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Quasiconvexity in R”

A fundamental result in the calculus of variations in order to apply the
so—called direct methods in the search for minimizers of integral functionals
defined on Sobolev spaces W' (Q,R™) is the characterization of their
sequential lower semicontinuity with respect to the weak topology.

For scalar problems, the convexity of the integrand is enough (Tonelli, Serrin,
De Giorgi, Olech, Ioffe...). However, in the vector—valued case, ordinary
convexity is far too restrictive.

The breakthrough came in 1952, when Morrey introduced the notion of
quasiconvexity. More precisely, Morrey showed that under some strong
regularity assumptions on the function f, the equivalence between its
quasiconvexity and the weakly™ sequential lower semicontinuity in
W2 (Q, R™) of the functional

u— Fu,Q) = /f(x,u(x),Du(x))df"(x)

holds. Meyers then extended Morrey’s result to W (€, R™) spaces in 1965.
Acerbi and Fusco in 1984 obtained a significant improvement of this result:
they indeed established such equivalence for Carathéodory integrands with
appropriate growth conditions in W"*(Q, R™), for 1 < p < +o0.
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Quasiconvexity in R" — Acerbi & Fusco results

We will focus on the following theorem of Acerbi and Fusco, where all the

previous regularity hypotheses on f were dropped. We will come back at the
end to their results when p < +oo0.

Theorem (Acerbi-Fusco, 1984)
Let f : R" x R™ x R™*" — R be a Carathéodory function satisfying

0 < f(x,s,€) < a(x) +b(s, ),

forevery x € R", s € R" and §& € R™*", where a : R" — R is nonnegative and
locally summable and b : R" x R™*" — R is nonnegative and locally bounded.

Then, f is quasiconvex in & if and only if for every bounded open set Q in R" the

functional u — F(u, Q) is sequentially weakly™ lower semicontinuous on
Wl,oo (Q’ Rm).
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Quasiconvexity in R" — The definition

The definition of quasiconvexity is not very intuitive!

Definition (Morrey, 1952)

A continuous function f : R"*" — R is quasiconvex if for every & € R"™*" and for
every bounded open subset Q of R", there holds

£6) < f F(€ + Dop(x)) 42" (),

for every function ¢ € C° (2, R™).

A real function f : R" x R™ x R™" — R is quasiconvex in £ € R" if there exists
a subset Z of R" with £"(Z) = 0, such that for every x € R" \ Z and for every
s € R"™ the function £ — f(x, s, §) is quasiconvex.

In particular, it is not a “pointwise” definition like convexity (or
polyconvexity or rank—one convexity, that we will discuss later), given by
some “algebraic” conditions. It says that affine functions are minimizers of
the functional among the functions with the same boundary data.
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Quasiconvexity in the Riemannian context

Our aim is to develop a generalization of this theory to the Riemannian
setting, that is for functionals defined on Sobolev functions between two
Riemannian manifolds (the physical motivations are clear: for instance,
elasticity on membranes, liquid crystals on curved surfaces, etc...).

Precisely, we will consider two smooth, complete and connected Riemannian
manifolds (M, g) and (N, i) and a function

f: 2(TM,TN) — R,
where
Z(TM,TN) = {a : T:M — T,N | x € M, y € N and o is linear}.

Then, after introducing a generalization of the Euclidean notion of
quasiconvexity, we will show that f is quasiconvex in this sense if and only if
for every open and bounded 2 C M, the functional

u— F(u,Q) = Qf(du) du

(where p is the canonical measure of (M, §)) is sequentially lower
semicontinuous in the weak* topology of W (Q, R™).
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There are two main difficulties in giving an appropriate definition of
quasiconvexity in this context:
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Quasiconvexity in the Riemannian context

There are two main difficulties in giving an appropriate definition of
quasiconvexity in this context:

@ On a manifold, in general there are no affine functions.

@ In the “classical” definition by Morrey, (considering differentials instead
of gradients) the map & actually goes from T, R" ~ R" to T,,,R" ~ R"
and it is “perturbed” by a map Dg(x) : TxR" — T, )R™. These two
linear maps can then be added together since we can identify all the
tangent spaces of R" with R" itself (and the same for R™). If the domain
or the target space is a manifold, this identification is not possible, hence
such sum is not possible and we need a different way to “perturb” the
map &.
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Riemannian quasiconvexity

Let (M, g) and (N, k) be a pair of smooth, connected and complete
Riemannian manifolds of dimension # and m, respectively and let x be the
canonical volume measure of (M, g).

We call a real function f : Z(TM, TN) — R Riemannian—-quasiconvex, if for
p—almost every xo € M and every yo € N, the “restricted” map

o = fleaomryn @ £ (ToM, TyN) — R
is continuous and for every o) € L(Tx,M, Ty,N) and ¢ € C*°(B,(x0), Bs(10))

which is equal to yo outside a compact subset of B,(xo), for every r > 0 small enough,
there holds

fedd) < ]i ( )f(aig +dexp;01[<p(x)] odpl[x] odexp,, [exp;ol(x)}) dp(x)+o(1)

where o(1) is a function which goes to zero as v — 0 and depends in a monotonically
nondecreasing way, only on the L norm of de.

v
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Riemannian quasiconvexity

The following equivalent definition, clarifies the presence of the “error term”
o(1) in the previous one.

Definition (Equivalent — I)

We call a real function f : £ (TM, TN) — R Riemannian—-quasiconvex, if for
p—almost every xo € M and every yo € N, the “restricted” map

;C/SJ :f|$(Tx0M,Ty0N) 8 f(TxOM, TyON) — R
is continuous and for every o3 € £ (Tx,M, TyyN) and ¢ € C>(B,(x0), Bs(y0))

which is equal to yo outside a compact subset of B(xo), for every r > 0 small enough,
there holds

floxg) < ]£ ( )f(O%S +dexpy ' [p(x)] 0 dp[x] o d exp, lexpy ' (x)]) J (%) du(x)

where J(x) is the Jacobian of the map exp,;)1 at the point x € B,(xo).
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Riemannian quasiconvexity

The next one (still equivalent) simply says that for y—almost every xo € M
and every 1o € N, the “restricted” map

W L (TeyM, Ty,N) = R™" - R
is quasiconvex according to the standard Euclidean definition.

Definition (Equivalent — II)

We call a real function f : Z(TM, TN) — R Riemannian—-quasiconvex, if for
p—almost every xo € M and every yo € N, the “restricted” map

;’j[? :flz(TXUMerUN) : Z(TyyM, Ty,N) = R

is continuous and for every o4 € £ (Tx,M, TyyN) and ¢ € C° (B}, B), for every
r > 0 small enough, there holds

flo) < £, Flok + vl 42" (2

T

where BY® and BY are the balls of radii r,s > O centered at the origins of Tv,M and
T,,N, respectively.
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Riemannian quasiconvexity
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arguments employed in the proof of the characterization of lower
semicontinuous functionals.



Carlo Mantegazza

Riemannian quasiconvexity

@ The first definition is very useful in dealing with the approximation
arguments employed in the proof of the characterization of lower
semicontinuous functionals.

@ The second one is the “bridge” between the first (on the manifold) and
the third one (on the tangent space).



Carlo Mantegazza

Riemannian quasiconvexity

@ The first definition is very useful in dealing with the approximation
arguments employed in the proof of the characterization of lower
semicontinuous functionals.

@ The second one is the “bridge” between the first (on the manifold) and
the third one (on the tangent space).

@ The third one will be relevant in comparing R-quasiconvexity with other
notions of convexity.
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

R-quasiconvexity n—>  Lower semicontinuity

Let (M, g) and (N, h) be a pair of smooth, connected and complete Riemannian
manifolds of dimension n and m, respectively and let p be the canonical volume
measure of (M, g). Let f : Z(TM, TN) — R be Carathéodory and R—quasiconvex.
Then, for every open and bounded subset Q0 C M, the functional

u— Fu,Q) = /f(du) du
Q
is sequentially lower semicontinuous in the weak* topology of W (Q, N), that is,
F(u,Q) = /f(du) dp < lim inf/f(duj) dp = lim inf F(uj, Q),
Q j—oo Q j—oo

for every sequence uj =~ uin W"*°(Q, N).
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

R-quasiconvexity ==  Lower semicontinuity

The weak* convergence of a sequence u; = u in W"*°(Q, N) is defined
in the usual way: the sequences of integrals of u; and du; “against” fixed
functions and 1-forms in L' (2, N), respectively, converge to the
analogous integrals relative to u and du.
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

R-quasiconvexity ==  Lower semicontinuity

o The weak* convergence of a sequence u; = u in W">°(Q, N) is defined
in the usual way: the sequences of integrals of u; and du; “against” fixed
functions and 1-forms in L' (2, N), respectively, converge to the
analogous integrals relative to u and du.

@ The functionf : £ (TM, TN) — R is Carathéodory if once locally
“trivialized” the vector bundle .Z(TM, TN), expressing f in local
coordinates, it is Carathéodory in the usual sense.

The first definition combines perfectly with the very elegant proof in R"” by
Fonseca & Muller, which consists in showing a sort of “asymptotic” lower
semicontinuity (LSC in all small balls B (xp) with  — 0) and then concluding
(recovering the LSC for any domain 2) by means of the theorem of
Radon—Nikodym. The “error term” o(1) in such definition asymptotically
vanishes, so it does not affect the argument of Fonseca & Muller and the
conclusion follows as in the Euclidean case (with some technical details due
to the approximations).
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

Lower semicontinuity =  R-—quasiconvexity

In the same hypotheses of the previous theorem. Let f : Z(TM, TN) — R be
Carathéodory. If for every open and bounded subset Q@ C M, the functional

F1.9) = | £(au)d

is sequentially lower semicontinuous in the weak* topology of W">°(Q, N), then the
function f is R—quasiconvex.
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

Lower semicontinuity =  R-—quasiconvexity

In the same hypotheses of the previous theorem. Let f : Z(TM, TN) — R be
Carathéodory. If for every open and bounded subset Q@ C M, the functional

F(u, Q) = /Q F(du) du

is sequentially lower semicontinuous in the weak* topology of W">°(Q, N), then the
function f is R—quasiconvex.

This implication is actually easier. One defines standard “roof functions” (as
in R") on a small ball in the tangent space at a point xp and “maps” them on
M by means of the exponential map exp,,. Then, following the same proof as
in R", one gets the quasiconvexity inequality with an error due to the use of
exp,,. Such an error goes to zero, as exp,, goes to the identity when the
radius of the balls goes to zero. Hence we get the R—quasiconvexity of f.
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R-quasiconvexity and lower semicontinuity
The analogues of Acerbi & Fusco results

R-quasiconvexity <=  Lower semicontinuity

Let (M, g) and (N, h) be a pair of smooth, connected and complete Riemannian
manifolds of dimension n and m, respectively and let p be the canonical volume
measure of (M, g). Let f : Z(TM, TN) — R be Carathéodory. Then, f is
R—quasiconvex if and only if for every open and bounded subset Q C M, the
functional

uHF(u,Q):/f(du)d,u
Q

is sequentially lower semicontinuous in the weak* topology of W (Q, N).
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R—quasiconvexity, R—-polyconvexity and R-rank—one convexity

Letf : Z(TM, TN) — R such that for y—almost every xo € M and every
Yo € N, the “restricted” map fi° is continuous.

xy[;) :flz(TxoM’TyoN) : f(TxOM, TyON) — R

The function f : £(TM, TN) — R is R—convex/polyconvex/rank-one convex,
if for p—almost every xo € M and every yo € N, the “restricted” map is
convex/polyconvex/rank—one convex in the “standard way”.
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R—quasiconvexity, R—-polyconvexity and R-rank—one convexity

Letf : Z(TM, TN) — R such that for y—almost every xo € M and every
Yo € N, the “restricted” map xy(? is continuous.

xy[;) :flz(TxoMaTyoN) : f(TxOM, TyON) — R

The function f : £(TM, TN) — R is R-convex/polyconvex/rank-one convex,
if for p—almost every xo € M and every yo € N, the “restricted” map is
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as in the Euclidean setting. Moreover,

Rank-one convex + Continuous =  Locally Lipschitz
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R—quasiconvexity, R—-polyconvexity and R-rank—one convexity

Letf : Z(TM,TN) — R such that for u—almost every xo € M and every
Yo € N, the “restricted” map fi° is continuous.

0 :flz(TxoMaTyoN) : f(TxOM, TyON) — R

The function f : £(TM, TN) — R is R-convex/polyconvex/rank-one convex,
if for p—almost every xo € M and every yo € N, the “restricted” map is
convex/polyconvex/rank—one convex in the “standard way”.

Then, thanks to the third equivalent definition of R-quasiconvexity, we have
the “standard” hierarchy:

Convex —> Polyconvex —> Quasiconvex —> Rank-one convex
as in the Euclidean setting. Moreover,
Rank-one convex + Continuous =  Locally Lipschitz

and if f = f(€) is of class C?, we have the Legendre—Hadamard condition:

Z Z agaagﬁ & ]77 77 =0

i,j=1a,8=1
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Work in progress
The case p < 400 in the theorem of Acerbi & Fusco

Theorem (Acerbi-Fusco, 1984)
Let1 < p < +ooand f : R" x R™ x R"*" — R be a Carathéodory function
satisfying

0<f(x,5,8) <a(x) +C(IsI” + I¢F"),
foreveryx € R", s € R" and £ € R™*", where a : R" — R is nonnegative and
locally summable and C is a nonnegative constant.
Then, f is quasiconvex in & if and only if for every bounded open set ) in R" the
functional u — F(u, Q) is sequentially weakly lower semicontinuous on
WP (Q,R™).

v




Thanks for your attention



	Quasiconvexity
	Riemannian quasiconvexity
	The analogues of Acerbi & Fusco results
	R–quasiconvexity, R–polyconvexity and R–rank–one convexity
	Work in progress
	

