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Networks of Curves

... flowing

http://cvgmt.sns.it/HomePages/cm/other/1000grains.mpg
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Joint project with
Matteo Novaga & Vincenzo Tortorelli, 2003 – 2005
Annibale Magni & Matteo Novaga, 2010 – 2014
Matteo Novaga, Alessandra Pluda & Felix Schulze, 2014 – 2016
Pietro Baldi & Emanuele Haus, 2015 – 2019
Matteo Novaga, Alessandra Pluda & Marco Pozzetta, 2022 –

After the works of Huisken et alt. about the mean curvature flow of curves
and hypersurfaces, weak definitions of mean curvature flow of any merely
closed set in the Euclidean space appeared.
We were interested in the study of the possibly “least singular” set: a
network of curves in the plane. This is clearly a (toy) model for the time
evolution of the interfaces of a multiphase planar system where the energy is
given only by the total length of such interfaces.
Even if it is still possible to continue to use several of the ideas and
techniques of the “parametric” (smooth, classical) approach (differential
geometry/PDEs), some extra variational “weak” methods are needed, due to
the presence of the multi–points.
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We say that a network moves by curvature if any of its time–dependent curves
γ i : [0, 1]× (0,T) → R2 satisfy

γ i
t(x, t)⊥ = ki(x, t) =

⟨γ i
xx(x, t) | ν i(x, t)⟩
|γ i

x(x, t)|2
ν i(x, t) =

(
γ i

xx(x, t)
|γ i

x(x, t)|2

)⊥

for every x ∈ [0, 1] and t ∈ (0,T).

The normal component of the velocity at every point is given by the curvature
vector of the curve (till the endpoints of the curves).

With the right choice of the tangential component of the velocity the problem
becomes a non–degenerate system (with several geometric properties) of
quasilinear parabolic partial differential equations.

This evolution can be seen as the geometric gradient flow of the length
functional, that is, the sum of the lengths of all the curves of the network.
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Some easy observations from the simulations

The area of the regions bounded by more than 6 edges grows, less than 6
edges decreases.

With the exception of the times when a structural change happens (vanishing
of a curve or of a region), there are only triple junctions and the three
concurring curves form angles of 120 degrees. We call such a network regular.

If no region is collapsing, the geometric changes are only given by pairs of
triple junctions colliding (the curve connecting them vanishes - its length
goes to zero), producing a 4–point in the network.

Immediately after such a collision of two triple junctions, the network
becomes again regular (only triple junctions, with curves forming angles of
120 degrees): a new pair of triple junctions “emerges” from every 4–point.

Actually, despite the (apparently) simple problem/behavior/statements, to
show in a mathematically satisfactory way these observations, a lot of
“technology” from analysis and geometry is needed.

http://cvgmt.sns.it/HomePages/cm/other/1000grains.mpg
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We started dealing with the local problem, that is, the study of the evolution
by curvature of the simplest network of three non–intersecting curves with
fixed endpoints and a single triple junction with angles of 120 degrees, called
a regular triod.
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Theorem (L. Bronsard, F. Reitich – 1992 &
CM, M. Novaga, V. Tortorelli – 2004)

For any initial regular smooth triod there exists a smooth flow by curvature in a
positive maximal time interval. Moreover, the evolving triod stays regular.

Theorem (M. Gößwein, J. Menzel, A. Pluda – 2020)

Uniqueness of the flow in the natural class of evolving curves C2 in space, C1 in time.

Theorem (A. Magni, CM, M. Novaga – 2013 &
T. Ilmanen, A. Neves, F. Schulze – 2013)
If none of the lengths of the three curves of the evolving triod goes to zero, the flow is
smooth for all times and the triod converges (asymptotically) to the Steiner
configuration connecting the three endpoints (if it exists).

It can be seen as a “local regularity result” for the flow of a general regular
network.
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A regular network is given by a finite family of non–intersecting curves such
that there are only a finite number of triple junctions with angles of 120
degrees between the concurring curves.
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Theorem
For any initial smooth regular network there exists a unique smooth flow by
curvature in a positive maximal time interval [0,T). Moreover, the evolving network
stays regular.

At the maximal (singular) time T at least one (or both) of the following two
conditions holds:

The curvature is unbounded as t → T.

The length of one (or more) of the curves of the network goes to zero
(change of structure/topology).

Even if there is no collapse of curves (or regions), so the topological structure
of the network is not going to change, the connection between the “local
regularity” (the special case of a triod) to the “global regularity” (general
network) is not direct. The main tool is blow–up analysis (after integral
estimates) and, in order to get regularity of the flow, one has to exclude that
curves with multiplicity larger than one appear in the limit of rescaled
networks (which are shrinkers – networks self–similarly moving by
curvature).
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Main Open Problem – “Multiplicity–One Conjecture” (M1)

Every possible limit of rescaled networks is a network with multiplicity one.

If M1 is true, the passage from local to global regularity works.

Theorem
Assuming M1, if none of the lengths of the curves of an evolving regular network
goes to zero as t → T, then T cannot be a singular time.

Hence, to proceed in the analysis, we have to deal with the situation when
the length of at least one curve of the network goes to zero as t → T.
There are two cases:

The curvature stays bounded.

The curvature is unbounded as t → T.
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The analysis in the first case (actually, bounded curvature =⇒ no collapse of
regions) consists in understanding the possible limit networks that can arise
as t → T and finding out how to continue the flow (if possible).

It can be shown that, as t → T, such limit network, is unique. Anyway, it can
be non–regular since multiple points can appear.

If the collapsing curve is not one of the family containing the fixed boundary
points (boundary curves), we have the following result.

Lemma
If M1 is true, every interior vertex of such limit network either is a regular triple
junction or it is a 4–point where the four concurring curves have opposite unit
tangents in pairs and form angles of 120/60 degrees among them.

If the collapsing curve is one of the boundary curves, the flow stops.

Otherwise, is it possible to “restart” the flow?

We underline that, being this limit network non–regular since it has also
4–junctions, the previous short time existence theorem does not apply.
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Theorem (T. Ilmanen, A. Neves, F. Schulze – 2014 Very tough &
J. Lira, R. Mazzeo, A. Pluda, M. Saez – 2021 Easier )
For any initial network of non–intersecting curves there exists a (possibly
non–unique) Brakke flow by curvature in a positive maximal time interval such
that for every positive time the evolving network is smooth and regular.

So, possibly losing the uniqueness of the flow (necessary – think of a cross),
we are able to start the flow also for an initial non–regular network.
Moreover, if the multiplicity–one conjecture is true, we know how to continue
the flow till the curvature of the curves of the network stays bounded.

t → T t > T

St StST

The local description of a “standard” transition.
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A “standard” transition for a Θ–shaped network (double cell).
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The second situation, when the curvature is unbounded and some curves are
vanishing, can be faced again with blow–up methods, but in general, even if
M1 is true, there can be several possible limits of rescaled networks, making
the classification quite difficult. Then, the (local) structure (topology) of the
evolving network plays an important role in the analysis.

Theorem
If M1 holds and the network is a tree (no loops), the curvature is uniformly bounded
during the flow, hence the only “singularities” (after which we can restart the flow as
we described before) are given by the collapse of a curve with only two triple
junctions going to coincide.

bounded curvature ⇐⇒ no collapse of regions
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WORK IN PROGRESS – Conjecture

If M1 holds and the network is general, as t → T, there exists a unique limit
non–regular network, with multiple points or even with triple junctions not
satisfying 120 degrees condition, to which the previous “restarting theorem” can be
applied to continue the flow.

WORK IN PROGRESS – Conjecture

The number of singular times is finite. If no boundary curves collapse, the flow is
definitely smooth and the evolving network converges (asymptotically) to a Steiner
(minimal) configuration connecting the fixed endpoints.
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Main Open Problem – “Multiplicity–One Conjecture” (M1)

Every possible limit of rescaled networks is a network with multiplicity one.

Theorem (CM, M. Novaga, A. Pluda – 2015)

If during the flow the triple–junctions stay uniformly far each other, then M1 is
true.
If the initial network has at most two triple junctions, then M1 is true.

Then, as the classification of self–shrinking networks with at most two triple
junctions is complete, some special cases of flows of networks with “few”
triple junctions can be fully analyzed.
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Only 1 triple junction

The Triod – A. Magni, CM, M. Novaga, V. Tortorelli
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2 triple junctions – CM, M. Novaga, A. Pluda

The Eyeglasses
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γ1 γ2
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2 triple junctions – CM, M. Novaga, A. Pluda

The Eyeglasses and... the Broken Eyeglasses

O1
O2

γ1 γ2

γ3

O1
O2

γ1 γ2

γ3
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2 triple junctions – CM, M. Novaga, A. Pluda

The “Steiner”, Theta, Lens and Island

O2

γ2

γ1

γ3

O1
P1

P2

P3

P4

γ1

γ4

γ2
γ3

γ5

O1

O2

P1

P2

O1

O2
γ2

γ1
γ4

γ3

O1 O2

γ1
γ2

γ3

γ4
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Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

Asymptotic behavior and stability

Stability around a regular minimal network – A. Pluda and M. Pozzetta

Classification of self–shrinking networks, with particular attention to stable
ones

Generic (stable) singularities and generic flows (generic uniqueness, stability,
etc.)
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A regular shrinkers gallery (J. Hättenschweiler – Tom Ilmanen)

All the following examples are obtained by numeric analysis.
Only the shrinkers with at most one bounded region were completely
classified, by Chen and Guo, who proved rigorously also their existence.
All of them have at least one axis of symmetry, we do not know of examples
without any symmetries at all.
A natural conjecture is that the number of regular shrinkers is finite (up to
rotation).

No regions

Line Triod
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1 region

Circle Spoon

Lens Fish
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1 region

3–ray star Rocket

4–ray star 5–ray star
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2 regions

Cisgeminate eye Cisgeminate 4–ray star

3 regions

Mercedes–Benz 1–ray Mercedes–Benz
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3 regions

3–ray Mercedes–Benz Cisgeminate 3–ray star

4 regions

3–leaf clover 2–ray 2–floc
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5 regions

4–leaf clover 2–ray 4–leaf clover

4–petal flower
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6 regions

5–leaf clover 3–floc

3–ray three–floc 5–petal flower
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9 regions

9–floc 3–ray 9–floc

Non–embedded regular shrinkers

Antispoon Bowtie
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Impossible regular shrinkers
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By numerical evidences, there are no
regular shrinkers with these topological
shapes. The only one whose non–existence
was rigorously proved is the first
one, the Θ–shaped (double cell) shrinker.
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The future... clusters of bubbles
Study of the motion by mean curvature of 2–dimensional interfaces in R3 (a
double–bubble, for instance)

Short time existence/uniqueness for special initial interfaces by
Depner–Garcke–Kohsaka
Short time existence/estimates for special initial interfaces by
Schulze–White
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Thanks for your attention
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