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Introduction

Let (M, g) be an n—dimensional, complete and connected Riemannian
manifold without boundary, let A be Laplace—Beltrami operator and p > 1.
We call a (classical) positive solution of the semilinear heat equation

ur = Au+ uP

@ ancientif it is defined in M x (—oo, T) for some T € R,
@ eternal if it is defined in M x R,
@ immortal if it is defined in M x (T, +o0) for some T € R,
@ static if it is independent of time, hence it satisfies Au + u” = 0.
We call a solution u trivial if it is constant in space, that is, u(x, t) = u(t) and

u solves the ODE v’ = uP. We say that u is simply constant if it is constant in
space and time, in such case, it must be clearly identically zero.
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manifold without boundary, let A be Laplace—Beltrami operator and p > 1.
We call a (classical) positive solution of the semilinear heat equation

ur = Au+ uP

@ ancientif it is defined in M x (—oo, T) for some T € R,

@ eternal if it is defined in M x R,

@ immortal if it is defined in M x (T, +o0) for some T € R,

@ static if it is independent of time, hence it satisfies Au + u” = 0.

We call a solution u trivial if it is constant in space, that is, u(x, t) = u(t) and
u solves the ODE v’ = uP. We say that u is simply constant if it is constant in
space and time, in such case, it must be clearly identically zero.

Notice that positive ancient (or negative immortal) trivial solutions always
exist (the problem reduces to solve the above ODE). Eternal ones are more
difficult to exist.

Clearly, M = R"” with its standard metric is a very special and interesting case
on which almost all the existing literature concentrated.
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Introduction — Why ancient and eternal solutions are important?

Ancient or eternal solutions typically arise as blow—up limits (in space and
time) when the solutions of

ur = Au+uf
in a general domain Q x [0, T), develop a singularity at a certain time T € R,

i.e. the solution u becomes unbounded as t — T~ (here Q is an open subset
of R” or of a Riemannian manifold).
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in a general domain Q x [0, T), develop a singularity at a certain time T € R,
i.e. the solution u becomes unbounded as t — T~ (here Q is an open subset
of R” or of a Riemannian manifold).

They also appear naturally and play a key role in the analysis of mean
curvature flow and of Ricci flow (from which we get several suggestions),
which are also described by (much more complicated systems of) parabolic
PDEs. In such cases, the solutions are respectively, evolving hypersurfaces
and abstract Riemannian manifolds.
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time) when the solutions of
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in a general domain Q x [0, T), develop a singularity at a certain time T € R,
i.e. the solution u becomes unbounded as t — T~ (here Q is an open subset
of R” or of a Riemannian manifold).

They also appear naturally and play a key role in the analysis of mean
curvature flow and of Ricci flow (from which we get several suggestions),
which are also described by (much more complicated systems of) parabolic
PDEs. In such cases, the solutions are respectively, evolving hypersurfaces
and abstract Riemannian manifolds.

Analyzing their properties and eventually classifying them lead to understand
the behavior of the solutions close to the singularity or even (in very lucky
situations, notably the motion by curvature of embedded curves in the plane
and the 2—dimensional Ricci flow) actually fo exclude the formation
(existence) of singularities.



Introduction — Why ancient and eternal solutions are important?

Moreover, this analysis can also be used to get uniform (universal) estimates
on the “rate” a solution (or some related quantity) becomes unbounded at a
singularity. Indeed (roughly speaking), typically, a “faster” rate implies that
performing a blow—up at a singularity, following

@ Polacik—Quittner—Souplet — for equations in R” (universal estimates)

@ Hamilton — more suitable for geometric flows (smart “point picking”)
we obtain a bounded, nonzero, nonconstant, eternal solution, while with the
slower “standard” natural rate, we get an ancient solution (immortal solutions
are usually less significative).
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Moreover, this analysis can also be used to get uniform (universal) estimates
on the “rate” a solution (or some related quantity) becomes unbounded at a
singularity. Indeed (roughly speaking), typically, a “faster” rate implies that
performing a blow—up at a singularity, following

@ Polacik—Quittner—Souplet — for equations in R” (universal estimates)
@ Hamilton — more suitable for geometric flows (smart “point picking”)

we obtain a bounded, nonzero, nonconstant, eternal solution, while with the
slower “standard” natural rate, we get an ancient solution (immortal solutions
are usually less significative).

Hence, for instance, excluding the existence of bounded, positive,
nonconstant, eternal solutions to equation

u=Au+uf

in R"” x R, we have a (universal, up to a constant) L> bound from above on
every solution, approaching the singular time T,

C
1

u(x,t) < ————
(T —t)p—7
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Polacik—Quittner—Souplet, by means of estimates of Bidaut—Véron

Let u be an eternal and nonnegative solution to the semilinear heat
equation uy = Au+ uP inR" x R, withn > 2 and1 < p < ” n 2)

—1)2°
Then u is identically zero.

The same result is true for1 < p < 242 2 if u is also radial.
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equation uy = Au+ uP inR" x R, withn > 2 and1 < p < ” n 2)
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Then u is identically zero.

The same result is true for1 < p < 242 2 if u is also radial.

Theorem (Quittner)
If n = 2 the same results holds for every p > 1.
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(the limit exponent of “the radial case”). Then u is identically zero.

The previous theorem and this conjecture above hold also when the
“ambient” space is a (noncompact, otherwise it is trivial for every p > 1)
Riemannian manifold, with suitable assumptions on the “geometry at infinity”,
possibly with nonnegative Ricci tensor.




Questions — Eternal solutions
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equation us = Au + uP inR" x R, withn > 3 and

n+2
n—2

1<p<ps=

(the limit exponent of “the radial case”). Then u is identically zero.

The previous theorem and this conjecture above hold also when the
“ambient” space is a (noncompact, otherwise it is trivial for every p > 1)
Riemannian manifold, with suitable assumptions on the “geometry at infinity”,
possibly with nonnegative Ricci tensor.

Notice that ps = ,’7’%2 is the best exponent that we can hope for, since in R”,
with n > 3, there are positive and radial “Talenti’s functions” satisfying
Au+ uP =0, for every p > %i which then are static (hence eternal)

solutions.



What about ancient only solutions?

Theorem (Polacik—Quittner—Souplet + Merle—Zaag)
Let u be a nonnegative, ancient solution to the semilinear heat equation

n(n+

Ur=Au+ P, with1 < p < (,5_1

fg andn > 2,inR". Then u is trivial.
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Theorem (Polacik—Quittner—Souplet + Merle—Zaag)
Let u be a nonnegative, ancient solution to the semilinear heat equation

n(n+

Ur=Au+ P, with1 < p < (n(_1

fg andn > 2,inR". Then u is trivial.

The previous theorem holds also when the “ambient” space is a Riemannian
manifold, with suitable assumptions on the “geometry at infinity”, possibly
with nonnegative Ricci tensor.




Castorina—M (maximum principle/blow—up techniques)

Let (M, g) be an n—dimensional Riemannian manifold with bounded
geometry. Every nonnegative, eternal solution of the equation uy = Au + uP

inM xR, with1 < p < E’;Tﬁg is identically zero.
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Let (M, g) be an n—dimensional compact Riemannian manifold without
boundary such that Ric > 0. Let u be a nonnegative, ancient solution to the

semilinear heat equation uy = Au + uP, with1 < p < (”,S’fﬁg Then u is trivial.
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Let (M, g) be an n—dimensional Riemannian manifold with bounded
geometry. Every nonnegative, eternal solution of the equation uy = Au + uP

inM xR, with1 < p < E’;Tﬁg is identically zero.

Let (M, g) be an n—dimensional compact Riemannian manifold without
boundary such that Ric > 0. Let u be a nonnegative, ancient solution to the

semilinear heat equation uy = Au + uP, with1 < p < (”,S’fﬁg Then u is trivial.

Let the Ricci tensor of (M, g) be uniformly bounded below. If u is an ancient
solution of the equation uy = Au + |ul’ withp > 1 in M x (—oo, T), then
either u = 0 or u > 0 everywhere.

This last proposition clearly extends all the results (also the known ones in
R") to the equation u; = Au + |ulP.



Castorina—Catino—M (integral estimates)

Let (M, g) be an n—dimensional Riemannian manifold with bounded
geometry and nonnegative Ricci tensor. Every monotone—in—time,
nonnegative, eternal solution of the equation ur = Au + uP in M x R, with
1 < p < ™2 s identically zero.

n—2
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Li & Yau estimates (no blow—up techniques)

For a positive solution on M x [Ty, T) of the standard heat equation u; = Au,
where (M, g), of dimension n, has nonnegative Ricci tensor, the following
estimate holds
|Vul? nu

u 2(f = To)

Au=ut >

in M x (To, T).
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in M x (To, T).
Hence, if u is ancient (or eternal), defined on (—oo, T), sending To — —oco we
get
2
Au=us > |V:| >0

in M x (—o0, T), hence u; is nonnegative and the solution is
monotone—in—time (all the maps t — u(x, t) are monotone nondecreasing).
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A Harnack-type estimate follows.



Carlo Mantegazza

Li & Yau estimates (no blow—up techniques)

For a positive solution on M x [Ty, T) of the standard heat equation u; = Au,
where (M, g), of dimension n, has nonnegative Ricci tensor, the following
estimate holds

|Vul? nu
Au=u; > _
R T S
in M x (To, T).
Hence, if u is ancient (or eternal), defined on (—oo, T), sending To — —oco we
get
2
Au=us > |V:| >0

in M x (—o0, T), hence u; is nonnegative and the solution is
monotone—in—time (all the maps t — u(x, t) are monotone nondecreasing).

It easily follows that any ancient bounded solution is constant.

Direct elementary proof, only maximum principle on a smartly chosen
quantity (and “localization” when M is not compact).
A Harnack-type estimate follows.

Hamilton’s matrix extension under geometric (curvature) assumptions on
(M, 9)

ViuV;u n u >0

Hess;ju — 2t — To)g/j =
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Li & Yau estimates — Semilinear extension

Theorem

Letu: M x [Ty, T) — R a classical positive solution of the equation

ur = Au + uP on an n—dimensional, complete Riemannian manifold (M, g)

with nonnegative Ricci tensor. Then, for every pair o, 8 € (0,1) “admissible”

for p > 1, there exists some ¢ = ¢(n, p, o, ) > 0 such that

[Vul?
u

eu

p—1 _
R

us > «

inM x (To, T).




Li & Yau estimates — Semilinear extension

Theorem

Letu: M x [Ty, T) — R a classical positive solution of the equation

= Au + uP on an n—dimensional, complete Riemannian manifold (M, g)
with nonnegative Ricci tensor. Then, for every pair o, 8 € (0,1) “admissible”
for p > 1, there exists some ¢ = ¢(n, p, o, ) > 0 such that

eu

|CU|2 p—1
> gl =
U > « + BUu —

inM x (To, T).

A pair of constants «, 8 € (0, 1) is “admissible” for p > 1 if

(p—1)(Bp— ) + 221N =F) 5 4

n

p<1+80‘(1 A)



Li & Yau estimates — Semilinear extension

By a straightforward computation & or using Mathematica™ & we have the
following lemma.

@ ifn<3andp<8/n
@ ifn>4 and

< 3n+443y/n(n+4) _
p 2(3n— 4) = Pn

there exists at least one pair «, 8 € (0,1) “admissible” forp > 1.




Li & Yau estimates — Semilinear extension

By a straightforward computation & or using Mathematica™ & we have the
following lemma.

@ ifn<3andp<8/n

@ ifn>4 and
< 3n+443y/n(n+4) _
p 2(3n— 4) = Pn

there exists at least one pair «, 8 € (0,1) “admissible” forp > 1.

If u is an ancient (or eternal) and positive solution of the equation
u; = Au + uP on an n—dimensional, complete Riemannian manifold (M, g)
with nonnegative Ricci tensor, with p < p,,, there holds

Yul? _
utZa%+ﬁup >0

for some pair of constants a, 8 € (0, 1).




Li & Yau estimates — Semilinear extension

Quite suprisingly, the same method also works for u; and |V u|.



Li & Yau estimates — Semilinear extension

Quite suprisingly, the same method also works for u; and |V u|.

Theorem

If u is an ancient (or eternal) and positive solution of the equation
us = Au + uP on an n—dimensional, complete Riemannian manifold (M, g)
with nonnegative Ricci tensor, with p < p,,, then

ut and |Vul

are monotone nondecreasing in time. In particular, all the maps t — u(x, t)
are convex.
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Li & Yau estimates — Harnack—type estimate

Arguing as Li & Yau, we then have the following (local) estimate.

Proposition

Letu: M x [Ty, T) — R a classical positive solution of the equation

ur = Au+ uP withp € (1,p,), on an n—dimensional complete Riemannian
manifold (M, g) with nonnegative Ricci tensor. Then, for every pair (a, 3)
admissible for p and s = <(n, p, o, B) > 0 as above, given any

To< t < bk < T andxi,x2 € M, the following inequality holds,

b—To\'* . b A(s)P
< — N7
Aot < wloe ) (n - To) P erts i) Joy Falte — B)

where I'(x1, X2) denotes the set of all the paths in M parametrized by [0, 1],
joining xo to xi. )




Li & Yau estimates — Harnack—type estimate

Arguing as Li & Yau, we then have the following (local) estimate.

Proposition

Letu: M x [Ty, T) — R a classical positive solution of the equation

ur = Au+ uP withp € (1,p,), on an n—dimensional complete Riemannian
manifold (M, g) with nonnegative Ricci tensor. Then, for every pair (a, 3)
admissible for p and s = <(n, p, o, B) > 0 as above, given any

To< t < bk < T andxi,x2 € M, the following inequality holds,

u(xi, k) < u(xe, k) (tz — TO)UE exp ( inf 1 L”z) ds)

t—To ver(xi,x) Jo 4a(l — t

where I'(x1, X2) denotes the set of all the paths in M parametrized by [0, 1],
joining xo to xi.

Moreover, it is also possible to have a semilinear version of Hamilton’s matrix
Li & Yau estimate, under the same geometric quite restrictive hypotheses
(and also a relative Harnack-type estimate).
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Ancient and eternal solutions on Riemannian manifolds with
nonnegative Ricci tensor

Every eternal and nonnegative solution of the equation uy = Au + uP with
p < p,, is identically zero (there are no positive eternal solutions).
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Work in Progress
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p < p,, is trivial (constant in space).
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Ancient and eternal solutions on Riemannian manifolds with
nonnegative Ricci tensor

Every eternal and nonnegative solution of the equation uy = Au + uP with
p < p,, is identically zero (there are no positive eternal solutions).

Indeed, by the previous estimate it follows u; > SuP~", which forces every
nonzero solution to blow—up in finite time.

Work in Progress

Every ancient and nonnegative solution of the equation u; = Au + uP with
p < p,, is trivial (constant in space).

The convexity in time of the solutions and the monotonicity of the modulus of
their gradient seems very strongly restrictive properties, but still we are able
to show this up—to—now—conjecture only in some very special cases.



Every eternal nonnegative solution in R” is identically zero if:



Every eternal nonnegative solution in R” is identically zero if:

n+2
n

en>1andp< pr=
(Fujita)



Every eternal nonnegative solution in R” is identically zero if:

e n>1andp< pr= 22

(Fujita) !
@ n>3andp < pg= ;%5
(Quittner)



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fuijita)

@ n>3andp < pg= ;%5
(Quittner)

en>2andp< ps= 85’1*1?2)

(Polacik—Quittner—Souplet + Bidaut—Véron)



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fuijita)

@ n>3andp < pg= ;%5
(Quittner)

en>2andp< ps= 85’1*1?2)

(Polacik—Quittner—Souplet + Bidaut—Véron)

@ n<2andevery p>1
(Quittner)



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fuijita)

@ n>3andp < pg =%
(Quittner)

en>2andp< ps= ("n"ﬁg

(Polacik—Quittner—Souplet + Bidaut—Véron)
@ n<2andevery p>1

(Quittner)
@ n>3andp < ps = M2 if uis radial

2 3
(Polacik—Quittner—Souplet)



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fuijita)

@ n>3andp < pg =%
(Quittner)

en>2andp< ps= (n"t;)

(Polacik—Quittner—Souplet + Bidaut—Véron)

@ n<2andevery p>1

(Quittner)
e n>3andp < ps =22, if uis radial
(Polacik—Quittner—Souplet)

3n+4+-34/n(n+4)

®nx=2andp<p,=—5z"4



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fuijita)

@ n>3andp < pg =%
(Quittner)

en>2andp< ps= (n"t;)

(Polacik—Quittner—Souplet + Bidaut—Véron)
@ n<2andevery p>1
(Quittner)
e n>3andp < ps =22, if uis radial
(Polacik—Quittner—Souplet)

— 3n+4+-34/n(n+4)
(] nZZandp<pn=W

P, > pq if n > 4, but always p, < ps



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fujita)
@ n>3andp < pg= ;%5
(Quittner)
on22andp<p3:% Best result for n > 3

(Polacik—Quittner—Souplet + Bidaut—Véron)

@ n<2andeveryp > 1 Optimal result for n = 2
(Quittner)
e n>3andp < ps =22, if uis radial

(Polacik—Quittner—Souplet)

= 3n+4+34/n(n+4
(] nzZandp<pn=T4))

P, > pq if n > 4, but always p, < ps



Every eternal nonnegative solution in R” is identically zero if:

en>1tandp< pr= "2
(Fujita)
@ n>3andp < pg= ;%5
(Quittner)
en>2andp< ps= 85’1*1?2 Best result for n > 3

(Polacik—Quittner—Souplet + Bidaut—Véron)

@ n<2andeveryp > 1 Optimal result for n = 2
(Quittner)
e n>3andp < ps =22, if uis radial

(Polacik—Quittner—Souplet)

—= 3n+4+34/n(n+4)
o nZZandp<pn=W

P, > pq if n > 4, but always p, < ps

Every eternal and nonnegative solution of the equation uy = Au + uP with
p < ps, is identically zero (there are no positive eternal solutions).




Every eternal nonnegative solution in R” is identically zero if:

e n>1andp<pr= "2

(Fujita)
@ n>3andp < pg =%
(Quittner)
en>2andp< pg= E’n”t?g Best result for n > 3

(Polacik—Quittner—Souplet + Bidaut—Véron)

@ n<2andeveryp > 1 Optimal result for n = 2
(Quittner)
e n>3andp < ps =22, if uis radial

(Polacik—Quittner—Souplet)

® n>2andp<p,= TV

P, > pq if n > 4, but always p, < ps

Theorem (Quittner — Duke 2021)

Every eternal and nonnegative solution of the equation u; = Au + uP with
p < ps, is identically zero (there are no positive eternal solutions).
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Thanks for your attention
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