies that gij has a well-defined inverse gij on B .p; ı/ with

the properties that
ˇ

ˇ

�

gijjp � gijjx

�
ˇ

ˇ � 1=9 and
ˇ

ˇdgij

ˇ

ˇ � C .n;K;R/ on B .p; ı/.

By inspecting the proof of the inverse function theorem we conclude that  is

injective on B .p; ı/ and that B .0; ı=4/ �  .B .p; ı// (see also exercise 6.7.23).

Moreover, we have also established n1 and n2. ut
Example 11.4.12. This theorem is actually optimal. Consider rotationally symmet-

ric metrics dr2 C �2" .r/d�
2, where �" is concave and satisfies

�".r/ D
�

r for 0 � r � 1 � ";
3
4
r for 1C " � r.

These metrics have sec � 0 and inj � 1. As " ! 0; we get a C1;1 manifold with

a C0;1 Riemannian metric .M; g/. In particular, k.M; g/kC0;1;r < 1 for all r. Limit

spaces of sequences with inj � R; sec � �k2 can therefore not in general be

assumed to be smoother than the above example.

Example 11.4.13. With a more careful construction, we can also find  " with

 ".r/ D
�

sin r for 0 � r � �
2

� ";

1 for �
2

� r.

Then the metric dr2 C  2" .r/d�
2 satisfies j sec j � 4 and inj � 1

4
. As " ! 0; we get

a limit metric that is C1;1. We have, however, only shown that such limit spaces are

C1;˛ for all ˛ < 1.

Unlike the situation for bounded curvature we cannot get injectivity radius

bounds when the curvature is only bounded from below. The above examples are

easily adapted to give the following examples.



436 11 Convergence

EXERCISE 11.4.14. Given a 2 .0; 1/ and � > 0, there is a smooth concave function

�� .r/ with the property that

�".r/ D
�

r for 0 � r � ";

ar for 2" � r.

The corresponding surfaces dr2 C �2".r/d�
2 have sec � 0 and inj � 5�, while the

volume of any R ball is always � a�R2.

Finally we mention the Ricci curvature result.

Theorem 11.4.15 (Anderson-Cheeger, 1992). Given R; k > 0 and ˛ 2 .0; 1/

there exist Q; r depending on n; R; k such that any manifold .Mn; g/ with

Ric � � .n � 1/ k2;

inj � R

satisfies k.M; g/khar
C˛ ;r � Q.

The proof of this result is again by contradiction and uses most of the ideas

we have already covered. However, since the harmonic norm does not work well

without control on the derivatives of the metric it is necessary to use the Sobolev

spaces W1;p � C1�n=p to define a new harmonic norm with Lp control on the

derivatives. For the contradiction part of the argument we need to use distance

functions as above, but we only obtain bounds on their Laplacians. By inspecting

how these bounds are obtained we can show that they ! 0 as inj ! 1 and k ! 0.

This will assist in showing that the limit space is Euclidean space. For more details

see the original paper [4].

11.4.5 Curvature Pinching

Let us turn our attention to some applications of these compactness theorems. One

natural subject to explore is that of pinching results. Recall from corollary 5.6.14

that complete constant curvature manifolds have uniquely defined universal cover-

ings. It is natural to ask whether one can in some topological sense still expect this

to be true when one has close to constant curvature. Now, any Riemannian manifold

.M; g/ has curvature close to zero if we multiply the metric by a large scalar. Thus,

some additional assumptions must come into play.

We start out with the simpler problem of considering Ricci pinching and then

use this in the context of curvature pinching below. The results are very simple

consequences of the convergence theorems we have already presented.
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Theorem 11.4.16. Given n � 2; R; D > 0, and � 2 R; there is an " .n; �;D;R/ >

0 such that any closed Riemannian n-manifold .M; g/ with

diam � D;

inj � R;

jRic � �gj � "

is C1;˛ close to an Einstein metric with Einstein constant �:

Proof. We already know that this class is precompact in the C1;˛ topology no matter

what " we choose. If the result is false, there would be a sequence .Mi; gi/ ! .M; g/

that converges in the C1;˛ topology to a closed Riemannian manifold of class C1;˛ ,

where in addition,
ˇ

ˇRicgi
� �gi

ˇ

ˇ ! 0:Using harmonic coordinates we conclude that

the metric on the limit space must be a weak solution to

1

2
�g C Q .g; @g/ D ��g:

But this means that the limit space is actually Einstein, with Einstein constant �;

thus, contradicting that the spaces .Mi; gi/ were not close to such Einstein metrics.

ut
Using the compactness theorem for manifolds with almost maximal volume it

follows that the injectivity radius condition could have been replaced with an almost

maximal volume condition. Now let us see what happens with sectional curvature.

Theorem 11.4.17. Given n � 2; v; D > 0, and � 2 R; there is an " .n; �;D; v/ >

0 such that any closed Riemannian n-manifold .M; g/ with

diam � D;

vol � v;

jsec ��j � "

is C1;˛ close to a metric of constant curvature �:

Proof. In this case first observe that Cheeger’s lemma 11.4.9 gives us a lower bound

for the injectivity radius. The previous theorem then shows that such metrics must

be close to Einstein metrics. We have to check that if .Mi; gi/ ! .M; g/ ; where
ˇ

ˇsecgi
��
ˇ

ˇ ! 0 and Ricg D .n � 1/ �g; then in fact .M; g/ has constant curvature �:

To see this, it is perhaps easiest to observe that if Mi 3 pi ! p 2 M then we can

use polar coordinates around these points to write gi D dr2 C gr;i and g D dr2 C gr.

Since the metrics converge in C1;˛ ; we certainly have that gr;i converge to gr: Using

the curvature pinching, we conclude from theorem 6.4.3
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sn0
�C"i

.ri/

sn�C"i
.ri/

gr;i � Hessri �
sn0
��"i

.ri/

sn��"i
.ri/

gr;i

with "i ! 0: Using that the metrics converge in C1;˛ it follows that the limit metric

satisfies

Hessr D sn0
� .r/

sn� .r/
gr:

Corollary 4.3.4 then implies that the limit metric has constant curvature �: ut
It is interesting that we had to go back and use the more geometric estimates for

distance functions in order to prove the curvature pinching, while the Ricci pinching

could be handled more easily with analytic techniques using harmonic coordinates.

One can actually prove the curvature result with purely analytic techniques, but

this requires that we study convergence in a more general setting where one uses

Lp norms and estimates. This has been developed rigorously and can be used to

improve the above results to situations were one has only Lp curvature pinching

rather than the L1 pinching we use here (see [91], [88], and [36]).

When the curvature � is positive, some of the assumptions in the above theorems

are in fact not necessary. For instance, Myers’ estimate for the diameter makes the

diameter hypothesis superfluous. For the Einstein case this seems to be as far as we

can go. In the positive curvature case we can do much better. In even dimensions,

we already know from theorem 6.5.1, that manifolds with positive curvature have

both bounded diameter and lower bounds for the injectivity radius, provided that

there is an upper curvature bound. We can therefore show

Corollary 11.4.18. Given 2n � 2; and � > 0; there is an " D " .n; �/ > 0 such

that any closed Riemannian 2n-manifold .M; g/ with

jsec ��j � "

is C1;˛ close to a metric of constant curvature �:

This corollary is, in fact, also true in odd dimensions. This was proved by Grove-

Karcher-Ruh in [58]. Notice that convergence techniques are not immediately

applicable because there are no lower bounds for the injectivity radius. Their

pinching constant is also independent of the dimension. Using theorem 6.5.5 we

can only conclude that.

Corollary 11.4.19. Given n � 2; and � > 0; there is an " D " .n; �/ > 0 such that

any closed simply connected Riemannian n-manifold .M; g/ with

jsec ��j � "

is C1;˛ close to a metric of constant curvature �:
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Also recall the quarter pinching results in positive curvature that we proved in

section 12.3. There the conclusions were much weaker and purely topological.

These results have more recently been significantly improved using Ricci flow

techniques. First in [16] to the situation where the curvature operator is positive

and next in [20] to the case where the complex sectional curvatures are positive.

In negative curvature some special things also happen. Namely, Heintze has

shown that any complete manifold with �1 � sec < 0 has a lower volume bound

when the dimension � 4 (see also [52] for a more general statement). The lower

volume bound is therefore an extraneous condition when doing pinching in negative

curvature. However, unlike the situation in positive curvature the upper diameter

bound is crucial. See, e.g., [55] and [43] for counterexamples.

This leaves us with pinching around 0: As any compact Riemannian manifold

can be scaled to have curvature in Œ�"; "� for any "; we do need the diameter

bound. The volume condition is also necessary, as the Heisenberg group from the

exercise 4.7.22 has a quotient where there are metrics with bounded diameter and

arbitrarily pinched curvature. This quotient, however, does not admit a flat metric.

Gromov was nevertheless able to classify all n-manifolds with

jsecj � " .n/ ;

diam � 1

for some very small " .n/ > 0:More specifically, they all have a finite cover that is a

quotient of a nilpotent Lie group by a discrete subgroup. Interestingly, there is also

a Ricci flow type proof of this result in [94]. For more on collapsing in general, the

reader can start by reading [44].

11.5 Further Study

Cheeger first proved his finiteness theorem and put down the ideas of Ck conver-

gence for manifolds in [25]. They later appeared in journal form [26], but not

all ideas from the thesis were presented in this paper. Also the idea of general

pinching theorems as described here are due to Cheeger [27]. For more generalities

on convergence and their uses we recommend the surveys by Anderson, Fukaya,

Petersen, and Yamaguchi in [51]. Also for more on norms and convergence theorems

the survey by Petersen in [54] might prove useful. The text [53] should also be

mentioned again. It was probably the original french version of this book that

really spread the ideas of Gromov-Hausdorff distance and the stronger convergence

theorems to a wider audience. Also, the convergence theorem of Riemannian

geometry, as stated here, appeared for the first time in this book.

We should also mention that S. Peters in [86] obtained an explicit estimate for the

number of diffeomorphism classes in Cheeger’s finiteness theorem. This also seems

to be the first place where the modern statement of Cheeger’s finiteness theorem is

proved.
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11.6 Exercises

EXERCISE 11.6.1. Find a sequence of 1-dimensional metric spaces that Hausdorff

converge to the unit cube Œ0; 1�3 endowed with the metric coming from the maximum

norm on R
3: Then find surfaces (jungle gyms) converging to the same space.

EXERCISE 11.6.2. Assume that we have a map (not necessarily continuous) F W
X ! Y between metric spaces such that for some � > 0:

jjx1x2j � jF .x1/F .x2/jj � �; x1x2 2 X

and

F .X/ � Y is �-dense:

Show that dG�H .X;Y/ < 2�.

EXERCISE 11.6.3. C. Croke has shown that there is a universal constant c .n/ such

that any n-manifold with inj � R satisfies volB .p; r/ � c .n/ � rn for r � R
2
: Use this

to show that the class of n-dimensional manifolds satisfying inj � R and vol � V is

precompact in the Gromov-Hausdorff topology.

EXERCISE 11.6.4. Let .M; g/ be a complete Riemannian n-manifold with Ric �
.n � 1/ k. Show that there exists a constant C .n; k/ with the property that for each

� 2 .0; 1/ there exists a cover of metric balls B .xi; �/ with the property that no more

than C .n; k/ of the balls B .xi; 5�/ can have nonempty intersection.

EXERCISE 11.6.5. Show that there are Bochner formulas for Hess
�

1
2
g .X;Y/

�

and

� 1
2
g .X;Y/, where X and Y are vector fields with symmetric rX and rY: This can

be used to prove the formulas relating Ricci curvature to the metric in harmonic

coordinates.

EXERCISE 11.6.6. Show that in contrast to the elliptic estimates, it is not possible

to find C˛ bounds for a vector field X in terms of C0 bounds on X and divX:

EXERCISE 11.6.7. Define Cm;˛ convergence for incomplete manifolds. On such

manifolds define the boundary @ as the set of points that lie in the completion but

not in the manifold itself. Show that the class of incomplete spaces with jRicj � ƒ

and inj .p/ � min fR;R � d .p; @/g ; R < 1; is precompact in the C1;˛ topology.

EXERCISE 11.6.8. Define a weighted norm concept. That is, fix a positive function

� .R/ ; and assume that in a pointed manifold .M; g; p/ the points on the distance

spheres S .p;R/ have norm � � .R/ : Prove the corresponding fundamental theorem.

EXERCISE 11.6.9. Assume M is a class of compact Riemannian n-manifolds that

is compact in the Cm;˛ topology. Show that there is a function f .r/, where f .r/ ! 0

as r ! 0, depending on M such that k.M; g/kCm;˛ ;r � f .r/ for all M 2 M .
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EXERCISE 11.6.10. The local models for a class of Riemannian manifolds are the

types of spaces one obtains by scaling the elements of the class by a constant ! 1:

For example, if we consider the class of manifolds with jsecj � K for some K; then

upon rescaling the metrics by a factor of �2; we have the condition jsecj � ��2K;
as � ! 1; we therefore arrive at the condition jsecj D 0: This means that the

local models are all the flat manifolds. Notice that we don’t worry about any type

of convergence here. If, in this example, we additionally assume that the manifolds

have inj � R; then upon rescaling and letting � ! 1 we get the extra condition

inj D 1: Thus, the local model is Euclidean space. It is natural to suppose that

any class that has Euclidean space as it only local model must be compact in some

topology.

Show that a class of spaces is compact in the Cm;˛ topology if when we rescale

a sequence in this class by constants that ! 1; the sequence subconverges in the

Cm;˛ topology to Euclidean space.

EXERCISE 11.6.11. Consider the singular Riemannian metric dt2 C .at/2 d�2, a >

1; on R
2: Show that there is a sequence of rotationally symmetric metrics on R

2

with sec � 0 and inj D 1 that converge to this metric in the Gromov-Hausdorff

topology.

EXERCISE 11.6.12. Show that the class of spaces with inj � R and
ˇ

ˇrkRic
ˇ

ˇ � ƒ

for k D 0; : : : ;m is compact in the CmC1;˛ topology.

EXERCISE 11.6.13 (S-h. Zhu). Consider the class of complete or compact

n-dimensional Riemannian manifolds with

conj:rad � R;

jRicj � ƒ;

volB .p; 1/ � v:

Using the techniques from Cheeger’s lemma, show that this class has a lower bound

for the injectivity radius. Conclude that it is compact in the C1;˛ topology.

EXERCISE 11.6.14. Using the Eguchi-Hanson metrics from exercise 4.7.23 show

that one cannot in general expect a compactness result for the class

jRicj � ƒ;

volB .p; 1/ � v:

Thus, one must assume either that v is large as we did before or that there a lower

bound for the conjugate radius.

EXERCISE 11.6.15. The weak (harmonic) norm k.M; g/kweak
Cm;˛ ;r is defined in almost

the same way as the norms we have already worked with, except that we only insist

that the charts 's W B .0; r/ ! Us are immersions. The inverse is therefore only

locally defined, but it still makes sense to say that it is harmonic.
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(1) Show that if .M; g/ has bounded sectional curvature, then for all Q > 0 there is

an r > 0 such that k.M; g/kweak
C1;˛ ;r � Q: Thus, the weak norm can be thought of

as a generalized curvature quantity.

(2) Show that the class of manifolds with bounded weak norm is precompact in the

Gromov-Hausdorff topology.

(3) Show that .M; g/ is flat if and only if the weak norm is zero on all scales.
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