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The surface diffusion flow

Definition
Let E ⊆ Tn be a smooth set. We say that the family Et ⊆ Tn, for t ∈ [0,T) with
E0 = E, is a surface diffusion flow starting from E, if the map t 7→ χEt is
continuous from [0,T) to L1(Tn) and the hypersurfaces ∂Et move by surface
diffusion, that is, there exists a smooth family of embeddings φt : ∂E → Tn, for
t ∈ [0,T), with φ0 = Id and φt(∂E) = ∂Et, such that

∂φt

∂t
= (∆H)ν

where, at every point and time, H and ∆ are respectively the mean curvature and the
Laplacian (with the Riemannian metric induced by Tn) of the moving hypersurface
∂Et, while ν is the “outer” normal to the smooth set Et.

We want to study the long–time behavior of the surface diffusion flow of
embedded smooth hypersurfaces which are boundaries of smooth sets, in the
n–dimensional flat torus Tn (the so called “periodic case”). Then, clearly all
the results also hold for compact sets in Rn.
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The surface diffusion flow

Fourth order flow – Quasilinear (degenerate) parabolic system of PDEs

∂φt

∂t
= −∆∆φt + lower order terms.

It can be defined also for immersed–only hypersurfaces
(self–intersecting).

No maximum or comparison principles.

It does not preserve convexity or embeddedness.

It is invariant by isometries of Tn, reparametrizations and tangential
perturbations of the velocity of the motion (also for immersed–only
hypersurfaces in Tn).

When it is restricted to closed embedded hypersurfaces which are
boundaries of sets, the enclosed volume is preserved.

Its a (sort of) gradient flow and the Area functional

A(∂E) =
∫
∂E

dµ

decreases along the flow.
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Preliminaries

For every smooth set E ⊆ Tn and ε > 0, we consider the tubular neighborhood
of ∂E

Nε = {x ∈ Tn : d(x, ∂E) < ε}

where d is the “Euclidean” distance on Tn.

Definition
Given a smooth set E ⊆ Tn and a tubular neighborhood Nε of ∂E, for every k ∈ N
and for any M ∈ (0, ε/2), we denote by Ck

M(∂E), the class of all sets F ⊆ E ∪ Nε

such that Vol(F△E) ⩽ M and

∂F = {y + ψF(y)νE(y) : y ∈ ∂E} ,

for some function ψF ∈ Ck(∂E), with ∥ψF∥Ck(∂E) ⩽ M.

We will call a set F as in this definition, the normal deformation of E induced by
the function ψF.
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Short time existence and uniqueness

Theorem (J. Escher, U. F. Mayer and G. Simonett, 1998)

Let E ⊆ Tn be a smooth set, Nε a tubular neighborhood of ∂E and ME < ε/2. For
every E0 ⊆ Tn smooth set in C1

ME
(E), which is a normal deformation of E induced by

a smooth function ψ0 : ∂E → R, there exists a unique surface diffusion flow Et,
starting from E0, such that every Et is a normal deformation of E induced by a
smooth function ψt : ∂E → R, for t ∈ [0,T(E0)), with T(E0) depending on the
C2,α–norm of ψ0.

Unfortunately the surface diffusion flow could develop singularities in finite
time, even in low dimensions. For instance, like for the mean curvature flow,
a dumbbell surface with a thin neck should become singular during the
evolution, but also embedded curves in the plane do not necessarily evolve
smoothly (numerical evidences).
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A smooth set E is a critical set (that is, with zero constrained first variation) for
the volume–constrained Area functional A if and only if its boundary satisfy
H = λ, for some constant λ ∈ R (E is a constant mean curvature hypersurface).

Then, at a critical set E, the second variation of the Area functional is given by

d2

dt2 A(∂Et)
∣∣∣

t=0
=

∫
∂E

(
|∇ψ|2 − ψ2|B|2

)
dµ

where ∂Et = φt(∂E) is a volume–preserving variation of E and ψ ∈ C∞(∂E)
(which satisfies

∫
∂E ψ dµ = 0) is the normal component of its infinitesimal

generator (B is the second fundamental form of ∂E).

This motivates the following definition.

Definition
We say that a critical set E ⊆ Tn for A under a volume constraint is strictly stable if

ΠE(ψ) =

∫
∂E

(
|∇ψ|2 − ψ2|B|2

)
dµ > 0

for all ψ ∈ H̃1(∂E) =
{
ψ ∈ H1(∂E) :

∫
∂E ψ dµ = 0

}
such that

∫
∂E ψν dµ = 0.

Morally, in this definition we are “excluding” the translations of the set E.
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If n = 2, the only bounded strictly stable critical sets for the Length
functional (that is, the Area functional in the 2–dimensional ambient
space) in the plane are the disks, in T2 they are the disks and the “strips”
with straight borders.

If n = 3, the stable “periodic” critical sets for the volume–constrained
Area functional, are balls, 2–tori, gyroids or lamellae (Ros, 2007).

Among them, balls, tori and lamellae are actually strictly stable. The
strict stability of gyroids was instead established only in some cases.

In any dimension, if E is a ball or if ∂E in Tn is composed by flat pieces
(hence, its second fundamental form B is identically zero), then it is
critical and strictly stable.

Our aim was to show that the surface diffusion flow of an initial set close
enough to a strictly stable critical set, exists for all positive times and
asymptotically converges to a translation of it.
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Previous stability results

W2,2–closedness to a circle in the plane: C. M. Elliott and H. Garcke, 1997

C2,α–closedness to an n–dimensional sphere: J. Escher, U. F. Mayer and
G. Simonett, 1998

W2,2–closedness to a 2–sphere: G. Wheeler, 2013

W3,2–closedness to a 2–dimensional strictly stable surface: E. Acerbi, N.
Fusco, V. Julin and M. Morini, 2019

Wn+1,2–closedness to an n–dimensional strictly stable hypersurface.

Very similar result, with different methods, by D. De Gennaro, A. Diana,
A. Kubin and A. Kubin, 2023.
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By simplicity, we discuss the case n = 4, then we will indicate the necessary
modification in the general dimensional case.

We consider a suitable “energy” depending on (iterated) covariant
derivatives of the mean curvature, that is,

E(t) =
∫
∂Et

|∇2H|2 dµt +

∫
∂Et

|∇H|2 dµt .

Its relevance is expressed by the following lemma.

Lemma

Let E ⊆ T4 be a smooth set and Nε be a tubular neighborhood of ∂E. For ME small
enough and δ > 0, there exists a constant C = C(E,ME, δ) such that if F ∈ C1

ME
(E)

is a normal deformation of E induced by a smooth function ψF : ∂E → R and∫
∂F

|∇2H|2 dµ+

∫
∂F

|∇H|2 dµ ⩽ δ and Vol(F△E) ⩽ δ ,

there hold

∥B∥L∞(∂F) + ∥∇B∥L6(∂F) ⩽ C and ∥ψF∥W4,2(∂E) ⩽ C .

Moreover, for every 1 ⩽ p < 6, we have ∥ψF∥W3,p(∂E) → 0, as δ → 0.
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Compactness

Corollary

As a consequence, if Ei ⊆ C1
ME

(E) is a sequence of smooth sets such that

sup
i∈N

∫
∂Ei

|∇2H|2 dµi +

∫
∂Ei

|∇H|2 dµi < +∞ ,

then there exists a (non necessarily smooth) set E′ ∈ C1
ME

(E) such that, up to a
(non relabeled) subsequence, Ei → E′ in W3,p as i → ∞, for all 1 ⩽ p < 6.
Moreover, if ∫

∂Ei

|∇2H|2 dµi +

∫
∂Ei

|∇H|2 dµi → 0 ,

as i → ∞, the set E′ is critical for the volume–constrained Area functional,
that is, its mean curvature is constant.
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Evolution of the energy

Proposition

Let Et ⊆ T4 be a surface diffusion flow such that Et ∈ C1
M(E), for some smooth set E.

Then,

d
dt

∫
∂Et

|∇H|2 dµt ⩽ − 2ΠEt(∆H) + C1

∫
∂Et

|B||∇H|2|∆H| dµt ,

d
dt

∫
∂Et

|∇2H|2 dµt ⩽− ∥∇4H∥2
L2(∂Et)

+ C2
(
1 + ∥∇H∥τL2(∂Et)

)
∥∇H∥2

L2(∂Et)
,

for some exponent τ > 0 and constant C1,C2 such that C1 depends only on E and
M, while C2 depends also on ∥B∥L∞(∂Et) and ∥∇B∥L6(∂Et)

.
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To get such proposition, one first proves, by straightforward computations,

d
dt

∫
∂Et

|∇H|2 dµt =− 2ΠEt(∆H) +

∫
∂Et

H∆H|∇H|2 dµt

−
∫
∂Et

2B(∇H,∇H)∆H dµt

d
dt

∫
∂Et

|∇2H|2 dµt =− 2
∫
∂Et

|∇4H|2 dµt +

∫
∂Et

q10(B,∇3H) dµt

+

∫
∂Et

q10(∇(B2),∇4H) dµt

where qs(∇αB,∇βH) are polynomials in the iterated covariant derivatives of
B and H.

Then, one has to carefully analyse the “algebraic structure” of the monomials
in such polynomials in order to estimate the integrals by means of
Gagliardo–Nirenberg, Hölder and Young “uniform” inequalities.

Here “uniform” means that the constants in such inequalities must be
uniformly controlled, since these are inequalities in an ambient space
(hypersurface) which is moving by the flow – We will get back on this point
later.
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Carlo Mantegazza Global existence and stability

Global existence and asymptotic behavior
around a strictly stable critical set in T4

Theorem (A. Diana, N. Fusco and C. M., 2023)

Let E ⊆ T4 be a strictly stable critical set for the Area functional under a volume
constraint. For ME small enough, there exists δ > 0 such that, if E0 is a smooth set
in C1

ME
(E) with Vol(E0) = Vol(E), satisfying

Vol(E0△E) ⩽ δ and
∫
∂E0

|∇2H|2 dµ0 +

∫
∂E0

|∇H|2 dµ0 ⩽ δ ,

then, the unique smooth surface diffusion flow Et, starting from E0, is defined for all
times and converges smoothly to E′ = E + η exponentially fast, for some η ∈ R4.

More precisely, the sequence of smooth functions ψt : ∂E → R representing
∂Et as “normal graphs” on ∂E, satisfies, for every k ∈ N,

∥ψt − ψ∥Ck(∂E) ⩽ Cke−βkt ,

for every t ∈ [0,+∞), for some positive constants Ck and βk, where
ψ : ∂E → R represents ∂E′ = ∂E + η as a “normal graph” on ∂E.

Obtained by E. Acerbi, N. Fusco, M. Morini and V. Julin, for n = 3.



Carlo Mantegazza Global existence and stability

Line of proof
By choosing ME small enough in order that all the constants in the
inequalities are uniform and after choosing some small δ0 > 0, we consider
the surface diffusion flow Et starting from E0 ∈ C1

ME
(E) satisfying

Vol(E0△E) ⩽ δ0 and E(0) ⩽ δ0.
We denote by T(E0) ∈ (0,+∞] the maximal time such that the flow is defined
for t in the interval [0,T(E0)), Et ∈ C1

2ME
(E),

Vol(Et△E) ⩽ δ0 and E(t) =
∫
∂Et

|∇2H|2 dµt +

∫
∂Et

|∇H|2 dµt ⩽ δ0 .

If T(E0) < +∞, then at least one of the following must hold:
lim supt→T(E0)

∥ψt∥C1(∂E) = 2ME

lim supt→T(E0)
E(t) = δ0

lim supt→T(E0)
Vol(Et△E) = δ0

otherwise, by the previous lemma/corollary and Sobolev (uniform)
embeddings, we can “restart” the flow from a time close enough to T(E0), we
have the contradiction that T(E0) cannot be the maximal time satisfying the
properties above.

Thus, we want to show that if δ0 is chosen small enough, there exists δ > 0
(as in the statement of the theorem) such that none of these conditions can
occur, hence T(E0) = +∞.
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Monotonicity of the energy

We define, for K > 1, the following modification on the energy function:

EK(t) =
∫
∂Et

|∇2H|2 dµt + K
∫
∂Et

|∇H|2 dµt ⩾ E(t)

Then, by the previous Proposition and by the boundedness (from below) of
ΠEt , for a suitable K > 1, we get

d
dt
EK(t) ⩽ − 2KΠEt(∆H)− 1

2
∥∇4H∥2

L2(∂Et)
+ S1(EK(t))∥∇H∥2

L2(∂Et)

+ S1(EK(t))∥∇H∥2+τ
L2(∂Et)

+ S2(EK(t))K2∥∇H∥2+τ ′

L2(∂Et)

⩽− EK(t)/K

for every t ∈ [0,T(E0)), for some exponent τ, τ ′ > 0 and continuous,
monotone nondecreasing functions S1, S2 : [0,+∞) → R+, depending on E
and ME.

Hence, the function EK is never increasing so it remains bounded by
EK(0) ⩽ KE(0) < Kδ < δ0/2 (moreover, it decreases exponentially and
converges to zero, as t → +∞, if the flow is “eternal”).
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Global existence of the flow

It follows that E(t) ⩽ EK(t) ⩽ δe−t/K ⩽ δ, for every t ∈ [0,T(E0)), hence, by
the previous Lemma, ∥ψt∥C2,α(∂E) cannot be unbounded, as t → T(E0).

Moreover, with an appropriate choice of a small δ (again by such lemma), the
condition

lim sup
t→T(E0)

∥ψt∥C1(∂E) = 2ME

is not possible.
By means of some manipulations, for all t ∈ [0,T(E0)) we can also show that

Vol(Et△E) ⩽ C∥ψt∥L2(∂E) ⩽ C 4
√
δ ,

hence, also the condition

lim sup
t→T(E0)

Vol(Et△E) = δ0

cannot occur.
Then, we conclude that the surface diffusion flow of E0 exists smooth for
every time, moreover Et ∈ C1

2ME
(E) and

E(t) ⩽ δe−t/K for every t ∈ [0,+∞).
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Exponential convergence to a translated of E

Let ti → +∞, since E(ti) → 0 as i → +∞, by the “compactness” corollary, up
to a subsequence, there exists a critical set E′ ∈ C1

2ME
(E) (actually E′ is smooth,

by standard regularity theory for quasilinear equations, having constant
mean curvature and being a graph over ∂E of a C1 function) such that

Eti → E′ in W3,2 .

Moreover, since we know that near a strictly stable critical set there are no
other smooth critical sets, up to translations (E. Acerbi, N. Fusco, V. Julin and
M. Morini, 2019), we have that it must be E′ = E + η, for some (small) η ∈ R4.

Then, arguing by contradiction, it can be seen easily that the full sequence
converges (exponentially) to E′. Finally, standard parabolic estimates give the
smooth exponential convergence of Et to E′.
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General dimension

With the same line (and a little more technical effort) effort, one can show the
same result in any dimension n ⩾ 3, by considering the energy

En(t) =
∫
∂Et

|∇n−2H|2 dµt +

∫
∂Et

|∇H|2 dµt

and modifying the interpolation inequalities with some suitable exponents
(depending on n).

Theorem (A. Diana, N. Fusco and C. M., 2023)

Let E ⊆ Tn be a strictly stable critical set for the Area functional under a volume
constraint. For ME small enough, there exists δ > 0 such that, if E0 is a smooth set
in C1

ME
(E) with Vol(E0) = Vol(E), satisfying

Vol(E0△E) ⩽ δ and
∫
∂E0

|∇n−2H|2 dµ0 +

∫
∂E0
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then, the unique smooth surface diffusion flow Et, starting from E0, is defined for all
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Carlo Mantegazza Generalizations

It should be possible to extend our result (as E. Acerbi, N. Fusco, V. Julin and
M. Morini did, in dimension n = 3) to other flows, like the Mullins–Sekerka
flow. Representing the moving hypersurfaces as smooth embeddings
φt : M → Tn, it can be described as

∂φt

∂t
= (∆1/2H)ν = −∆3/2φt + lower order terms

which is nonlocal, due to the presence of the fractional Laplacian.

It is then natural to try to generalize these results (Antonia Diana is working
on that) to the nonlocal evolutions of hypersurfaces given by the laws

∂φt

∂t
= (∆sH)ν = −∆s+1φt + lower order terms,

for any s ∈ (0, 1].

Up to our knowledge, these flows are not present in literature.
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Uniform inequalities

In several step of our (and related) work, one need to apply inequalities (in
particular, to control the behavior of the curvature – that is, morally the
C2–norm of the “representing maps”) to functions on the moving
hypersurfaces. Hence, the constants in such inequalities must be uniformly
controlled independently of the curvature.

We then showed that families of smooth hypersurfaces all C1–close enough to
a fixed compact, embedded one, have uniformly bounded constants in some
relevant inequalities for the analysis, like Poincaré, Sobolev,
Gagliardo–Nirenberg and “geometric” Calderón–Zygmund inequalities.

These technical results are clearly useful in general for the study of the
geometric flows of hypersurfaces.
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Uniform inequalities

Proposition

Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1. Then, there
exist uniform bounds, depending only on M0 and δ, for all the hypersurfaces
M ∈ C1

δ(M0) on:
the volume of M,

the Sobolev constants for p ∈ [1, n) of the embeddings W1,p(M) ↪→ Lp∗(M),
the Sobolev constants for p ∈ (n,∞] of the embeddings
W1,p(M) ↪→ C0,1−n/p(M),
the constants in the Poincaré–Wirtinger inequalities on M, for p ∈ [1,+∞],
the Sobolev constant of the embedding W1,n(M) ↪→ BMO(M),
all the constants in the embeddings of the fractional Sobolev spaces Ws,p(M),
all the constants in the Gagliardo–Nirenberg interpolation inequalities on M.

Moreover, all these bounds go to the corresponding constants for M0, as δ → 0.



Carlo Mantegazza Some extra results

Uniform Calderón–Zygmund and Schauder inequalities

Proposition

Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1 and
1 < p < +∞. Then, if δ > 0 is small enough, there exists a constant
C = C(M0, p, δ) such that the following geometric Calderón–Zygmund inequality
holds,

∥B∥Lp(M) ⩽ C
(
1 + ∥H∥Lp(M)

)
for every M ∈ C1

δ(M0).

Proposition

Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1 and
α ∈ (0, 1]. Then, if δ > 0 is small enough, there exists a constant C = C(M0, α, δ)
such that the following geometric (Schauder–type) estimate holds,

∥B∥C0,α(M) ⩽ C
(
1 + ∥H∥C0,α(M)

)
for every M ∈ C1,α

δ (M0).
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Uniform higher order Calderón–Zygmund inequalities

Proposition

Let M0 as above, k ∈ N and p > 1. Assuming that we have a uniform bound

∥H∥Lq(M) ⩽ CH

with q > n, there exists a constant C = C(M0, k, p,CH, δ) such that

∥∇kB∥Lp(M) ⩽ C
(
1 + ∥∇kH∥Lp(M)

)
and

∥B∥Wk,p(M) ⩽ C
(
1 + ∥H∥Wk,p(M)

)
.

for any M ∈ C1
δ(M0), with δ > 0 small enough.
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Some remarks

Other uniform inequalities hold form families of hypersurfaces in
C1
δ(M0), like trace inequalities or inequalities related to the harmonic

extensions of functions.

All the constants depend on the geometric properties of M0, in particular
on the maximal width of a tubular neighborhood, its volume and its
second fundamental form. Hence, uniformly controlling such quantities
gives uniform estimates for larger families of hypersurfaces.

All the inequalities holds uniformly also for families of immersed–only
hypersurfaces (non necessarily embedded), if they can be expressed as
graphs on a fixed compact, smooth hypersurface.

Everything still works if the ambient space is any complete Riemannian
manifold. Then, the constants also depends on the geometry (in
particular, on the curvature) of such manifold.
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