

# Evolution by curvature of networks in the plane

## The state of the art

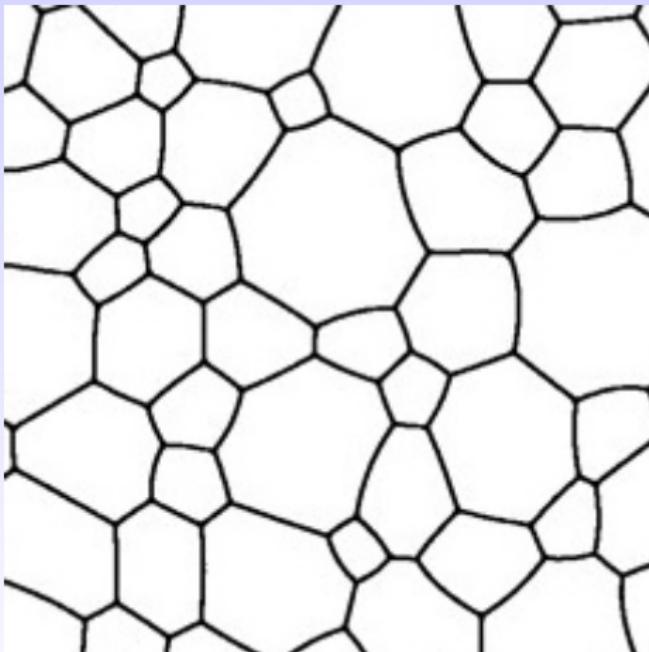
CARLO MANTEGAZZA

# Curve Shortening Flow

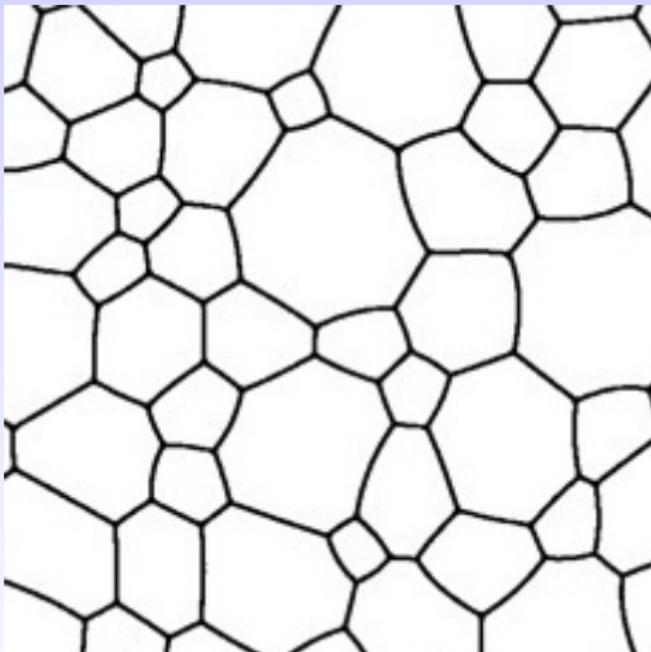
**YouTube** – <https://www.youtube.com/watch?v=wHfpacPLHIA>

**Interactive** – <https://a.carapetis.com/csf>

# Networks of Curves



# Networks of Curves



... flowing

## Joint project with

- Matteo Novaga & Vincenzo Tortorelli, 2003 – 2005
- Annibale Magni & Matteo Novaga, 2010 – 2014
- Matteo Novaga, Alessandra Pluda & Felix Schulze, 2014 – 2016
- Pietro Baldi & Emanuele Haus, 2015 – 2019
- Matteo Novaga, Alessandra Pluda & Marco Pozzetta, 2022 –

After the works of Huisken et alt. about the mean curvature flow of curves and hypersurfaces, weak definitions of mean curvature flow of any merely *closed set* in the Euclidean space appeared.

We were interested in the study of the possibly “least singular” set: a network of curves in the plane. This is clearly a (toy) model for the time evolution of the interfaces of a multiphase planar system where the energy is given only by the total length of such interfaces.

Even if it is still possible to continue to use several of the ideas and techniques of the “parametric” (smooth, classical) approach (differential geometry/PDEs), some extra variational “weak” methods are needed, due to the presence of the multi-points.

We say that a network *moves by curvature* if any of its time-dependent curves  $\gamma^i : [0, 1] \times (0, T) \rightarrow \mathbb{R}^2$  satisfy

$$\gamma_t^i(x, t)^\perp = \underline{k}^i(x, t) = \frac{\langle \gamma_{xx}^i(x, t) | \nu^i(x, t) \rangle}{|\gamma_x^i(x, t)|^2} \nu^i(x, t) = \left( \frac{\gamma_{xx}^i(x, t)}{|\gamma_x^i(x, t)|^2} \right)^\perp$$

for every  $x \in [0, 1]$  and  $t \in (0, T)$ .

The *normal component* of the velocity at every point is given by the curvature vector of the curve (till the endpoints of the curves).

With the right choice of the tangential component of the velocity the problem becomes a non-degenerate system (with several geometric properties) of *quasilinear parabolic partial differential equations*.

This evolution can be seen as the *geometric gradient flow* of the *length functional*, that is, the sum of the lengths of all the curves of the network.

## Some easy observations from the simulations

## Some easy observations from the simulations

The area of the regions bounded by more than 6 edges grows, less than 6 edges decreases.

## Some easy observations from the simulations

The area of the regions bounded by more than 6 edges grows, less than 6 edges decreases.

With the exception of the times when a structural change happens (vanishing of a curve or of a region), there are only *triple* junctions and the three concurring curves form angles of 120 degrees. We call such a network *regular*.

## Some easy observations from the simulations

The area of the regions bounded by more than 6 edges grows, less than 6 edges decreases.

With the exception of the times when a structural change happens (vanishing of a curve or of a region), there are only *triple* junctions and the three concurring curves form angles of 120 degrees. We call such a network *regular*.

If no region is collapsing, the geometric changes are only given by pairs of triple junctions colliding (the curve connecting them vanishes - its length goes to zero), producing a 4-point in the network.

Immediately after such a collision of two triple junctions, the network becomes again *regular* (only triple junctions, with curves forming angles of 120 degrees): a new pair of triple junctions “emerges” from every 4-point.

## Some easy observations from the simulations

The area of the regions bounded by more than 6 edges grows, less than 6 edges decreases.

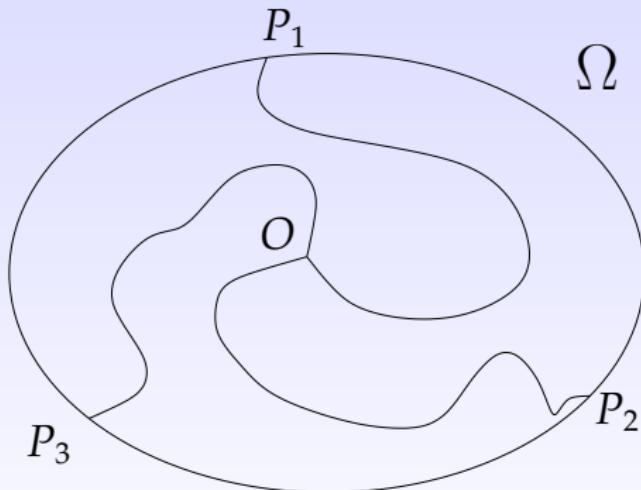
With the exception of the times when a structural change happens (vanishing of a curve or of a region), there are only *triple* junctions and the three concurring curves form angles of 120 degrees. We call such a network *regular*.

If no region is collapsing, the geometric changes are only given by pairs of triple junctions colliding (the curve connecting them vanishes - its length goes to zero), producing a 4-point in the network.

Immediately after such a collision of two triple junctions, the network becomes again *regular* (only triple junctions, with curves forming angles of 120 degrees): a new pair of triple junctions “emerges” from every 4-point.

Actually, despite the (apparently) simple problem/behavior/statements, to show in a mathematically satisfactory way these observations, a lot of “technology” from analysis and geometry is needed.

We started dealing with the local problem, that is, the study of the evolution by curvature of the simplest network of three non-intersecting curves with fixed endpoints and a single triple junction with angles of 120 degrees, called a *regular triod*.



Theorem (L. Bronsard, F. Reitich – 1992 &  
CM, M. Novaga, V. Tortorelli – 2004)

*For any initial regular smooth triod there exists a smooth flow by curvature in a positive maximal time interval. Moreover, the evolving triod stays regular.*

Theorem (L. Bronsard, F. Reitich – 1992 & CM, M. Novaga, V. Tortorelli – 2004)

*For any initial regular smooth triod there exists a smooth flow by curvature in a positive maximal time interval. Moreover, the evolving triod stays regular.*

Theorem (M. Gößwein, J. Menzel, A. Pluda – 2020)

*Uniqueness of the flow in the natural class of evolving curves  $C^2$  in space,  $C^1$  in time.*

Theorem (L. Bronsard, F. Reitich – 1992 & CM, M. Novaga, V. Tortorelli – 2004)

*For any initial regular smooth triod there exists a smooth flow by curvature in a positive maximal time interval. Moreover, the evolving triod stays regular.*

Theorem (M. Gößwein, J. Menzel, A. Pluda – 2020)

*Uniqueness of the flow in the natural class of evolving curves  $C^2$  in space,  $C^1$  in time.*

Theorem (A. Magni, CM, M. Novaga – 2013 & T. Ilmanen, A. Neves, F. Schulze – 2013)

*If none of the lengths of the three curves of the evolving triod goes to zero, the flow is smooth for all times and the triod converges (asymptotically) to the Steiner configuration connecting the three endpoints (if it exists).*

Theorem (L. Bronsard, F. Reitich – 1992 & CM, M. Novaga, V. Tortorelli – 2004)

*For any initial regular smooth triod there exists a smooth flow by curvature in a positive maximal time interval. Moreover, the evolving triod stays regular.*

Theorem (M. Gößwein, J. Menzel, A. Pluda – 2020)

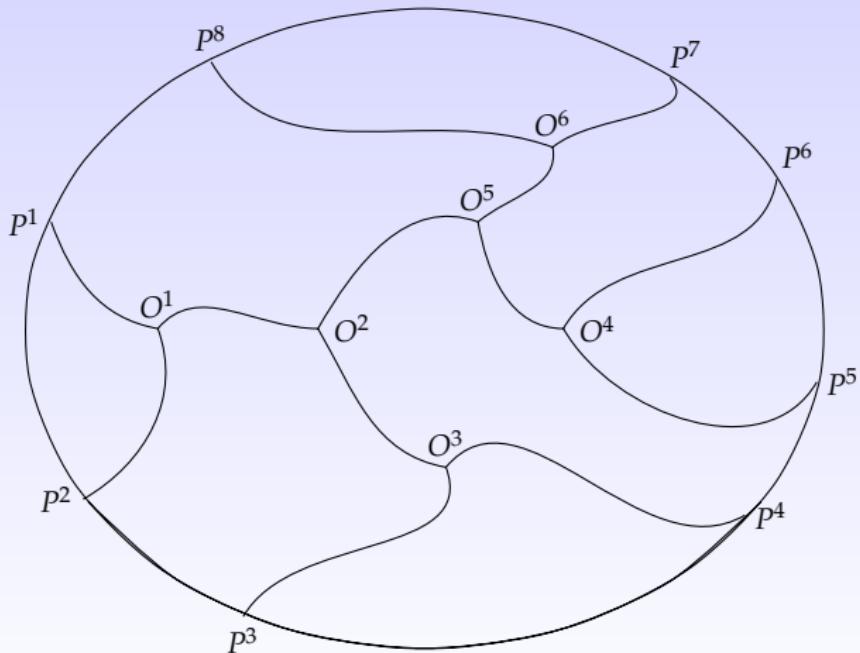
*Uniqueness of the flow in the natural class of evolving curves  $C^2$  in space,  $C^1$  in time.*

Theorem (A. Magni, CM, M. Novaga – 2013 & T. Ilmanen, A. Neves, F. Schulze – 2013)

*If none of the lengths of the three curves of the evolving triod goes to zero, the flow is smooth for all times and the triod converges (asymptotically) to the Steiner configuration connecting the three endpoints (if it exists).*

It can be seen as a “local regularity result” for the flow of a general *regular* network.

A *regular* network is given by a finite family of non-intersecting curves such that there are only a finite number of triple junctions with angles of 120 degrees between the concurring curves.



## Theorem

*For any initial smooth regular network there exists a unique smooth flow by curvature in a positive maximal time interval  $[0, T)$ . Moreover, the evolving network stays regular.*

## Theorem

*For any initial smooth regular network there exists a unique smooth flow by curvature in a positive maximal time interval  $[0, T)$ . Moreover, the evolving network stays regular.*

At the maximal (singular) time  $T$  at least one (or both) of the following two conditions holds:

- The curvature is unbounded as  $t \rightarrow T$ .
- The length of one (or more) of the curves of the network goes to zero (change of structure/topology).

## Theorem

For any initial smooth regular network there exists a unique smooth flow by curvature in a positive maximal time interval  $[0, T)$ . Moreover, the evolving network stays regular.

At the maximal (singular) time  $T$  at least one (or both) of the following two conditions holds:

- The curvature is unbounded as  $t \rightarrow T$ .
- The length of one (or more) of the curves of the network goes to zero (change of structure/topology).

Even if there is no collapse of curves (or regions), so the topological structure of the network is not going to change, the connection between the “local regularity” (the special case of a triod) to the “global regularity” (general network) is not direct. The main tool is blow-up analysis (after integral estimates) and, in order to get regularity of the flow, one has to exclude that curves with multiplicity larger than one appear in the limit of rescaled networks (which are *shrinkers* – networks self-similarly moving by curvature).

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

If **M1** is true, the passage from local to global regularity works.

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

If **M1** is true, the passage from local to global regularity works.

### Theorem

*Assuming **M1**, if none of the lengths of the curves of an evolving regular network goes to zero as  $t \rightarrow T$ , then  $T$  cannot be a singular time.*

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

If **M1** is true, the passage from local to global regularity works.

### Theorem

*Assuming **M1**, if none of the lengths of the curves of an evolving regular network goes to zero as  $t \rightarrow T$ , then  $T$  cannot be a singular time.*

Hence, to proceed in the analysis, we have to deal with the situation when the length of at least one curve of the network goes to zero as  $t \rightarrow T$ .

There are two cases:

- The curvature stays bounded.
- The curvature is unbounded as  $t \rightarrow T$ .

The analysis in the first case (actually, **bounded curvature  $\Rightarrow$  no collapse of regions**) consists in understanding the possible limit networks that can arise as  $t \rightarrow T$  and finding out how to continue the flow (if possible).

It can be shown that, as  $t \rightarrow T$ , such limit network, is unique. Anyway, it can be *non-regular* since multiple points can appear.

The analysis in the first case (actually, **bounded curvature  $\Rightarrow$  no collapse of regions**) consists in understanding the possible limit networks that can arise as  $t \rightarrow T$  and finding out how to continue the flow (if possible).

It can be shown that, as  $t \rightarrow T$ , such limit network, is unique. Anyway, it can be *non-regular* since multiple points can appear.

If the collapsing curve is not one of the family containing the fixed boundary points (*boundary curves*), we have the following result.

### Lemma

*If **M1** is true, every interior vertex of such limit network either is a regular triple junction or it is a 4-point where the four concurring curves have opposite unit tangents in pairs and form angles of 120/60 degrees among them.*

The analysis in the first case (actually, **bounded curvature  $\Rightarrow$  no collapse of regions**) consists in understanding the possible limit networks that can arise as  $t \rightarrow T$  and finding out how to continue the flow (if possible).

It can be shown that, as  $t \rightarrow T$ , such limit network, is unique. Anyway, it can be *non-regular* since multiple points can appear.

If the collapsing curve is not one of the family containing the fixed boundary points (*boundary curves*), we have the following result.

### Lemma

*If **M1** is true, every interior vertex of such limit network either is a regular triple junction or it is a 4-point where the four concurring curves have opposite unit tangents in pairs and form angles of 120/60 degrees among them.*

If the collapsing curve is one of the *boundary curves*, the flow stops.

The analysis in the first case (actually, **bounded curvature  $\Rightarrow$  no collapse of regions**) consists in understanding the possible limit networks that can arise as  $t \rightarrow T$  and finding out how to continue the flow (if possible).

It can be shown that, as  $t \rightarrow T$ , such limit network, is unique. Anyway, it can be *non-regular* since multiple points can appear.

If the collapsing curve is not one of the family containing the fixed boundary points (*boundary curves*), we have the following result.

### Lemma

*If **M1** is true, every interior vertex of such limit network either is a regular triple junction or it is a 4-point where the four concurring curves have opposite unit tangents in pairs and form angles of 120/60 degrees among them.*

If the collapsing curve is one of the *boundary curves*, the flow stops.

Otherwise, is it possible to “restart” the flow?

The analysis in the first case (actually, **bounded curvature  $\Rightarrow$  no collapse of regions**) consists in understanding the possible limit networks that can arise as  $t \rightarrow T$  and finding out how to continue the flow (if possible).

It can be shown that, as  $t \rightarrow T$ , such limit network, is unique. Anyway, it can be *non-regular* since multiple points can appear.

If the collapsing curve is not one of the family containing the fixed boundary points (*boundary curves*), we have the following result.

### Lemma

*If **M1** is true, every interior vertex of such limit network either is a regular triple junction or it is a 4-point where the four concurring curves have opposite unit tangents in pairs and form angles of 120/60 degrees among them.*

If the collapsing curve is one of the *boundary curves*, the flow stops.

Otherwise, is it possible to “restart” the flow?

We underline that, being this limit network non-regular since it has also 4-junctions, the previous short time existence theorem does not apply.

Theorem (T. Ilmanen, A. Neves, F. Schulze – 2014  Very tough & J. Lira, R. Mazzeo, A. Pluda, M. Saez – 2021  Easier )

*For any initial network of **non-intersecting** curves there exists a (possibly non-unique) **Brakke flow by curvature** in a positive maximal time interval such that for every positive time the evolving network is smooth and regular.*

Theorem (T. Ilmanen, A. Neves, F. Schulze – 2014  Very tough & J. Lira, R. Mazzeo, A. Pluda, M. Saez – 2021  Easier )

*For any initial network of **non-intersecting** curves there exists a (possibly non-unique) **Brakke flow by curvature** in a positive maximal time interval such that for every positive time the evolving network is smooth and regular.*

So, possibly losing the uniqueness of the flow (necessary – think of a cross), we are able to start the flow also for an initial non-regular network.

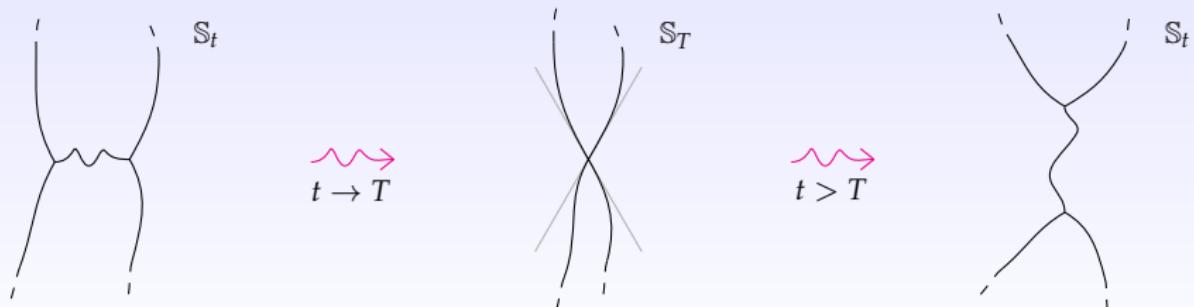
Moreover, if the multiplicity-one conjecture is true, we know how to continue the flow till the curvature of the curves of the network stays bounded.

Theorem (T. Ilmanen, A. Neves, F. Schulze – 2014  Very tough & J. Lira, R. Mazzeo, A. Pluda, M. Saez – 2021  Easier )

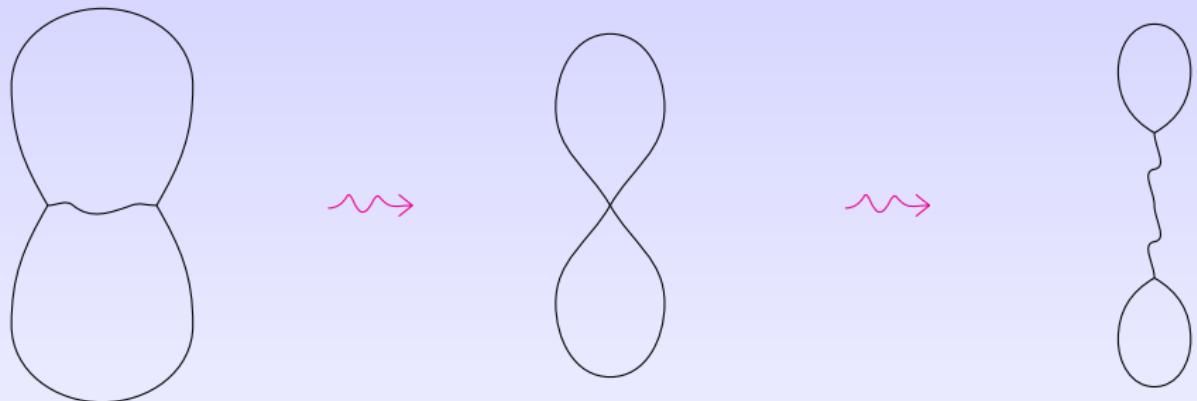
For any initial network of *non-intersecting* curves there exists a (possibly non-unique) Brakke flow by curvature in a positive maximal time interval such that for every positive time the evolving network is smooth and regular.

So, possibly losing the uniqueness of the flow (necessary – think of a cross), we are able to start the flow also for an initial non-regular network.

Moreover, if the multiplicity-one conjecture is true, we know how to continue the flow till the curvature of the curves of the network stays bounded.



The local description of a “standard” transition.



A “standard” transition for a  $\Theta$ -shaped network (double cell).

The second situation, when the curvature is unbounded and some curves are vanishing, can be faced again with blow-up methods, but in general, even if **M1** is true, there can be several possible limits of rescaled networks, making the classification quite difficult. Then, the (local) structure (topology) of the evolving network plays an important role in the analysis.

The second situation, when the curvature is unbounded and some curves are vanishing, can be faced again with blow-up methods, but in general, even if **M1** is true, there can be several possible limits of rescaled networks, making the classification quite difficult. Then, the (local) structure (topology) of the evolving network plays an important role in the analysis.

### Theorem

*If **M1** holds and the network is a tree (no loops), the curvature is uniformly bounded during the flow, hence the only “singularities” (after which we can restart the flow as we described before) are given by the collapse of a curve with only two triple junctions going to coincide.*

The second situation, when the curvature is unbounded and some curves are vanishing, can be faced again with blow-up methods, but in general, even if **M1** is true, there can be several possible limits of rescaled networks, making the classification quite difficult. Then, the (local) structure (topology) of the evolving network plays an important role in the analysis.

### Theorem

*If **M1** holds and the network is a tree (no loops), the curvature is uniformly bounded during the flow, hence the only “singularities” (after which we can restart the flow as we described before) are given by the collapse of a curve with only two triple junctions going to coincide.*

**bounded curvature  $\iff$  no collapse of regions**

## WORK IN PROGRESS – Conjecture

*If **M1** holds and the network is general, as  $t \rightarrow T$ , there exists a unique limit non-regular network, with multiple points or even with triple junctions not satisfying 120 degrees condition, to which the previous “restarting theorem” can be applied to continue the flow.*

## WORK IN PROGRESS – Conjecture

*If **M1** holds and the network is general, as  $t \rightarrow T$ , there exists a unique limit non-regular network, with multiple points or even with triple junctions not satisfying 120 degrees condition, to which the previous “restarting theorem” can be applied to continue the flow.*

## WORK IN PROGRESS – Conjecture

*The number of singular times is finite. If no boundary curves collapse, the flow is definitely smooth and the evolving network converges (asymptotically) to a Steiner (minimal) configuration connecting the fixed endpoints.*

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

### Theorem (CM, M. Novaga, A. Pluda – 2015)

- *If during the flow the triple–junctions stay uniformly far each other, then **M1** is true.*
- *If the initial network has at most **two** triple junctions, then **M1** is true.*

## Main Open Problem – “Multiplicity–One Conjecture” (**M1**)

*Every possible limit of rescaled networks is a network with multiplicity one.*

Theorem (CM, M. Novaga, A. Pluda – 2015)

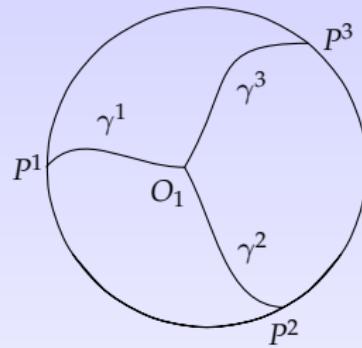
- *If during the flow the triple–junctions stay uniformly far each other, then **M1** is true.*
- *If the initial network has at most **two** triple junctions, then **M1** is true.*

Then, as the classification of self–shrinking networks with at most two triple junctions is complete, some special cases of flows of networks with “few” triple junctions can be fully analyzed.

Only 1 triple junction

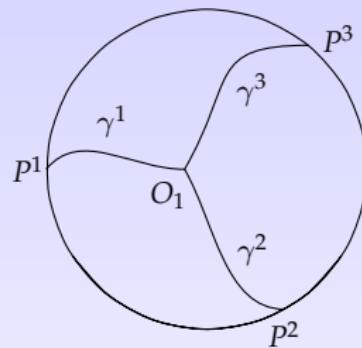
# Only 1 triple junction

The Triod – A. Magni, CM, M. Novaga, V. Tortorelli

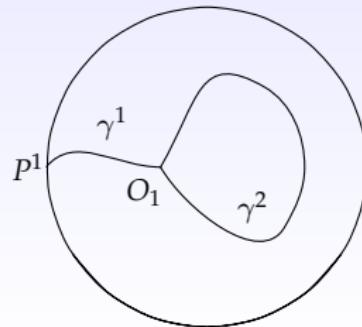


# Only 1 triple junction

The Triod – A. Magni, CM, M. Novaga, V. Tortorelli

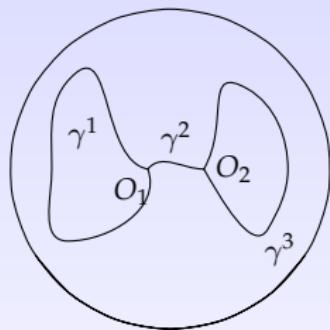


The Spoon – A. Pluda



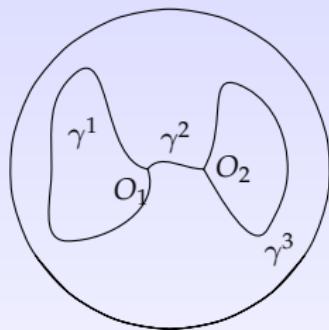
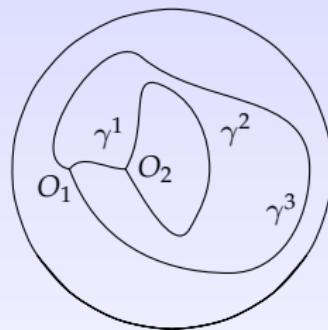
## 2 triple junctions – CM, M. Novaga, A. Pluda

## The Eyeglasses



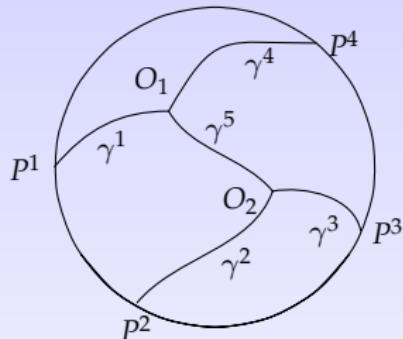
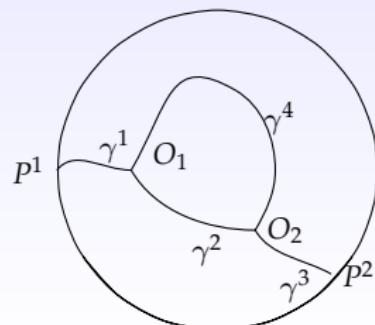
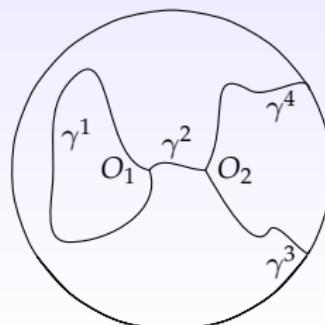
## 2 triple junctions – CM, M. Novaga, A. Pluda

The Eyeglasses and... the Broken Eyeglasses



## 2 triple junctions – CM, M. Novaga, A. Pluda

The “Steiner”, Theta, Lens and Island



# Open problems and research directions

# Open problems and research directions

Proof of the multiplicity–one conjecture

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

# Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

Asymptotic behavior and stability

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

Asymptotic behavior and stability

*Stability around a regular minimal network – A. Pluda and M. Pozzetta*

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

Asymptotic behavior and stability

*Stability around a regular minimal network – A. Pluda and M. Pozzetta*

Classification of self–shrinking networks, with particular attention to *stable* ones

## Open problems and research directions

Proof of the multiplicity–one conjecture

Uniqueness of the (blow–up) limit network at a singular time

*Very recent partial results by A. Pluda and M. Pozzetta – Almost done 100%*

More refined estimates in the “restarting” theorem

Finiteness of singular times (no “shape oscillation” phenomenon)

Asymptotic behavior and stability

*Stability around a regular minimal network – A. Pluda and M. Pozzetta*

Classification of self–shrinking networks, with particular attention to *stable* ones

Generic (stable) singularities and generic flows (generic uniqueness, stability, etc.)

## A regular shrinkers gallery (*J. Hättenschweiler – Tom Ilmanen*)

All the following examples are obtained by numeric analysis.

Only the shrinkers with at most one bounded region were completely classified, by Chen and Guo, who proved rigorously also their existence.

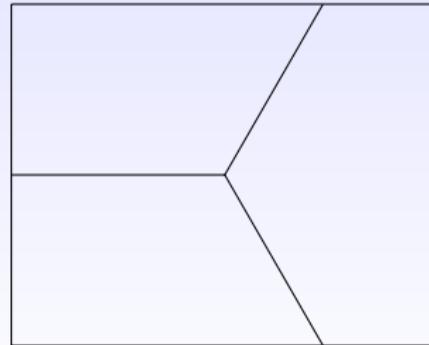
All of them have at least one axis of symmetry, we do not know of examples without any symmetries at all.

A natural conjecture is that the number of regular shrinkers is finite (up to rotation).

No regions

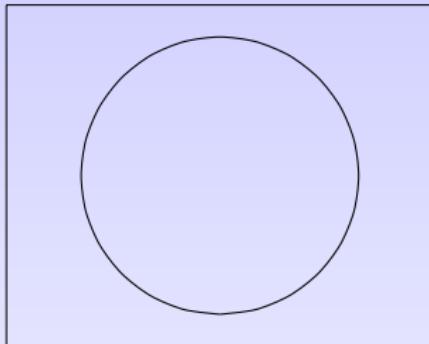


Line

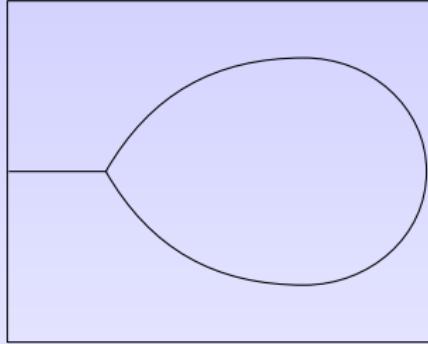


Triod

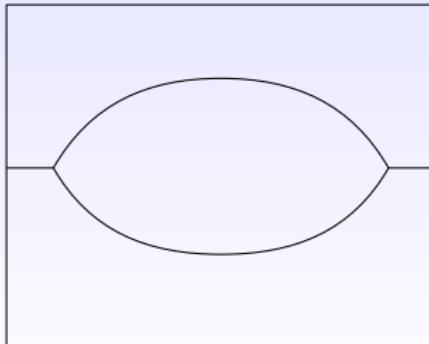
## 1 region



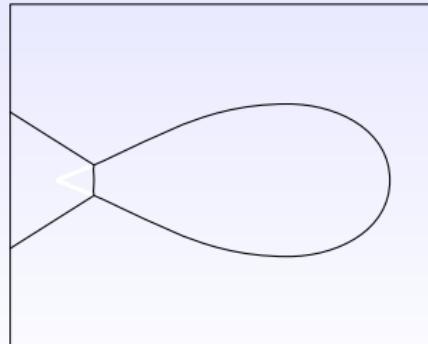
Circle



Spoon

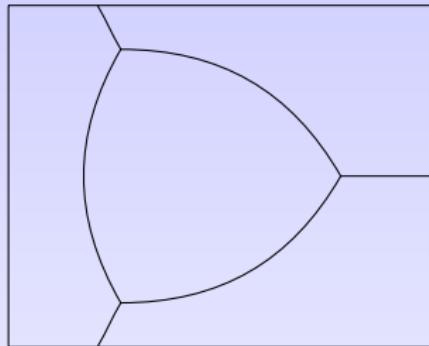


Lens

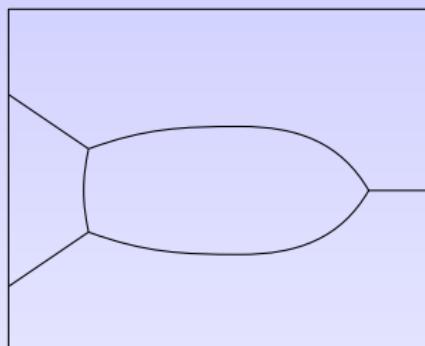


Fish

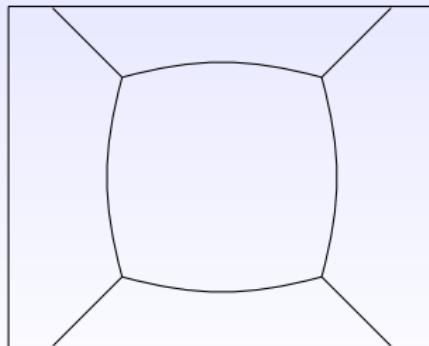
## 1 region



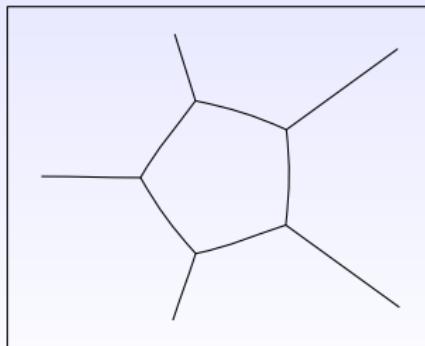
3-ray star



Rocket

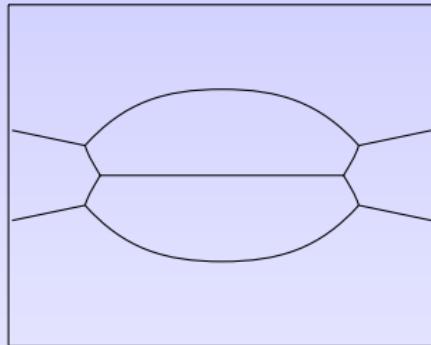


4-ray star

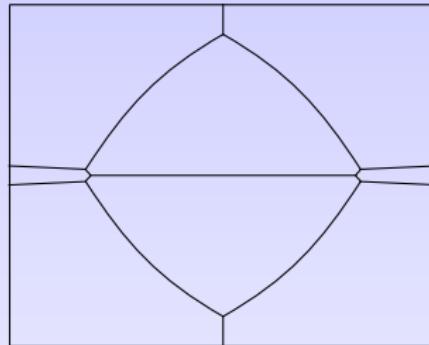


5-ray star

## 2 regions

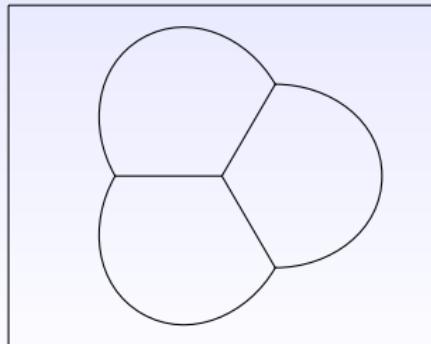


Cisgeminate eye

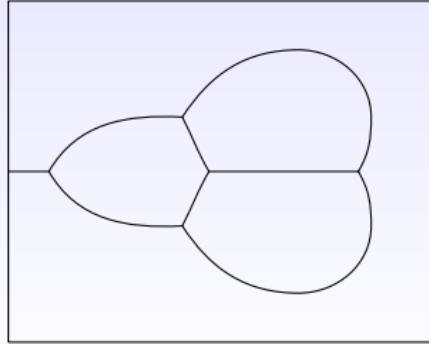


Cisgeminate 4-ray star

## 3 regions

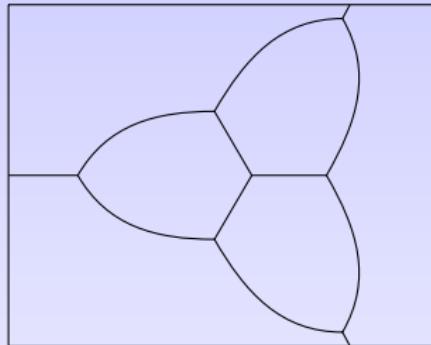


Mercedes-Benz

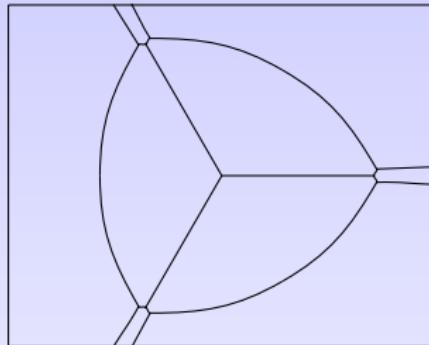


1-ray Mercedes-Benz

### 3 regions

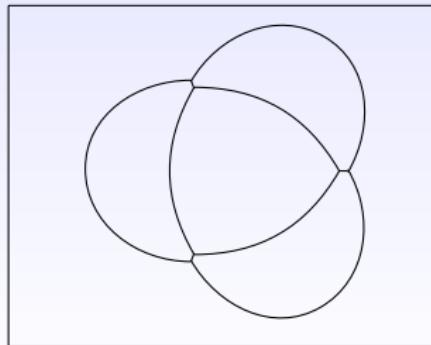


3-ray Mercedes-Benz

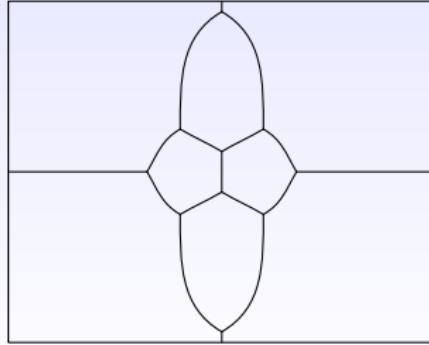


Cisgeminate 3-ray star

### 4 regions

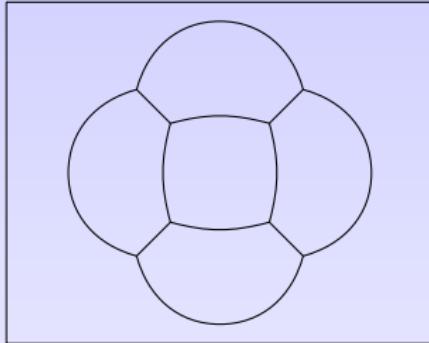


3-leaf clover

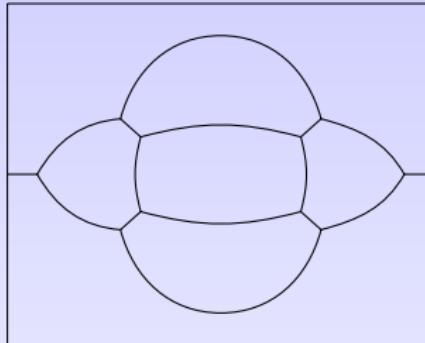


2-ray 2-floc

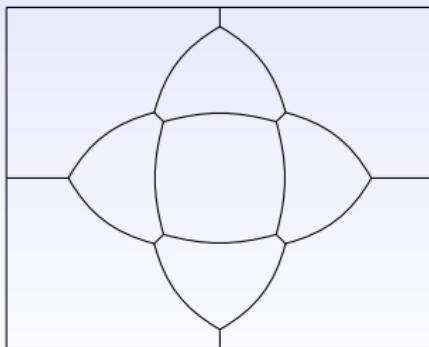
## 5 regions



4-leaf clover

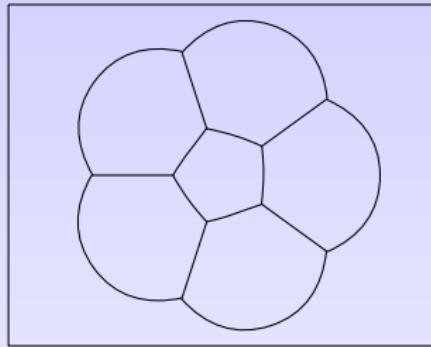


2-ray 4-leaf clover

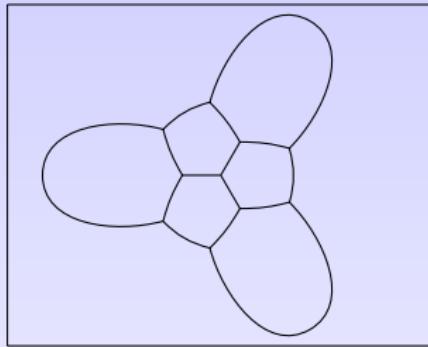


4-petal flower

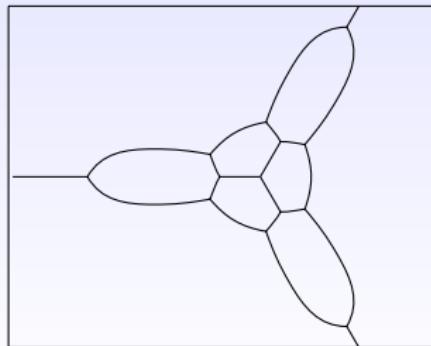
## 6 regions



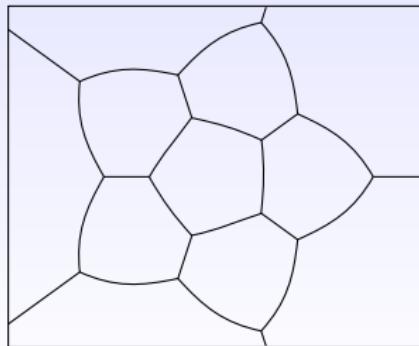
5-leaf clover



3-floc

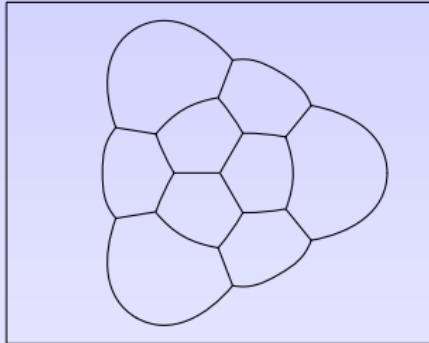


3-ray three-floc

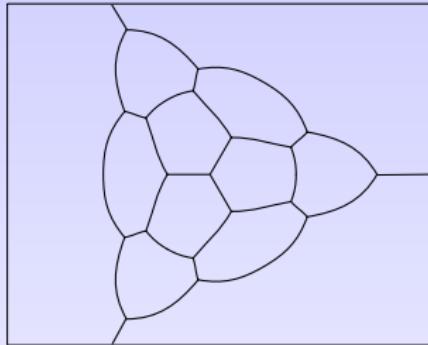


5-petal flower

9 regions

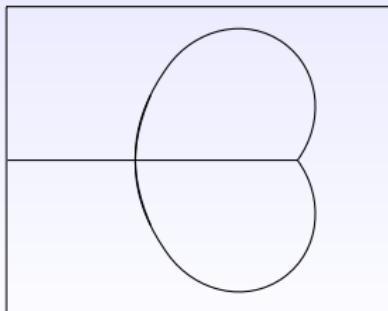


9-floc

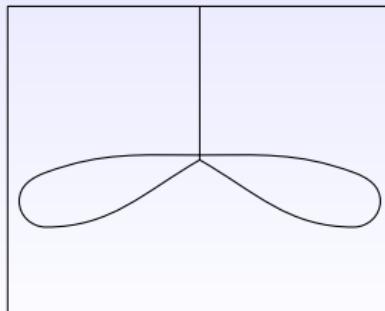


3-ray 9-floc

Non-embedded regular shrinkers

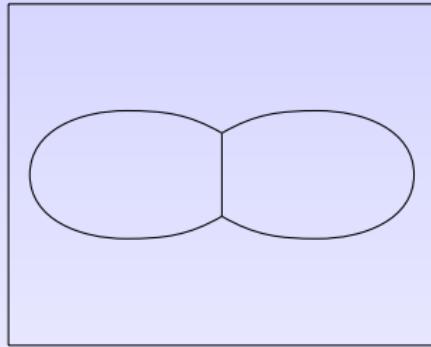
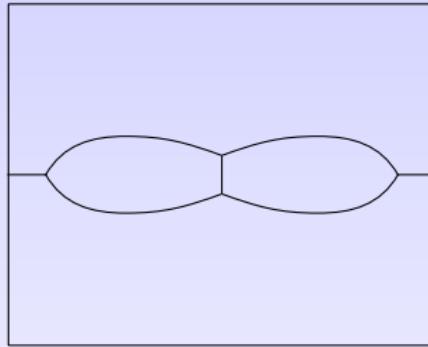
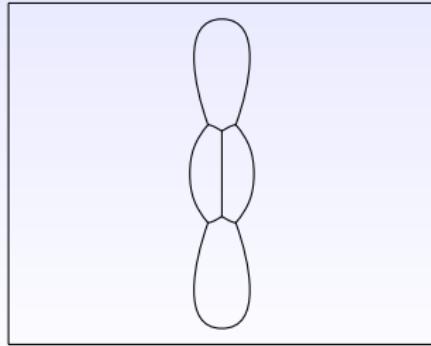
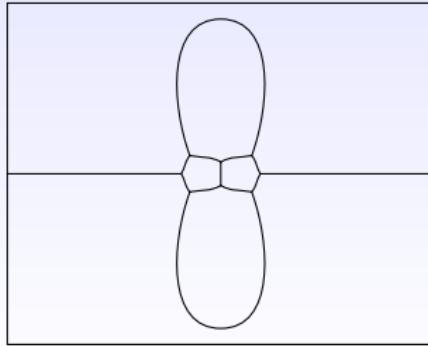


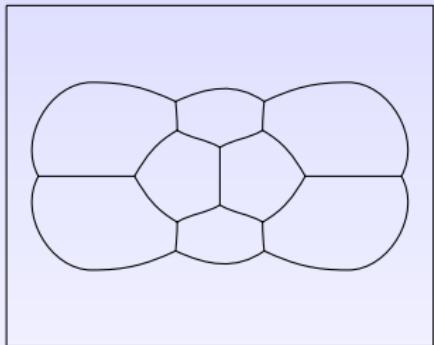
Antispoon



Bowtie

## *Impossible* regular shrinkers





By numerical evidences, there are no regular shrinkers with these topological shapes. The only one whose *non-existence* was rigorously proved is the first one, the  $\Theta$ -shaped (double cell) shrinker.

## The future... clusters of bubbles

Study of the motion by mean curvature of 2-dimensional interfaces in  $\mathbb{R}^3$  (a *double-bubble*, for instance)



## The future... clusters of bubbles

Study of the motion by mean curvature of 2-dimensional interfaces in  $\mathbb{R}^3$  (a *double-bubble*, for instance)



- Short time existence/uniqueness for special initial interfaces by Depner–Garcke–Kohsaka
- Short time existence/estimates for special initial interfaces by Schulze–White

Thanks for your attention