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The surface diffusion flow

Definition

Let E C T" be a smooth set. We say that the family E; C T", for t € [0, T) with
Eo = E, is a surface diffusion flow starting from E, if the map t — Xk, is
continuous from [0, T) to L'(T") and the hypersurfaces OE; move by surface
diffusion, that is, there exists a smooth family of embeddings ¢ : OE — T", for
t € [0,T), with o = 1d and ¢:(OE) = OE;, such that

&pt
— = (AH
o = (AHY
where, at every point and time, H and A are respectively the mean curvature and the
Laplacian (with the Riemannian metric induced by T") of the moving hypersurface

OE;, while v is the “outer” normal to the smooth set E;.

We want to study the long-time behavior of the surface diffusion flow of
embedded smooth hypersurfaces which are boundaries of smooth sets, in the
n—dimensional flat torus T" (the so called “periodic case”). Then, clearly all
the results also hold for compact sets in R".
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The surface diffusion flow

@ Fourth order flow — Quasilinear (degenerate) parabolic system of PDEs

% = —AAy: + lower order terms.

@ It can be defined also for immersed—only hypersurfaces
(self-intersecting).

@ No maximum or comparison principles.
@ It does not preserve convexity or embeddedness.

o It is invariant by isometries of T", reparametrizations and tangential
perturbations of the velocity of the motion (also for immersed-only
hypersurfaces in T").

@ When it is restricted to closed embedded hypersurfaces which are
boundaries of sets, the enclosed volume is preserved.

@ Its a (sort of) gradient flow and the Area functional

AQE) = [ du

OE

decreases along the flow.
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Preliminaries

For every smooth set E C T” and ¢ > 0, we consider the tubular neighborhood
of OE
N. ={xeT" : d(x,0F) < &}

where d is the “Euclidean” distance on T".

Definition

Given a smooth set E C T" and a tubular neighborhood N. of OE, for every k € N
and for any M € (0,¢/2), we denote by €, (OE), the class of all sets F C E U N.
such that Vol(FAE) < M and

OF = {y + Yr(y)ve(y) : y € OE},
for some function ¢r € C*(8E), with bkl ck oy < M.

We will call a set F as in this definition, the normal deformation of E induced by
the function .
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Short time existence and uniqueness

Theorem (J. Escher, U. E. Mayer and G. Simonett, 1998)

Let E C T" be a smooth set, N a tubular neighborhood of OE and Mg < /2. For
every Eo C T" smooth set in &, (E), which is a normal deformation of E induced by
a smooth function 1y : OE — R, there exists a unique surface diffusion flow E;,
starting from Eo, such that every E; is a normal deformation of E induced by a
smooth function 1 : OE — R, for t € [0, T(Eo)), with T(Ey) depending on the
C>*~norm of 1.
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Short time existence and uniqueness

Theorem (J. Escher, U. E. Mayer and G. Simonett, 1998)

Let E C T" be a smooth set, N a tubular neighborhood of OE and Mg < /2. For
every Eo C T" smooth set in &, (E), which is a normal deformation of E induced by
a smooth function 1 : OE — R, there exists a unique surface diffusion flow E;,
starting from Eo, such that every E; is a normal deformation of E induced by a
smooth function 1 : OE — R, for t € [0, T(Eo)), with T(Ey) depending on the
C>*~norm of 1.

Unfortunately the surface diffusion flow could develop singularities in finite
time, even in low dimensions. For instance, like for the mean curvature flow,
a dumbbell surface with a thin neck should become singular during the
evolution, but also embedded curves in the plane do not necessarily evolve
smoothly (numerical evidences).
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A smooth set E is a critical set (that is, with zero constrained first variation) for
the volume—constrained Area functional A if and only if its boundary satisfy
H = ), for some constant A € R (E is a constant mean curvature hypersurface).

Then, at a critical set E, the second variation of the Area functional is given by

d2
A

= / (V9 —4*[B) du

=0 JoE

where OE; = ¢;(0E) is a volume—-preserving variation of E and ¢ € C*°(JE)
(which satisfies [, 1 du = 0) is the normal component of its infinitesimal
generator (B is the second fundamental form of OE).
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A smooth set E is a critical set (that is, with zero constrained first variation) for
the volume—constrained Area functional A if and only if its boundary satisfy
H = ), for some constant A € R (E is a constant mean curvature hypersurface).

Then, at a critical set E, the second variation of the Area functional is given by

_ 2 _ 2B\ d
= [ (VP =B d

where OE; = ¢;(0E) is a volume—-preserving variation of E and ¢ € C*°(JE)
(which satisfies [, 1 du = 0) is the normal component of its infinitesimal
generator (B is the second fundamental form of OE).

d2

5 A(E)|

This motivates the following definition.

We say that a critical set E C T" for A under a volume constraint is strictly stable if

o) = [ (Vuf - BP) die > 0
OE
for all € H'(9E) {w € H'9E) : [, vdu = 0} such that [, yv dp = 0.

Morally, in this definition we are “excluding” the translations of the set E.
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@ In any dimension, if E is a ball or if OE in T" is composed by flat pieces
(hence, its second fundamental form B is identically zero), then it is
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@ If n = 2, the only bounded strictly stable critical sets for the Length
functional (that is, the Area functional in the 2-dimensional ambient
space) in the plane are the disks, in T? they are the disks and the “strips”
with straight borders.

@ If n = 3, the stable “periodic” critical sets for the volume—constrained
Area functional, are balls, 2—tori, gyroids or lamellae (Ros, 2007).

Among them, balls, tori and lamellae are actually strictly stable. The
strict stability of gyroids was instead established only in some cases.

@ In any dimension, if E is a ball or if OE in T" is composed by flat pieces
(hence, its second fundamental form B is identically zero), then it is
critical and strictly stable.

Our aim was to show that the surface diffusion flow of an initial set close
enough to a strictly stable critical set, exists for all positive times and
asymptotically converges to a translation of it.
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Previous stability results

W?2—closedness to a circle in the plane: C. M. Elliott and H. Garcke, 1997

C**—closedness to an n-dimensional sphere: J. Escher, U. F. Mayer and
G. Simonett, 1998

W?*%_closedness to a 2-sphere: G. Wheeler, 2013

W?*?—closedness to a 2-dimensional strictly stable surface: E. Acerbi, N.
Fusco, V. Julin and M. Morini, 2019

W™ T!2_closedness to an n-dimensional strictly stable hypersurface.

Very similar result, with different methods, by D. De Gennaro, A. Diana,
A. Kubin and A. Kubin, 2023.
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The key energy quantity
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By simplicity, we discuss the case n = 4, then we will indicate the necessary
modification in the general dimensional case.

We consider a suitable “energy” depending on (iterated) covariant
derivatives of the mean curvature, that is,

5(t)=/ |VZH|2dM,+/ |VH|* dps .
OFE; OE}

Its relevance is expressed by the following lemma.

Let E C T* be a smooth set and N. be a tubular neighborhood of OE. For Mg small
enough and § > 0, there exists a constant C = C(E, Mk, 6) such that if F € Q}AE(E)
is a normal deformation of E induced by a smooth function ¢r : OE — R and

/ |V2H\2du+/ \VH?du <6  and  Vol(FAE) <4,
OF OF

there hold

[Bllo< or) + IVBllsory S C and — [|ellwszopy < C-

Moreover, for every 1 < p < 6, we have ||VF||ws.»op) — 0,455 — 0.



Carlo Mantegazza

Compactness

As a consequence, if E; C QI]VIE (E) is a sequence of smooth sets such that

sup / \V*H|* dp; + / |VH? dp; < +00,
ieN JaE, J oF;
then there exists a (non necessarily smooth) set E’ € €}, (E) such that, up to a
(non relabeled) subsequence, E; — E’ in W3P asi — oo, forall 1 < p <6.
Moreover, if

[P+ [ VHPa -0,

OE; OE;

asi — oo, the set E’ is critical for the volume—constrained Area functional,
that is, its mean curvature is constant.
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Evolution of the energy

Let E; C T* be a surface diffusion flow such that E; € €)(E), for some smooth set E.

Then,
d
. |VH|* dus < —2nE,(AH)+c1/ |B|VH[*| AH| du
OE; OE;
d -
at Jo |VH|* dp < — ||V4HH%2(6E[) +Co(1+ ||VHHL2(8E,))HVH”iZ([}E,) ;
t

for some exponent T > 0 and constant Cy, Cz such that Cy depends only on E and
M, while C, depends also on ||B||Lo (ar,) and || VB||1s(ak,)-




To get such proposition, one first proves, by straightforward computations,

4 |VH|* dpy = — 210, (AH) + [ HAH|VH|* du
dt Jor, OF;

- / 2B(VH, VH)AH dy
OE;

a |V*H d = —2/

VA HP dps + / 4°(B, V°H) du
dt OE; OE;

OE;

+ / 7°(V(BY), V*H) dyu
OE;

where ¢°(V*B, V”H) are polynomials in the iterated covariant derivatives of
Band H.
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Then, one has to carefully analyse the “algebraic structure” of the monomials
in such polynomials in order to estimate the integrals by means of
Gagliardo—Nirenberg, Holder and Young “uniform” inequalities.
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To get such proposition, one first proves, by straightforward computations,

4 |VH|* dy; = — 211, (AH) + [ HAH|VH|* du
dt Jor, OF;
— / 2B(VH, VH)AH dys
OE;
d
= |v2H|2dm:—2/ |V4H|2dp,—|—/ q'°(B, V’H) dyu
dt OE; OE; OE;

+ / 7°(V(BY), V*H) dyu
OE;

where ¢°(V*B, V”H) are polynomials in the iterated covariant derivatives of
Band H.

Then, one has to carefully analyse the “algebraic structure” of the monomials
in such polynomials in order to estimate the integrals by means of
Gagliardo—Nirenberg, Holder and Young “uniform” inequalities.

Here “uniform” means that the constants in such inequalities must be
uniformly controlled, since these are inequalities in an ambient space
(hypersurface) which is moving by the flow — We will get back on this point
later.



Carlo Mantegazza

Global existence and stability



Carlo Mantegazza

Global existence and asymptotic behavior
around a strictly stable critical set in T4

Theorem (A. Diana, N. Fusco and C. M., 2023)

Let E C T* be a strictly stable critical set for the Area functional under a volume
constraint. For Mg small enough, there exists § > 0 such that, if Eq is a smooth set
in &y, (E) with Vol(Eo) = Vol(E), satisfying

Vol(EoAE) <8 and / IV2HP duo + / (VHP dpo < 6,
aE, E,

then, the unique smooth surface diffusion flow E;, starting from Eo, is defined for all
times and converges smoothly to E' = E + 0 exponentially fast, for some n € R*.

More precisely, the sequence of smooth functions 1); : 9E — R representing
OE; as “normal graphs” on OE, satisfies, for every k € N,

19 — Pllce (o) < Cre™,

for every t € [0, +00), for some positive constants Cx and (5, where
1 : OE — R represents OE' = JE + n as a “normal graph” on JE.

Obtained by E. Acerbi, N. Fusco, M. Morini and V. Julin, for n = 3.
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Line of proof
By choosing Mg small enough in order that all the constants in the
inequalities are uniform and after choosing some small do > 0, we consider
the surface diffusion flow E; starting from Eo € €}, (E) satisfying
VOI(E()AE) < 5(] and 5(0) < 50.
We denote by T(Eg) € (0, +00] the maximal time such that the flow is defined
for t in the interval [0, T(Eo)), E; € €y, (E),

Vol(E:AE) <8  and 8(t):/ |V2H|2dm+/ IVHP dyss < 6.
OFE; OE;
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embeddings, we can “restart” the flow from a time close enough to T(Ey), we

have the contradiction that T'(Eo) cannot be the maximal time satisfying the
properties above.
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Line of proof
By choosing Mg small enough in order that all the constants in the
inequalities are uniform and after choosing some small do > 0, we consider
the surface diffusion flow E; starting from Eo € €}, (E) satisfying
VOI(E()AE) < 5(] and 5(0) < 50.
We denote by T(Eg) € (0, +00] the maximal time such that the flow is defined
for t in the interval [0, T(Eo)), E; € €y, (E),

Vol(E:AE) <8  and E(t):/ |V2H|2dm+/ IVHP dyss < 6.
OFE; OE;

If T(Eg) < 400, then at least one of the following must hold:

o limsup,_ 7)) [|¥tllc1(or) = 2ME

o limsup, 7, E(t) = do

e limsup,_, 7, VOl(E:AE) = do
otherwise, by the previous lemma/corollary and Sobolev (uniform)
embeddings, we can “restart” the flow from a time close enough to T(Ey), we

have the contradiction that T'(Eo) cannot be the maximal time satisfying the
properties above.
Thus, we want to show that if §p is chosen small enough, there exists § > 0

(as in the statement of the theorem) such that none of these conditions can
occur, hence T(Ep) = +o0.
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We define, for K > 1, the following modification on the energy function:
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IIg,, for a suitable K > 1, we get
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and M.



Monotonicity of the energy

We define, for K > 1, the following modification on the energy function:
&) = [ 1V HPdu+K [ [VHPdp > €0)
OFE; OE;

Then, by the previous Proposition and by the boundedness (from below) of
IIg,, for a suitable K > 1, we get

d 1
7 5x(B) < — 2KTIg, (AH) — 2| V*HIlE2 (o5, + S1(E () IVHIE2 o5,
51 (EB) IVHIE G + Sa(E()KIVHIE T
< —&(B)/K
for every t € [0, T(Eo)), for some exponent 7, 7" > 0 and continuous,

monotone nondecreasing functions 51, S; : [0, +00) — R, depending on E
and ME.

Hence, the function & is never increasing so it remains bounded by
Ek(0) < KE(0) < Kb < dp/2 (moreover, it decreases exponentially and
converges to zero, as t — 400, if the flow is “eternal”).
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Global existence of the flow

It follows that £(t) < Ex(t) < de~"/K < 6, for every t € [0, T(Eo)), hence, by
the previous Lemma, |[¢t||c2. (o) cannot be unbounded, as t — T(Eo).
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Global existence of the flow

It follows that £(t) < Ex(t) < de~"/K < 6, for every t € [0, T(Eo)), hence, by
the previous Lemma, |[¢t||c2. (o) cannot be unbounded, as t — T(Eo).

Moreover, with an appropriate choice of a small § (again by such lemma), the
condition

lim sup ||9||c1 o5y = 2Me
t—T(Ep)

is not possible.

By means of some manipulations, for all f € [0, T(Eo)) we can also show that
VOl(E;AE) < Cllbellizor) < VS,

hence, also the condition

lim sup Vol(E:AE) = do
t—T(Ep)

cannot occur.

Then, we conclude that the surface diffusion flow of Ey exists smooth for
every time, moreover E; € C%ME (E) and

E(t) < de” % for every t € [0, 400).
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Exponential convergence to a translated of E

Let t; — 400, since £(t;) — 0 as i — +o00, by the “compactness” corollary, up
to a subsequence, there exists a critical set E’ € €4, (E) (actually E’ is smooth,
by standard regularity theory for quasilinear equations, having constant
mean curvature and being a graph over JE of a C! function) such that

E, = E in W2,
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Exponential convergence to a translated of E

Let t; — 400, since £(t;) — 0 as i — +o00, by the “compactness” corollary, up
to a subsequence, there exists a critical set E’ € €4, (E) (actually E’ is smooth,
by standard regularity theory for quasilinear equations, having constant
mean curvature and being a graph over JE of a C! function) such that

E, = E in W2,

Moreover, since we know that near a strictly stable critical set there are no
other smooth critical sets, up to translations (E. Acerbi, N. Fusco, V. Julin and
M. Morini, 2019), we have that it must be E' = E + 7, for some (small) n € R*.

Then, arguing by contradiction, it can be seen easily that the full sequence
converges (exponentially) to E’. Finally, standard parabolic estimates give the
smooth exponential convergence of E; to E'.
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General dimension

With the same line (and a little more technical effort) effort, one can show the
same result in any dimension n > 3, by considering the energy

Enlt) = / V" 2HP dps + / VH dyu
OE; OE;

and modifying the interpolation inequalities with some suitable exponents
(depending on n).
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General dimension

With the same line (and a little more technical effort) effort, one can show the
same result in any dimension n > 3, by considering the energy

&) = [ 1V HPd+ [ (VHF d
OE; OE;

and modifying the interpolation inequalities with some suitable exponents
(depending on n).

Theorem (A. Diana, N. Fusco and C. M., 2023)

Let E C T" be a strictly stable critical set for the Area functional under a volume
constraint. For Mg small enough, there exists § > 0 such that, if Eq is a smooth set
in &y, (E) with Vol(Eo) = Vol(E), satisfying

Vol(EsAE) <6 and / V"2 HP dpo + / \VH dpo < 5,
OEg OEy

then, the unique smooth surface diffusion flow E;, starting from Eo, is defined for all
times and converges smoothly to E' = E + n exponentially fast, for some n € R".
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It should be possible to extend our result (as E. Acerbi, N. Fusco, V. Julin and
M. Morini did, in dimension n = 3) to other flows, like the Mullins—Sekerka
flow. Representing the moving hypersurfaces as smooth embeddings

@t : M — T", it can be described as

9t
ot

which is nonlocal, due to the presence of the fractional Laplacian.

= (A'"’H)v = —A"?¢; + lower order terms
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It should be possible to extend our result (as E. Acerbi, N. Fusco, V. Julin and
M. Morini did, in dimension n = 3) to other flows, like the Mullins—Sekerka
flow. Representing the moving hypersurfaces as smooth embeddings

@t : M — T", it can be described as

9t
ot

which is nonlocal, due to the presence of the fractional Laplacian.

= (A'"’H)v = —A"?¢; + lower order terms

It is then natural to try to generalize these results (Antonia Diana is working
on that) to the nonlocal evolutions of hypersurfaces given by the laws

% = (A'H)v = —A "' + lower order terms,

for any s € (0, 1].

Up to our knowledge, these flows are not present in literature.
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Uniform inequalities

In several step of our (and related) work, one need to apply inequalities (in
particular, to control the behavior of the curvature — that is, morally the
C’-norm of the “representing maps”) to functions on the moving
hypersurfaces. Hence, the constants in such inequalities must be uniformly
controlled independently of the curvature.
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a fixed compact, embedded one, have uniformly bounded constants in some
relevant inequalities for the analysis, like Poincaré, Sobolev,
Gagliardo-Nirenberg and “geometric” Calderén—-Zygmund inequalities.
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Uniform inequalities

In several step of our (and related) work, one need to apply inequalities (in
particular, to control the behavior of the curvature — that is, morally the
C’-norm of the “representing maps”) to functions on the moving
hypersurfaces. Hence, the constants in such inequalities must be uniformly
controlled independently of the curvature.

We then showed that families of smooth hypersurfaces all C _close enough to
a fixed compact, embedded one, have uniformly bounded constants in some
relevant inequalities for the analysis, like Poincaré, Sobolev,
Gagliardo-Nirenberg and “geometric” Calderén—-Zygmund inequalities.

These technical results are clearly useful in general for the study of the
geometric flows of hypersurfaces.
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Uniform inequalities

Proposition

Let Mo C R"" be a smooth, compact hypersurface, embedded in R™*". Then, there
exist uniform bounds, depending only on Mo and 6, for all the hypersurfaces
M € &§(My) on:

@ the volume of M,
e the Sobolev constants for p € [1,n) of the embeddings W' (M) — L¥" (M),

@ the Sobolev constants for p € (n, oo] of the embeddings
Wl,p(M) N CO,l—n/p(M),

@ the constants in the Poincaré—Wirtinger inequalities on M, for p € [1, 4+00],
@ the Sobolev constant of the embedding W*" (M) — BMO(M),

@ all the constants in the embeddings of the fractional Sobolev spaces W** (M),
°

all the constants in the Gagliardo—Nirenberg interpolation inequalities on M.

Moreover, all these bounds go to the corresponding constants for My, as § — 0.
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Uniform Calderén-Zygmund and Schauder inequalities

Proposition

Let Mo C R"*" be a smooth, compact hypersurface, embedded in R"*" and

1 <p < +o0. Then, if § > 0 is small enough, there exists a constant

C = C(Mo, p, ) such that the following geometric Calderén—Zygmund inequality
holds,

IBller @y < C(1 + [Hllwr )

for every M € €5 (My).

.

Proposition

Let Mo C R™* be a smooth, compact hypersurface, embedded in R"*" and
a € (0,1]. Then, if 6 > 0 is small enough, there exists a constant C = C(Mo, «, 9)
such that the following geometric (Schauder—type) estimate holds,

IIBllco.eary < C (1 + 1Hllco.e(a))

for every M € €5 (Mp).
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Uniform higher order Calderén-Zygmund inequalities

Proposition

Let My as above, k € N and p > 1. Assuming that we have a uniform bound
HllLsm) < Cr
with q > n, there exists a constant C = C(Mo, k, p, Cn, 9) such that
IV*Bllran < C(L+ V' Hllpan)

and
HBHW",P(M) < C(l + HHHW’W’(M)) :

for any M € €5(M), with § > 0 small enough.
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@ All the constants depend on the geometric properties of My, in particular
on the maximal width of a tubular neighborhood, its volume and its
second fundamental form. Hence, uniformly controlling such quantities
gives uniform estimates for larger families of hypersurfaces.
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graphs on a fixed compact, smooth hypersurface.
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Some remarks

@ Other uniform inequalities hold form families of hypersurfaces in
€5(Mo), like trace inequalities or inequalities related to the harmonic
extensions of functions.

@ All the constants depend on the geometric properties of My, in particular
on the maximal width of a tubular neighborhood, its volume and its
second fundamental form. Hence, uniformly controlling such quantities
gives uniform estimates for larger families of hypersurfaces.

@ All the inequalities holds uniformly also for families of immersed-only
hypersurfaces (non necessarily embedded), if they can be expressed as
graphs on a fixed compact, smooth hypersurface.

o Everything still works if the ambient space is any complete Riemannian

manifold. Then, the constants also depends on the geometry (in
particular, on the curvature) of such manifold.



Thanks for your attention
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