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In the last 30 years, a large interest has grown in connection
with geometric evolutions of submanifolds, also with
motivations coming from mathematical physics (phase
transitions, Stefan problem). A model problem is the evolution
of surfaces by mean curvature, which can be considered as the
gradient flow of the Area functional.
The mathematical problem is intriguing for several reasons
related to the appearance of singularities during the flow (with
the exceptions of planar Jordan curves, convex shapes,
codimension one graphs), in particular, it is necessary some
weak approach in order to get a global (in time) solution of the
evolution problem.
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Starting from the pioneering work of Brakke, a large literature is
by now available on this subject (Chen–Giga–Goto,
Evans–Spruck, Huisken, Ilmanen, Ambrosio–Soner,
Evans–Soner-Souganidis). The weak formulations are mainly
based either on geometric measure theory (currents, varifolds),
or on the theory of viscosity solutions. In the latter approach, a
crucial role is played by the analytical properties of the distance
function dM(x) from the submanifold.
For instance, in the codimension one case, it turns out that the
boundary Mt = ∂Ut of a family of domains Ut flows by mean
curvature if and only if

∂t d(x , t) = ∆d(x , t) for every x ∈ Mt

where d(x , t) is equal to the signed distance function from Mt .
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Since the signed distance function makes no sense in higher
codimension problems, De Giorgi suggested to work with the
squared distance function ηM(x) = [dM(x)]2/2.
Setting η(x , t) = ηMt (x), it turns out (Ambrosio–Soner) that the
mean curvature flow is characterized by the equation

∂t ∇η(x , t) = ∆∇η(x , t) for x ∈ Mt .
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One of the parts of this thesis was a systematic study of the
connections between the analytical properties of ηM and the
geometric invariants of the submanifold M, like the second
fundamental form and its covariant derivatives.

I L. Ambrosio and C. Mantegazza, Curvature and distance
function from a manifold. Dedicated to the memory of
Fred Almgren. J. Geom. Anal. 8 (1998), no. 5, 723–744.

I C. Mantegazza and A. C. Mennucci, Hamilton–Jacobi
equations and distance functions on Riemannian
manifolds. Appl. Math. Opt. 47 (2003), 1–25.

I M. Eminenti and C. Mantegazza, Some properties of the
distance function and a conjecture of De Giorgi. J. Geom.
Anal. 14 (2004), no. 2, 267–279.
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Proposition (Manolo Eminenti, CM)
For every m ≥ 3 there is a one–to–one correspondence
between the covariant derivatives of the second fundamental
form of a submanifold M ⊂ Rn up to the order m and the
ordinary derivatives in Rn of the squared distance function ηM

up to the order m − 3.
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It follows that any autonomous “geometric” functional can be
written as

F(M) =

∫
M

f
(
∇2

i1i2η
M , . . . ,∇γj1 ... jγη

M
)

dHn

for some function f depending on the standard derivatives in Rn

of ηM up to a given order γ. One of the results of this work is a
constructive algorithm for the computation of the first variation
of such general functional (Luigi Ambrosio–CM).



Smooth Geometric Evolutions and Singular Approximation of MCF

Two particular functionals on hypersurfaces of Rn+1 are the
following:

Gγ(M) =

∫
M
|∇γηM |2 dHn ,

where ∇γ is the standard (iterated) derivative in Rn+1, and

Cm(ϕ) =

∫
M
|∇mν|2 dµ ,

representing hypersurfaces in Rn+1 as immersions
ϕ : M → Rn+1. Here µ and ∇ are respectively the canonical
measure and the Levi–Civita connection on the Riemannian
manifold (M,g), where the metric g is obtained by pulling back
on M the usual metric of Rn+1 via the map ϕ. The symbol ∇m

denotes the m–th iterated covariant derivative and ν a unit
normal local vector field to the hypersurface.
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When γ = m + 2, the first variations of these two functionals
have the same leading terms, up to the constant m + 2, that is

EGγ (M) = 2γ(−1)γ−1
( (γ − 2)–times︷ ︸︸ ︷

∆∆ . . .∆ H
)
ν + LOT

and

ECm (M) = 2(−1)m+1
( m–times︷ ︸︸ ︷

∆∆ . . .∆H
)
ν + LOT

where ∆ is the Laplace–Beltrami operator of the hypersurface
and H is the (scalar) mean curvature of M.
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In one of his last papers De Giorgi stated the following
conjecture:

Conjecture(Ennio De Giorgi)

Any compact, n–dimensional, smooth submanifold M of Rn+k

without boundary, moving by the gradient of the functional

DGk (M) =

∫
M

1 + |∇mηM |2 dHn ,

where ηM is the square of the distance function from M and Hn

is the n–dimensional Hausdorff measure in Rn+k , does not
develop singularities, if m > n + 1.

E. De Giorgi, Congetture riguardanti alcuni problemi di
evoluzione. A celebration of John F. Nash, Jr., Duke Math. J.
81 (1996), no. 2, 255–268.



Smooth Geometric Evolutions and Singular Approximation of MCF

In the codimension one case, that is for hypersurfaces, instead
of dealing directly with the functionals DGk , we analyzed the
gradient flow associated to the functionals

Fm(ϕ) =

∫
M

1 + |∇mν|2 dµ

and then we deduced the same conclusion for the original
functionals of De Giorgi, thanks to their close connection
(Eminenti–CM).
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I C. Mantegazza, Smooth geometric evolutions of
hypersurfaces. Geom. Funct. Anal. 12 (2002), no. 1,
138–182.

Theorem(CM)
If the differentiation order m is strictly larger than [n/2], then the
flows by the gradient of DGm+2 and Fm of any initial, smooth,
compact, n–dimensional, immersed hypersurface of Rn+1 exist,
are unique and smooth for every positive time ([n/2] means the
integer part of n/2).
Moreover, as t → +∞, the evolving hypersurface ϕt
sub–converges (up to reparametrization and translation) to a
smooth critical point of the respective functional.

Notice that the hypothesis m > [n/2] in general is weaker than
the original one in De Giorgi’s conjecture.
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This evolution problem turns out to be a higher order
quasilinear parabolic systems of PDE’s on the manifold M.
The very first step of the analysis is showing the short time
existence and uniqueness of a smooth flow.
This is a particular case of a result of Polden. His proof was
anyway flawed and we corrected and generalized it.

I C. Mantegazza and L. Martinazzi, A note on quasilinear
parabolic equations on manifolds. Ann. Sc. Norm. Super.
Pisa 9 (2012), 857–874.

Then, the long time existence is guaranteed as soon as one
has suitable a priori estimates on the flow.
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In the study of the mean curvature flow of a hypersurface
(which gives rise to a second order quasilinear parabolic
system of PDE’s) by means of techniques such as varifolds,
level sets, viscosity solutions, the maximum principle is the key
tool to get comparison results and estimates on solutions.
In our case, even if m = 1, the first variation and hence the
corresponding parabolic problem turns out to be of order higher
than two, precisely of order 2m + 2, so we have to deal with
equations of fourth order at least.
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This fact has the relevant consequence that we cannot employ
the maximum principle to get pointwise estimates and to
compare two solutions, thus losing a whole bunch of geometric
results holding for the mean curvature flow. In particular, it
cannot be expected that an initially embedded hypersurface
remains embedded during the flow, since self–intersections
could actually develop.
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In order to show regularity, a good substitute of the pointwise
estimates coming from the maximum principle, are suitable
estimates on the second fundamental form in Sobolev spaces,
using Gagliardo–Nirenberg interpolation type inequalities for
tensors. Since the constants involved in these inequalities
depends on the Sobolev constants and these latter on the
geometry of the hypersurface where the tensors are defined, it
is absolutely needed some uniform control independent of time
on these constants.
In the works of Polden on curves, these controls are obvious as
the constants depend only on the length, on the contrary, much
more work is needed here because of the richer geometry of
the hypersurfaces.
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Despite the large number of papers on the mean curvature
flow, the literature on fourth or even higher order flows is quite
limited. Our work borrows from the papers of Chrusciel and
Polden the basic idea of using interpolation inequalities as a
tool to get a priori estimates.

We want to remark here that another strong motivation for the
study of these flows is actually the fact that, in general,
regularity is not shared by second order flows, with the notable
exceptions of the evolution by mean curvature of embedded
curves in the plane (Gage, Hamilton, Grayson) and of convex
hypersurfaces (Huisken).
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When m is large enough, the functionals DGm+2 and Fm, which
decrease during the flow, control the Lp norm of the second
fundamental form for some exponent p larger than the
dimension n of the hypersurface. This fact, combined with a
universal Sobolev type inequality due to Michael and Simon,
where the dependence of the constants on the curvature is
made explicit, allows to get an uniform bound on the Sobolev
constants of the evolving hypersurfaces and then to obtain
time–independent estimates on curvature and all its derivatives
in L2. These bounds will imply in turn the desired pointwise
estimates and the long time existence and regularity of the
flows.
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Pushing a little the analysis, it also follows that considering a
general, positive, geometric functional

G(ϕ) =

∫
M

f (ϕ,g,B, ν, . . . ,∇sB,∇lν) dHn ,

such that the function f is smooth and has polynomial growth,
choosing an integer m large enough, the gradient flow of the
“perturbed” functionals, for any ε > 0,

Gεm(ϕ) = G(ϕ) + εFm(ϕ)

does not develop singularities (the same holds if we perturb the
functional G with εDGm+2).
We then say that Fm and DGm+2 are smoothing terms for the
functional G, that possibly does not admit a gradient flow even
for short time starting from a generic initial, smooth, compact,
embedded hypersurface.
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It is then natural to investigate what happens when the constant
ε > 0 in front of these smoothing terms goes to zero.
This program, suggested by De Giorgi in the same paper
mentioned before, can be described as follows: given a
geometric functional G defined on submanifolds of the
Euclidean space (or a more general ambient space),

I find a functional F such that the perturbed functionals
Gε = G + εF give rise to globally smooth flows for every
ε > 0;

I study what happens when ε→ 0, in particular, the
existence of a limit flow and in this case its relation with the
gradient flow of G (if it exists, smooth or singular).

If proved successful, this scheme would give a singular
approximation procedure of the gradient flow associated to the
functional G with a family of globally smooth flows.
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The previous discussion shows that the functionals Fm and
DGm+2 satisfy the first point for any geometric functional G with
polynomial growth, defined on hypersurfaces in Rn+1, provided
we choose an order m large enough (depending on G).

About the second point, the very first case is concerned with
the possible limits when ε→ 0 of the gradient flows of∫

M 1 + ε|∇mν|2 dµ when m > [n/2] and their relation with the
mean curvature flow, which is the gradient flow of the Area
functional, which is obtained if ε = 0.
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De Giorgi, in the same paper cited before, stated the following
conjecture.

Conjecture(Ennio De Giorgi)
Let m > [n/2], if the parameter ε > 0 goes to zero, the flows ϕεt
associated to the functionals

DGεm(M) =

∫
M

1 + ε|∇m+2ηM |2 dHn

and starting from a common initial, smooth, compact,
immersed hypersurface ϕ0 : M → Rn+1, converge in some
sense to the mean curvature flow of ϕ0,

∂ϕ

∂t
= Hν

(which is the gradient flow associated to the limit Area
functional, as ε→ 0).
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De Giorgi proposed this conjecture in general codimension. We
discuss it only in the case of evolving hypersurfaces.

Clearly, an analogous conjecture can be stated for the
ε–parametrized family of functionals

Fεm(M) =

∫
M

1 + ε|∇mν|2 dµ .
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I G. Bellettini, C. Mantegazza and M. Novaga, Singular
perturbations of mean curvature flow. J. Diff. Geom. 75
(2007), no. 3, 403–431.

Theorem
Let ϕ0 : M → Rn+1 be a smooth, compact, n–dimensional,
immersed submanifold of Rn+1. Let Tsing > 0 be the first
singularity time of the mean curvature flow
ϕ : M × [0,Tsing)→ Rn+1 of M. For any ε > 0 let
ϕε : M × [0,+∞)→ Rn+1 be the flows associated to the
functionals DGεm (or Fεm) with m > [n/2], that is,

∂ϕε

∂t
= Hν + 2ε(m + 2)(−1)m

( m–times︷ ︸︸ ︷
∆Mt ∆Mt . . .∆Mt H

)
ν + εLOT ν ,

all starting from the same initial immersion ϕ0.
Then, the maps ϕε converge locally in C∞(M × [0,Tsing)) to the
map ϕ, as ε→ 0.
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The above regularization of mean curvature flow with a singular
perturbation of higher order could lead to a new definition of
generalized solution in any dimension and codimension.

At the moment we are not able to show the existence or
characterize the limits of the approximating flows after the first
singularity time, as the proof of the above theorem relies
heavily on the smoothness of the mean curvature flow in the
time interval of existence.
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As an example, we mention the simplest open problem in
defining a limit flow after the first singularity. It is well known
(Gage–Hamilton and Huisken) that a convex curve in the plane
(or hypersurface in Rn+1) moving by mean curvature shrinks to
a point in finite time, becoming exponentially round. In this case
we expect that the approximating flows converge (in a way to
be made precise) to such a point at every time after the
“extinction” one.
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We remark here that this method works in general for any
geometric evolution of submanifolds in a Riemannian manifold
till the first singularity time, even when the equations are of high
order (like, for instance, the Willmore flow) choosing an
appropriate regularizing term of higher order.

Finally, it should be noticed, comparing the evolution equations
above with the one of the mean curvature flow, that these
perturbations could be considered, in the framework of
geometric evolution problems, as an analogue of the so–called
vanishing viscosity method for PDE’s. Indeed, we perturb the
mean curvature flow equation with a regularizing higher order
term multiplied by a small parameter ε > 0.
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However, the analogy with the classical viscosity method
cannot be pushed too far. For instance, because of the
condition m > [n/2] + 2, the regularized equations are of order
not less than four (precisely at least four for evolving curves, at
least six for evolving surfaces). Moreover, as the Laplacians
appearing in the evolution equation are relative to the induced
metric, the system of PDE’s is actually quasilinear and the
lower order terms are nonlinear (polynomial).
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Thanks for your attention

Grazie della vostra attenzione


