
Evolutions of Geometric Structures

Some results and problems about evolutions of geometric
structures

CARLO MANTEGAZZA



Evolutions of Geometric Structures Mean Curvature Flow, Ricci Flow and Variations

Mean Curvature Flow, Ricci Flow and Variations

Ricci Solitons and other Einstein–Type Manifolds

Flows of Singular Structures

Connecting the Two Flows



Evolutions of Geometric Structures Mean Curvature Flow, Ricci Flow and Variations

The Ricci flow
At the end of ’70s–beginning of ’80s the study of Ricci and
Einstein tensors from an analytic point of view gets a strong
interest, for instance in the works (static) of Dennis DeTurck. A
proposal of investigation of a family of flows, among them the
Ricci flow, was done by Jean–Pierre Bourguignon (”Ricci
curvature and Einstein metrics”, Lecture Notes in Math 838,
1981). In 1982 Richard Hamilton defines and studies the Ricci
flow, that is, the system of partial differential equations

∂g(t)
∂t

= −2Ricg(t)

describing the evolution g(t) of the metric of a Riemannian
manifold.

R. Hamilton – “Three–manifolds with positive Ricci curvature”,
Journal of Differential Geometry 17, 1982, 255–306.
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The mean curvature flow
Mean curvature flow occurs in the description of the interface
evolution in certain physical models, indeed, one can date the
genesis of the problem to a paper of Mullins in 1956. The topic
received a strong interest in the second part of ’80s and ’90s,
after the works of Gerhard Huisken and Michael Gage –
Richard Hamilton.
Let φ0 : M → Rn be a smooth hypersurface of Rn. Its mean
curvature flow is the system of partial differential equations{

∂
∂tφ(p, t) = H(p, t)
φ(p,0) = φ0(p)

where H(p, t) is the mean curvature vector of the hypersurface
Mt = φt(M) at the point p ∈ M, where φt = φ(·, t).

G. Huisken – “Flow by mean curvature of convex surfaces into
spheres”, Journal of Differential Geometry 20, 1984, 237–266.
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Both are a sort of geometric heat equations, indeed, the Ricci
tensor can be expressed as

Ricg = −1
2
∆g + LOT

with an appropriate choice of local coordinates, and the mean
curvature vector is given by

H(p, t) = ∆φt(p, t)

where ∆ is the Laplace–Beltrami operator on M with the metric
induced by the immersion φt .
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It can be actually shown that these are quasilinear,
(degenerate) parabolic systems of PDE on manifolds. They
possess a unique solution for small times if the initial manifolds
are compact. In addition, the solutions satisfy comparison
principles and derivative estimates similar to the case of
parabolic equations in Euclidean space. Unfortunately, it is well
known that the solutions exist in general only in a finite time
interval. This means that singularities, for geometric or analytic
reasons, develop. The study of such singularities is the key
point in the subject of geometric evolutions.
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Examples (these flows contract the manifolds where
the curvature is positive and dilate where it is negative)

Sphere: g(t) = (1− 4t)g0.

t = 1/4

Hyperbolic surface (constant negative curvature):
g(t) = (1 + 4t)g0.
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Negative examples: the neckpinch
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Generalizations of Ricci flow: the renormalization
group flow

The renormalization group flow arises in modern theoretical
physics as a method to investigate the changes of a system
viewed at different distance scales. Anyway, it still lacks of a
strong mathematical foundation and it is defined by a formal
flow of metric on a manifold satisfying the evolution equation

∂gij(t)
∂τ

= −βij(g(t)) ,

for some functions βij depending on the metric, the curvature
and its derivatives.
In the “perturbative regime” (that is, when a|Riem(g)| ≪ 1) the
functions βij can be expanded in powers of a,

∂gij

∂τ
= −aRij + o(a) ,

as a→ 0.
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Hence, the first order truncation (after the substitution τ = t/2a)
coincides with the Ricci flow ∂tg = −2Ric, as noted by Friedan
and Lott (and also Carfora).
It is interesting then to consider also the second order term in
the expansion of the beta functions, whose coefficients are
quadratic in the curvature and therefore are (possibly)
dominating, even when a|Riem(g)| → 0.

The resulting flow is called two–loop renormalization group flow

∂gij

∂τ
= −aRij −

a2

2
RiklmRjstugksg ltgmu .
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Joint work with L. Cremaschi

Theorem (Laura Cremaschi, CM)

Let (M3,g0) be a compact, smooth, three–dimensional
Riemannian manifold and a ∈ R. Assume that the sectional
curvature K0 of the initial metric g0 satisfies

1 + 2aK0(X ,Y ) > 0

for every point p ∈ M3 and vectors X ,Y ∈ TpM3. Then, there
exists some T > 0 such that the two–loop renormalization
group flow has a unique smooth solution g(t) in a maximal time
interval [0,T ).

Subsequently generalized to any dimensions by Gimre,
Guenther and Isenberg.
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Open problems

It is unknown if the condition

1 + 2aK0(X ,Y ) > 0

is preserved under the flow.

Investigate higher order truncations of the flow (derivatives of
the Riemann tensor also appear =⇒ higher order flows).



Evolutions of Geometric Structures Mean Curvature Flow, Ricci Flow and Variations

Open problems

It is unknown if the condition

1 + 2aK0(X ,Y ) > 0

is preserved under the flow.

Investigate higher order truncations of the flow (derivatives of
the Riemann tensor also appear =⇒ higher order flows).



Evolutions of Geometric Structures Mean Curvature Flow, Ricci Flow and Variations

The Ricci–Bourguignon flow

∂g
∂t

= −2
(
Ric − ρRg

)
▶ Einstein flow: ρ = 1/2
▶ Traceless Ricci flow: ρ = 1/n
▶ Schouten flow: ρ = 1/2(n − 1)
▶ Ricci flow: ρ = 0

It can be seen as an interpolation between the Ricci flow and
the Yamabe flow

∂g(t)
∂t

= −2Rg
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Joint work with G. Catino, L. Cremaschi, Z. Djadli,
L. Mazzieri

General Results:
▶ short time existence and uniqueness for any metric on M

compact, if ρ < 1/2(n − 1)
▶ blow–up of the curvature at a singularity
▶ preservation of positive scalar curvature
▶ preservation of positive Riemann operator
▶ easier classification of solitons (see later) when ρ ̸= 0

(easier than for Ricci flow), in particular when n = 3

When n = 3 also:
▶ preservation of positive Ricci tensor
▶ preservation of positive sectional curvature
▶ Hamilton–Ivey estimate
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Open problems

▶ Schouten case ρ = 1/2(n − 1) very interesting but critical
for the short time existence

▶ missing the analogue of a monotonicity quantity, like
Perelman’s one for Ricci flow

▶ missing an injectivity radius estimate at the scale of the
curvature

▶ no possibility to get a blow–up limit at a singularity
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Hamilton’s Theorem for the RB flow

Theorem (Richard Hamilton, 1982)
If a compact 3–dimensional Riemannian manifold has positive
Ricci tensor, the (normalized) Ricci flow deforms it in a sphere
(asymptotically).

Conjecture (Laura Cremaschi, CM)
If a compact 3–dimensional Riemannian manifold has positive
Ricci tensor, the (normalized) RB flow deforms it in a sphere
(asymptotically).
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Key estimates – Uniform in time

Roundness estimate: there exist constants C and D such that∣∣∣∣Ric − 1
3

Rg
∣∣∣∣ ≤ CR1−δ + D

for some δ > 0.

Gradient estimate: for every ε > 0 there exists a constant C(ε)
such that

|∇R|2

R
≤ εR2 + C(ε) .
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Ricci solitons

In several cases the asymptotic profile of a singularity of the
Ricci flow is given by a so called Ricci soliton. They are
Riemannian manifolds (M,g) such that there exists a smooth
function f : M → R and a constant λ ∈ R satisfying

Ric +∇2f = λg

▶ When λ > 0 the soliton is called shrinking

▶ When λ = 0 the soliton is called steady

▶ When λ > 0 the soliton is called expanding

They describe selfsimilar solutions of the Ricci flow and their
study and classification is necessary to “continue” the flow after
a singularity, performing a surgery, in order to get geometric
conclusions.
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Joint work with G. Catino and L. Mazzieri (et alt.)

We obtained several classifications results for Ricci solitons,
mainly shrinking and steady, in low dimensions (n = 2,3) or in
general dimension with positive Ricci tensor, under various
hypotheses on some (derived) curvature tensor, for instance,
▶ null Weyl tensor, that is, locally conformally flatness of the

manifold
▶ null Cotton tensor (with M. Rimoldi and S. Mongodi)
▶ null Bach tensor (with H.-D. Cao and Q. Chen)

These results are actually symmetry result, showing that
actually the solitons share rotational symmetry. This then leads
to their full classification.
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Moreover, we investigate more deeply the LCF condition also
for “ancient” solutions of the Ricci flow, that are important in the
cases where it is not possible to conclude that the asymptotic
profile of a singularity is a Ricci soliton. Our result is that
actually under such hypothesis the two classes coincide, then,
for instance in low dimension they can be classified.

We underline that actually one of the major open problems for
Ricci flow is to classify the ancient solutions in dimension three.
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Einstein–type manifolds

A natural generalization of the concept of Ricci solitons (already
appeared in other fields, some related to physics) is the family
of the so called Einstein–type manifold (a Ricci soliton is
already a generalization of an Einstein manifold). They are
Riemannian manifolds (M,g) such that there exists smooth
functions f , µ : M → R and a constant α ∈ R satisfying

Ric +∇2f + α∇f ⊗∇f = µg

As a special case, choosing α = 0 and µ = ρR + λ, for
constants ρ, λ ∈ R, one gets the solitons for the
Ricci–Bourguignon flow

Ric − ρRg +∇2f = λg

describing the selfsimilar solutions of such flow.



Evolutions of Geometric Structures Ricci Solitons and other Einstein–Type Manifolds

Einstein–type manifolds

A natural generalization of the concept of Ricci solitons (already
appeared in other fields, some related to physics) is the family
of the so called Einstein–type manifold (a Ricci soliton is
already a generalization of an Einstein manifold). They are
Riemannian manifolds (M,g) such that there exists smooth
functions f , µ : M → R and a constant α ∈ R satisfying

Ric +∇2f + α∇f ⊗∇f = µg

As a special case, choosing α = 0 and µ = ρR + λ, for
constants ρ, λ ∈ R, one gets the solitons for the
Ricci–Bourguignon flow

Ric − ρRg +∇2f = λg

describing the selfsimilar solutions of such flow.



Evolutions of Geometric Structures Ricci Solitons and other Einstein–Type Manifolds

We generalized several results for Ricci solitons to this more
general case (with M. Rimoldi et alt.) and we realize that for the
RB–solitons when ρ ̸= 0 the analysis and classification is easier
than for the Ricci flow (ρ = 0). In particular for the Schouten
flow, which makes its study of special interest.

This was actually the way we started our research on the RB
flow... then we discovered the paper by Jean–Pierre
Bourguignon.

Moreover, these techniques, leading to symmetry (rotational)
results for manifolds, were recently used by V. Agostiniani e L.
Mazzieri to get symmetry results for overdetermined problems
for semilinear elliptic PDEs in exterior domains of Rn,
transforming the PDE problems to geometric ones, by
conformal deformations of the canonical metric of Rn.
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Motion of networks of curves by curvature
Joint work with A. Magni, M. Novaga and V. Tortorelli

After the works of Huisken et alt. about the mean curvature flow
of hypersurfaces, weak definitions of mean curvature flow of
even any closed set in the plane appeared. The techniques to
study such weak evolutions are no more the ones of differential
geometry but more variational and the results obviously
weaker. We were interested to continue to use the ideas of the
“parametric” approach even if the evolving set was singular,
then we chose to study the possibly “least singular” set: a
network of curves in the plane, connected by triple junctions
forming 120 degrees among the curves.



Evolutions of Geometric Structures Flows of Singular Structures



Evolutions of Geometric Structures Flows of Singular Structures

We concentrated on the local problem, that is, the study of the
evolution by curvature of the simplest network of three curves
with fixed endpoints and a single triple junction, called a triod.

Ω
P1

P2P3

O
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Theorem (CM, M. Novaga, V. Tortorelli)
If none of the lengths of the three curves “collapses” to zero,
Type I–singularities cannot develop during the flow.

Theorem (A. Magni, CM, M. Novaga)
If none of the lengths of the three curves “collapses” to zero,
the flow is smooth for all times and converges (asymptotically)
to the Steiner configuration connecting the three endpoints.

As a by–product, with A. Magni, we obtained an alternative
(more variational) proof of Grayson’s theorem that a simple
closed curve in the plane evolves without developing
singularities, becomes convex and shrinks to a “round” point in
finite time.

Recently T. Ilmanen, A. Neves and F. Schulze were able to deal
with a full network and also consider the continuation of the
flow after a singularity (collapse of one or more curves).
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Open problem

Generalizing the techniques and in particular the estimates to
the motion of 2–dimensional interfaces in R3.

▶ A short time existence/uniqueness for special initial
interfaces is already present in literature.

▶ Basic computations and estimates with A. Magni and M.
Novaga – Work in progress.
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A weak flow tangent to Ricci flow
Joint work with N. Gigli

Let (M,g) be a compact Riemannian manifold, P(M) the
space of Borel probability measures on M and let
Kt : P(M)→P(M) be the heat semigroup. Given a couple of
points p,q ∈ M and a smooth curve s 7→ γ(s) connecting them,
for every t > 0 we have a curve s 7→ γt(s) in P(M) defined by

γt(s) = Kt(δγ(s)) .

Such curves turns out to be absolutely continuous with respect
to the Wasserstein distance W2 on P(M) so their lengths are
well defined. Taking the infimum of such lengths on all smooth
curves connecting the points p and q in M, we can define a
new distance dt on the manifold M.
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A weak flow tangent to Ricci flow
Joint work with N. Gigli

▶ The distance dt comes from a smooth Riemannian metric
tensor gt , for every t > 0.

▶ The dependence on t ∈ R is smooth.
▶ As t → 0 the metrics gt converge to the original metric

tensor g of the manifold M.
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Theorem (CM, N. Gigli)
For almost every vector v ∈ TM there holds

d
dt

gt(v , v)
∣∣∣∣
t=0

= −2Ricg(v , v),

where g is the original metric on M.

One can then recover the Ricci flow of a smooth (compact)
manifold with successive deformations of the initial metrics by
this flow in short intervals of times, then sending to zero the
time steps.

Moreover, this result opens the possibility (work in progress) to
define the Ricci flow for special classes of nonsmooth spaces,
where this flow is defined, that is, metric spaces allowing a well
behaved heat kernel.
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A “mantra” of geometric flows...

Ricci flow in dimension n behaves like mean
curvature flow in dimension n − 1
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Before Perelman...

Ricci flow
Non variational
Maximum principle

techniques
−−−−−−−−−−→

examples
conjectures←−−−−−−−

Mean curvature flow
Variational
Maximum principle
Monotonicity formula
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After Perelman...

Ricci flow
Almost variational
Maximum principle
Monotonicity of
W–functional

techniques
−−−−−−−−−−→

examples
conjectures←−−−−−−−

Mean curvature flow
Variational
Maximum principle
Monotonicity formula
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Joint work with R. Müller

After the discovery by Perelman of the monotonicity of the so
calledW–functional, analogue of Huisken’s monotonicity
formula for the mean curvature flow, variational methods could
also be applied to the study of Ricci flow. We applied then to
the Ricci flow the line of analysis of singularity followed in the
MCF using Huisken’s monotonicity formula.

Theorem (CM, R. Müller)
Let gt be a family of metrics on the manifold M evolving by the
Ricci flow till the Type–I singular time T . Then, for every p ∈ M
there exists a sequence of times ti ↗ T and constants
λi → +∞ such that the pointed rescaled manifolds (M, λigti ,p)
smoothly converge to a Ricci shrinking soliton.
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Joint work with R. Müller

In low dimension, this variational method allows to the deal also
with the Type–II singularities of mean curvature flow.
Analogously (and substained by the estimates), it should also
work for the Ricci flow in dimensions two and three (and
– hopefully – in the critical case of dimension four).

The major obstacle is the lack of an “environment” where the
manifolds “live”, playing the role of the ambient Euclidean
space for mean curvature flow.
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Coupling the two flows
Joint work with A. Magni and E. Tsatis

Following some suggestions from theoretical physics, we
investigated the situation of an hypersurface moving by mean
curvature flow inside a Riemannian manifold evolving by Ricci
flow (or the backward Ricci flow or more general flows). Our
main interest was to find monotonicity quantities during this flow
and selfsimilar solutions (solitons) for such structure.
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Coupling the two flows
Joint work with A. Magni and E. Tsatis

Unfortunately, a general natural monotonicity quantity was not
available, with the exception of the low dimensional motion of a
curve in a surface.

Theorem
If (M,g(t)) is a family of compact surfaces moving by backward
Ricci flow and γ is a curve moving by its curvature inside
(M,g(t)), we have

d
dt

(√
T − t

∫
γ

R ds
)
≤ −
√

T − t
∫
γ

∣∣∣k−∇⊥ logR
∣∣∣2 R ds

and the inequality becomes an equality if and only if M is an
expanding Ricci soliton with R > 0 and k = ∇⊥ logR.
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Coupling the two flows
Joint work with A. Magni and E. Tsatis

The only other “good” case is when the ambient is a Ricci
soliton.

Theorem
If (Mn+1,g(t)) is a shrinking or steady Ricci soliton in the time
interval (−∞,T ) and f : Mn+1 → R is its “potential function”,
then, the Huisken’s integral∫

N

e−f

(T − t)n/2 dµt

of a compact hypersurface N moving by mean curvature inside
(M,g(t)), is monotone nonincreasing for every t ∈ (−∞,T ).



Evolutions of Geometric Structures Connecting the Two Flows

Thanks for your attention
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