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Asymptotically flat manifolds

A smooth, connected, complete Riemannian manifold (with or without
boundary) (M, g) of dimension n ⩾ 3 is called asymptotically flat (AF) if there
exists a compact subset K such that

M \ K = M1 ⊔ · · · ⊔ Mk (ends of the manifold M)

Mi ∼= Rn \ B via a diffeomorphism (AF chart) Φ such that

Φ∗g = gEucl + σkl dxk ⊗ dxl

with σkl = O2(|x |−τ), for some τ > n−2
2 (order of decay of the chart Φ)

meaning that there exists a constant C > 0 such that

|σkl | ⩽
C
|x |τ

,

n∑
s=1

∣∣∣∣ ∂σkl

∂xs

∣∣∣∣ ⩽ C
|x |τ+1 ,

n∑
s, t=1

∣∣∣∣ ∂2σkl

∂xs∂xt

∣∣∣∣ ⩽ C
|x |τ+2 .

on {|x | ⩾ R}, for R large.
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Remarks

(1)

The definition of AF manifold
consists of two informations.

One is of topological nature:
manifolds can possibly have
a quite complicated topology
but all concentrated in a
bounded subset

One is about the behavior of
the metric “in the large”

(2)

The definition of AF manifold is not uniform in literature.
For smooth metrics, the completeness or the number of ends or
the rate of decay of the metric or even assumptions involving the
scalar curvature are some of the points where the definitions may
differ.

(3)

Physically, one expects asymptotically flat 3–manifolds to arise
as spacelike hypersurfaces of spacetimes (i.e. 4–dimensional
Lorentzian manifolds (M, g) satisfying the Einstein equation,
Ric − 1

2 Rg = 8πG
c4 T) modeling isolated gravitational systems.
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Schwarzschild manifold

For m ⩾ 0, the Schwarzschild manifold of mass m, is the Riemannian manifold

(
MSch(m), gSch(m)

)
=

(
Rn \ B

(m/2)
1

n−2
(0),

(
1 +

m
2|x |n−2

) 4
n−2

gEucl

)

The Schwarzschild manifolds are asymptotically flat with only one end. The
Schwarzschild metrics are clearly conformal to the Euclidean metric (via a
power of a harmonic function) and have zero scalar curvature.

Moreover, the sphere {|x | = (m/2)1/n−2} is a totally geodesic (hence, minimal)
hypersurface.
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ADM mass

A relevant geometric invariant for each end of an asymptotically flat
manifold with integrable or nonnegative scalar curvature is the so–called
ADM mass (after the physicists Arnowitt, Deser and Misner).

Let (M, g) be an asymptotically flat manifold with integrable or nonnegative
scalar curvature. Let Mi be an end of (M, g) and let Φ be an asymptotically
flat chart for Mi.

mADM(Mi) = lim
r→+∞

1
2(n − 1)|Sn−1 |

∫
{|x |= r}

(∂lgkl − ∂kgll)
xk

|x |
dσcan

where Φ∗g = gkl dxk ⊗ dxl.

Bartnik (1986) and Chruściel (1988) proved independently that the ADM
mass of each end is well–defined and does not depend on the particular AF
coordinate chart chosen.
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Remarks

Other formulas that produce the ADM mass are known. All of them
depend on (at least) the first derivatives of the Riemannian metric.

For the Schwarzschild manifolds of mass m, the ADM mass coincides
with the parameter m. This condition must be satisfied by any “good”
definition of total mass of an isolated gravitational system, as in general
relativity, Schwarzschild manifolds model the (spatial) exterior of
non–moving, spherically symmetric, static stars or black holes of mass
m.

In 1960, Arnowitt, Deser and Misner suggested that mADM is a good
candidate since (formally) they observe that in spacetimes modeling
systems of this type and foliated by spacelike hypersurfaces (Mt, gt),
which are the evolution of an initial one at the instant t, under specific
equations of motion related to the Einstein equation, this quantity is
conserved in time, i.e. it is the same for all (Mt, gt).

A natural requirement for a “mass” is that it is POSITIVE!
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The positive mass theorem

Theorem (Positive Mass Theorem – R. Schoen, S. T. Yau – 1979)

Let (M, g) be a 3–dimensional Riemannian manifold.

If


(M, g) is complete
(M, g) is a one–ended asymptotically flat manifold
the scalar curvature R of (M, g) is nonnegative, R ⩾ 0

then, the positive mass inequality holds

mADM ⩾ 0

Moreover, the ADM mass of (M, g) is zero if and only if (M, g) is isometric to
(R3, gEucl).

Asymptotically flat 3–manifolds with nonnegative scalar curvature arise as
spacelike hypersurfaces of spacetimes modeling isolated systems, then the
positive mass theorem can be interpreted saying that a nonnegative “local
mass density” (R ⩾ 0) implies a nonnegative total mass (mADM ⩾ 0).



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

The positive mass theorem

Theorem (Positive Mass Theorem – R. Schoen, S. T. Yau – 1979)

Let (M, g) be a 3–dimensional Riemannian manifold.

If


(M, g) is complete
(M, g) is a one–ended asymptotically flat manifold
the scalar curvature R of (M, g) is nonnegative, R ⩾ 0

then, the positive mass inequality holds

mADM ⩾ 0

Moreover, the ADM mass of (M, g) is zero if and only if (M, g) is isometric to
(R3, gEucl).

Asymptotically flat 3–manifolds with nonnegative scalar curvature arise as
spacelike hypersurfaces of spacetimes modeling isolated systems, then the
positive mass theorem can be interpreted saying that a nonnegative “local
mass density” (R ⩾ 0) implies a nonnegative total mass (mADM ⩾ 0).



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

From now on n = 3 and the AF manifold has only one end

Several approaches/tools have been used to prove the positive mass
theorem:

Schoen, Yau (1979, minimal surfaces)

Witten (1981, spin manifolds)

Lohkamp (1991, nonexistence theorems of positive scalar curvature
metrics)

Huisken, Ilmanen (2001, weak inverse mean curvature flow)

Li (2018, Ricci flow)

Bray, Kazaras, Khuri, Stern (2019, harmonic functions with linear
growth)

Virginia Agostiniani, Lorenzo Mazzieri and Francesca Oronzio obtained a
“simple” (more elementary) proof of the positive mass inequality via a
monotonicity formula holding along the level sets of an appropriate
harmonic function related to the minimal positive Green’s function with a
pole.



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

From now on n = 3 and the AF manifold has only one end

Several approaches/tools have been used to prove the positive mass
theorem:

Schoen, Yau (1979, minimal surfaces)

Witten (1981, spin manifolds)

Lohkamp (1991, nonexistence theorems of positive scalar curvature
metrics)

Huisken, Ilmanen (2001, weak inverse mean curvature flow)

Li (2018, Ricci flow)

Bray, Kazaras, Khuri, Stern (2019, harmonic functions with linear
growth)

Virginia Agostiniani, Lorenzo Mazzieri and Francesca Oronzio obtained a
“simple” (more elementary) proof of the positive mass inequality via a
monotonicity formula holding along the level sets of an appropriate
harmonic function related to the minimal positive Green’s function with a
pole.



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

From now on n = 3 and the AF manifold has only one end

Several approaches/tools have been used to prove the positive mass
theorem:

Schoen, Yau (1979, minimal surfaces)

Witten (1981, spin manifolds)

Lohkamp (1991, nonexistence theorems of positive scalar curvature
metrics)

Huisken, Ilmanen (2001, weak inverse mean curvature flow)

Li (2018, Ricci flow)

Bray, Kazaras, Khuri, Stern (2019, harmonic functions with linear
growth)

Virginia Agostiniani, Lorenzo Mazzieri and Francesca Oronzio obtained a
“simple” (more elementary) proof of the positive mass inequality via a
monotonicity formula holding along the level sets of an appropriate
harmonic function related to the minimal positive Green’s function with a
pole.



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

Idea of the proof

By the work of H. Bray, D. Kazaras, M. Khuri and D. Stern, it is sufficient
to show that the positive mass inequality is true in the class of
Riemannian manifolds satisfying the assumptions of the positive mass
theorem and also the following properties:

M is diffeomorphic to R3 (topological simplification)

There exists a distinguished AF coordinate chart Φ such that

Φ∗g =

(
1 +

mADM

2|x |

)4

gR3

outside of a compact set (simplification of the metric at infinity)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

Idea of the proof

By the work of H. Bray, D. Kazaras, M. Khuri and D. Stern, it is sufficient
to show that the positive mass inequality is true in the class of
Riemannian manifolds satisfying the assumptions of the positive mass
theorem and also the following properties:

M is diffeomorphic to R3 (topological simplification)

There exists a distinguished AF coordinate chart Φ such that

Φ∗g =

(
1 +

mADM

2|x |

)4

gR3

outside of a compact set (simplification of the metric at infinity)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

Idea of the proof

By the work of H. Bray, D. Kazaras, M. Khuri and D. Stern, it is sufficient
to show that the positive mass inequality is true in the class of
Riemannian manifolds satisfying the assumptions of the positive mass
theorem and also the following properties:

M is diffeomorphic to R3 (topological simplification)

There exists a distinguished AF coordinate chart Φ such that

Φ∗g =

(
1 +

mADM

2|x |

)4

gR3

outside of a compact set (simplification of the metric at infinity)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

We consider the function
u = 1 − 4πGo

where Go is the minimal positive Green’s function with pole at o, for
some o ∈ M,

and we define the function

F(t) = 4πt − t2
∫

{u=1−1/t}

|∇u|H dσ + t3
∫

{u=1−1/t}

|∇u|2 dσ, t ∈ (0,+∞)

Then, there holds

0 < s < t < +∞ : 1 − 1/s, 1 − 1/t are regular values of u
⇓

F(s) ⩽ F(t)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

We consider the function
u = 1 − 4πGo

where Go is the minimal positive Green’s function with pole at o, for
some o ∈ M, and we define the function

F(t) = 4πt − t2
∫

{u=1−1/t}

|∇u|H dσ + t3
∫

{u=1−1/t}

|∇u|2 dσ, t ∈ (0,+∞)

Then, there holds

0 < s < t < +∞ : 1 − 1/s, 1 − 1/t are regular values of u
⇓

F(s) ⩽ F(t)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

We consider the function
u = 1 − 4πGo

where Go is the minimal positive Green’s function with pole at o, for
some o ∈ M, and we define the function

F(t) = 4πt − t2
∫

{u=1−1/t}

|∇u|H dσ + t3
∫

{u=1−1/t}

|∇u|2 dσ, t ∈ (0,+∞)

Then, there holds

0 < s < t < +∞ : 1 − 1/s, 1 − 1/t are regular values of u
⇓

F(s) ⩽ F(t)



Carlo Mantegazza The Riemannian Penrose Inequality via Nonlinear Potential Theory

Indeed, after some (heavy, but straightforward) computations

F ′(t) = 4π+

∫
{u=1− 1

t }

[
−

RΣt

2
+
|∇Σt |∇u | |2

|∇u|2
+

R
2
+

|
◦
h|2

2
+

3
4

(
2 |∇u|
1 − u

− H
)2

︸ ︷︷ ︸
Q ⩾ 0

]
dσ

for almost every t ∈ (0,+∞). Precisely, this formula holds at all values of t
such that 1 − 1/t is a regular value of u.

Use of Coarea Formula and Sard Theorem – Harmonic functions are
smooth (hence, the set of the singular values has zero measure) and the
set of their critical points is “nice enough” (zero measure)

R ⩾ 0 =⇒ Q ⩾ 0

RΣt/2 is equal to the Gaussian curvature of the surface Σt = {u = 1 − 1/t}

M ∼= R3

u is harmonic

}
=⇒ every regular level set

of u is connected

Gauss–Bonnet
theorem
=⇒ 4π−

∫
{u=1− 1

t }

(RΣt/2) dσ ⩾ 0

Hence, F ′(t) ⩾ 0 a.e. =⇒ F is monotone nondecreasing
(F is absolutely continuous)
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set of their critical points is “nice enough” (zero measure)

R ⩾ 0 =⇒ Q ⩾ 0

RΣt/2 is equal to the Gaussian curvature of the surface Σt = {u = 1 − 1/t}

M ∼= R3

u is harmonic

}
=⇒ every regular level set

of u is connected

Gauss–Bonnet
theorem
=⇒ 4π−

∫
{u=1− 1

t }

(RΣt/2) dσ ⩾ 0

Hence, F ′(t) ⩾ 0 a.e. =⇒ F is monotone nondecreasing
(F is absolutely continuous)
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Consequently,

8πmADM =

lim
t→+∞ F(t)⩾ lim

t→0+
F(t)

= 0

The limit at the right hand side is a consequence of the asymptotic
behavior of the minimal positive Green’s function Go at the pole o

The limit at the left hand side can be computed by means of the
special AF coordinate chart

Φ∗g =
(
1 +

mADM

2|x |
)4gR3

In such a chart, the expansion of the function u near infinity is given
by

u = 1 −
1
|x |

+
1

2|x |2
(
mADM + ϕ(x/|x |)

)
+ O2

(
|x |−2−α

)
for every α ∈ (0, 1), where ∆S2

ϕ = −2ϕ
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The Riemannian Penrose inequality

What happens if there is a black hole with its horizon?

Theorem (Riemannian Penrose Inequality
G. Huisken–T. Ilmanen & H. Bray – 2001)

Let (M, g) be a 3–dimensional, complete AF manifold with a smooth, compact,
connected boundary and one single end. Assume that

the metric g has nonnegative scalar curvature R ⩾ 0

∂M is the unique minimal surface in (M, g),
then, the ADM mass satisfies the inequality

mADM ⩾

√
|∂M|

16π

The proof of Huisken–Ilmanen is based on the (weak) inverse mean
curvature flow, the one of Bray on a conformal flow of metrics. One would
like to try to follow the same “level sets line” as in the proof of the positive
mass theorem (with a different, suitable harmonic function)

.
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The Riemannian Penrose inequality

Unfortunately, the natural choice of a solution of the problem
∆u = 0 in M

u = 0 on ∂M
u → 1 at ∞

with an analogously associated monotone function F, only leads to the
following “capacitary” Riemannian Penrose inequality

mADM ⩾
Cap2(∂M)

8π

where the p–capacity of ∂M is defined as

Capp(∂M) = inf
{ ∫

M

|∇v|p dµ : v ∈ C ∞
c (M), v = 1 on ∂M

}

for p ∈ [1,+∞).
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The Riemannian Penrose inequality

Inspired by some formal computations by Geroch in 1973 (and, more
recently, of Colding and Minicozzi), actually related to the inverse mean
curvature flow, that inspired also the proof of Huisken–Ilmanen, we looked
at the level sets of the (weak) solution of the following problem

∆pu = 0 in M
u = 0 on ∂M
u → 1 at ∞

where ∆pu = div (|∇u|p−2∇u) is the p–Laplacian operator, for p ⩾ 1 (such
solutions are called p–harmonic).

Then, computing formally (rigorously, if the solution u has no critical points
at all), it turns out that, if p ∈ (1, 3), the function Fp : [tp,+∞) → R, given by

Fp(t) = 4πt −
t

2
p−1

cp

∫
{u=αp(t)}

|∇u|H dσ +
t

5−p
p−1

c2
p

∫
{u=αp(t)}

|∇u|2 dσ

is monotone nondecreasing, where αp(t) = 1 −
(
tp/t

)3−p
p−1 and cp−1

p =
Capp(∂M)

4π .
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The Riemannian Penrose inequality

Hence, as before, for every p ∈ (1, 3), there holds

8πmADM =

lim
t→+∞ Fp(t)⩾Fp(tp)

⩾ (4π)
2−p
3−p

(p − 1
3 − p

)p−1
3−p

Capp(∂M)
1

3−p

where:

The inequality in the right hand side is easy to be shown, as H = 0
on ∂M = {u = αp(tp) = 0}

The limit in the left hand side is a consequence of the fact that, by
the work of Benatti, Fogagnolo and Mazzieri, the p–harmonic
function u has the following asymptotic expansion (in a suitable AF
coordinate chart)

u(x) = 1 −
p − 1
3 − p

cp

|x |
3−p
p−1

+ o2
(
|x |−

3−p
p−1

)

The Riemannian Penrose inequality follows by sending p → 1, as

lim inf
p→1+

Capp(∂M) ⩾ |∂M|

thus, the last term converges to
√

4π|∂M| .
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The Riemannian Penrose inequality

As we said the “monotonicity part” was formal, rigorous only if the
critical points of the function u are not present, since the Sard theorem is
necessary in the proof and the p–harmonic functions are in general only
of class C1,α, thus possibly not smooth, so it cannot be applied.
Moreover, the set of critical points a priori could even have positive
Lebesgue measure (OPEN PROBLEM!), affecting the regularity of “too
many” surfaces–level sets of the function u and their evolution (too
many “jumps”), since we would like to apply to them the Gauss–Bonnet
theorem, as in the previous situation dealing with harmonic functions
(case p = 2). Finally, another issue (related to these ones) is the possible
loss of connectedness of such level sets.
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The Riemannian Penrose inequality

All this can be dealt with by “locally” approximating the p–harmonic
function up with the solutions uε,T

p of the following “perturbed” problem
(see the works of Di Benedetto)

div
(
|∇u|p−2

ε ∇u
)
= 0 in MT = {0 ⩽ up ⩽ T} ,

u = 0 on ∂M ,
u = T on {up = T} ,

where |∇u|ε =
√

|∇u|2 + ε2.

Since they are smooth, the Sard theorem can now be applied, then,
arguing as before, there exists a similar function Fε

p , pointwise
converging (“often” enough) to Fp as ε → 0, which satisfies an
“approximate” monotonicity, with an “error” going to zero with ε,

Fε
p (t) − Fε

p (s) ⩾ −εQ(t, s, ε) with Q locally bounded.

Hence, sending ε → 0, we rigorously get the monotonicity of the original
function Fp, in the general situation. The Riemannian Penrose inequality
then follows by the previous arguments.
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Some remarks

By this line, we cannot conclude that equality holds if and only if (M, g)
is isometric to a Schwarzschild manifold.

The argument apparently cannot generalized to the situation of ∂M not
connected (multiple black holes). The same holds for the proof of
Huisken–Ilmanen, while Bray’s one deals also with this case.

Benatti–Fogagnolo–Mazzieri recently refined the expansion at infinity,
extending the result under optimal regularity/decay hypotheses on the
AF manifold, more general than Huisken–Ilmanen and Bray’s ones.
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Thanks for your attention
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