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Conclusions and Research Directions

From the material of the previous lectures, the analysis of singularity formation and the classifi-
cation of their asymptotic shape is almost complete for some classes of hypersurfaces. For others
it seems difficult and quite far. We collect here some known facts and we discuss some research
directions and related problems.

5.1 Curves in the Plane

5.1.1 Embedded Curves

A closed, smooth and embedded curve in the plane evolves, remaining embedded, without de-
veloping any singularity till it becomes convex. Then it shrinks smoothly to a point in finite time,
becoming asymptotically (exponentially fast) round.

Gage, Hamilton, Grayson [48, 49, 50, 53].

5.1.2 General Curves

A closed, smooth curve immersed in the plane at a type I singularity has a blow up limit which is
a finite superposition of lines, S1 and Abresch–Langer curves, possibly with multiplicities larger
than one.
In the case that the blow up limit is compact, the curve shrinks to a point at the singular time.
If the singularity is of type II, the only possible blow up limit arising from the Hamilton’s proce-
dure is the grim reaper (possibly with multiplicity larger than one).

Abresch & Langer, Angenent, Altschuler, Grayson, Hamilton, Huisken, Stone [1, 3, 5, 14, 15, 16, 53, 64,
69, 119].

5.2 Hypersurfaces

5.2.1 Entire Graphs

The graph of a locally Lipschitz, entire function u : Rn → R has a smooth, global mean curvature
flow, remaining a graph, for every positive time.

Ecker & Huisken [39, 40].

5.2.2 Convex Hypersurfaces

A compact, smooth and convex initial hypersurface becomes immediately strictly convex and
shrinks smoothly to a point in finite time, becoming asymptotically (exponentially fast) round.
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Huisken [67].

5.2.3 Embedded Mean Convex Hypersurfaces

A compact, smooth, embedded, n–dimensional initial hypersurface with H ≥ 0 evolves remain-
ing embedded and becoming immediately strictly mean convex.
If we have a type I singularity we can produce a blow up limit which is one among S

m × R
n−m

for m ∈ {1, . . . , n}.
If the singularity is of type II, the only possible blow up limits arising by the Hamilton’s (mod-
ified) procedure are the products of an m–dimensional, strictly convex, translating mean curva-
ture flow with bounded curvature, with a factor Rn−m, for m ∈ {2, . . . , n}.
Notice that the grim reaper times Rn−1 cannot be among the possible blow up limits (White [126]).

Hamilton, Huisken, Sinestrari, Stone, White [64, 69, 75, 76, 119, 126, 127].

5.2.4 Two–Convex Hypersurfaces

The class of two–convex hypersurfaces stays in the middle between the classes of mean convex
and convex ones, we recall that M ⊂ R

n+1 is (weakly) two–convex if the sum of the two small-
est eigenvalues of the second fundamental form is nonnegative at every point (in particular this
implies H ≥ 0). In dimension two this class clearly coincides with the class of the mean convex
surfaces.
This condition, for a smooth, compact, initial hypersurface, is preserved under the mean curva-
ture flow as we saw in Proposition 2.5.10 and actually after some arbitrarily small positive time,
there exists a constant α > 0 such that λ1 + λ2 ≥ αH at every point of M and for every positive
time (here λ1 ≤ λ2 · · · ≤ λn are the eigenvalues of A).
Being this condition invariant by rescaling, it must also be satisfied by every blow up limit and
this implies that these latter at a type I singularity can only be the sphere S

n or the cylinder
S
n−1 × R.

At a type II singularity only a strictly convex, translating blow up limit M̃ is possible, since the
product of a factor R

n−m with a strictly convex, m–dimensional, translating hypersurface N of

R
m+1, does not satisfy the condition λ̃1 + λ̃2 ≥ αH̃. If m < n − 1 this is obvious, if m = n − 1

it is a consequence of the fact that the infimum of the ratio of the minimum eigenvalue of the
second fundamental form of N with its mean curvature λN

min/H
N must be zero, otherwise by

Theorem 4.1.9 the hypersurface N of Rn is compact, hence cannot be translating. Thus, the blow

up limit M̃ would have λ̃1 = 0 (because of the flat factor R) and

lim inf
M̃

λ̃2/H̃ = lim inf
N

λN
min/H

N = 0 ,

which is clearly in contradiction with λ̃1 + λ̃2 ≥ αH̃.
The interest in the special class of two–convex hypersurfaces is related to the possibility, fully

exploited by Huisken and Sinestrari [77], to perform a surgery procedure in order to continue the
flow after the singular time, analogous to the one introduced by Hamilton [66] for the Ricci flow.

Huisken & Sinestrari [77].

5.2.5 General Hypersurfaces

About the evolution of a generic compact, smooth, n–dimensional, initial hypersurface we can
only say that if it is initially embedded, it stays embedded, when it develops a type I singularity
we can produce a (possibly flat) homothetically shrinking hypersurface as a blow up limit, non-
flat in the embedded case. If the singularity is of type II then Hamilton’s procedure gives a blow
up limit which is an eternal flow with bounded curvature, such that |A| achieves its absolute
maximum at some point in space and time.
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For some special classes of hypersurfaces it is possible to reduce the family of possible blow
up limits at a singularity. For instance, starshaped hypersurfaces [112] or rotationally symmetric
ones [4].

Angenent, Ecker, Huisken, Ilmanen, White [17, 37, 40, 69, 80, 81, 124, 126, 127].

5.3 Mean Curvature Flow with Surgeries

Let ϕ0 : M → R
n+1 be a smooth, compact, two–convex hypersurface, with n ≥ 3. In this

section we sketchily describe the surgery procedure by Huisken and Sinestrari at a singular time
of its mean curvature flow and some of its geometric consequences. We suggest to consult the
survey [111] for more details. All the results of this section come from the paper [77].
We remark that the analogous results in the case of surfaces in the Euclidean space (n = 2) is an
open problem, see anyway Colding and Kleiner [32].

We already said that the evolving hypersurface remains two–convex and embedded if ϕ0 was
embedded. Now we discuss a couple of results about the properties of the flow of two–convex
hypersurfaces which are essential for the surgery procedure.

Theorem 5.3.1. Let ϕt : M → R
n+1 for t ∈ [0, T ), be a family of compact, two–convex hypersurfaces

evolving by mean curvature. Then, for any η > 0 there exists a constant Cη such that

|λ1| ≤ ηH =⇒ |λi − λj | ≤ c(n)ηH+ Cη, ∀i, j > 1

everywhere on M and for every t ∈ [0, T ), where the constant c(n) > 0 depends only on the dimension
n ≥ 3. Here λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the second fundamental form.

The above inequality is called a cylindrical estimate because it shows that, at a point where
H is large and λ1/H is smaller, the second fundamental form is close to the one of a cylinder,
since all the eigenvalues are close each other with the exception of λ1 which is small. Such a
property is important because in the surgery procedure one needs to “operate” on regions of the
hypersurface which are almost cylinders.

Next, we have the following key inequality for the gradient of the second fundamental form.
With respect to the gradient estimates for mean curvature flow already available in the literature,
e.g. [28, 40], it should be noticed that this estimate does not depend on the maximum of the
curvature in a neighborhood of the point under consideration.

Theorem 5.3.2. Let ϕt : M → R
n+1 for t ∈ [0, T ) be a compact, n–dimensional, two–convex hyper-

surface moving by mean curvature flow, of dimension n ≥ 3. Then, there exist constants C = C(n) and
D = D(n, ϕ0) such that the flow satisfies the uniform estimate

|∇A|2 ≤ C|A|4 +D ,

for every t ∈ [0, T ).

Once the estimate for |∇A| is obtained, it is easy to obtain similar estimates for all the higher
order derivatives, as well as the time derivatives.

We describe now the construction of the mean curvature flow with surgeries, defined in [77],
for two–convex hypersurfaces of dimension n ≥ 3. The aim of performing surgeries is to define
a continuation of the flow past the first singular time and all the subsequent ones until the hy-
persurface vanishes. Another possibility to do this would be to consider weak solutions of the
mean curvature flow by the level sets approach, however, weak solutions have generally low
regularity past the singular time and it is difficult to analyze the topological changes passing
through a singularity. The flow with surgeries is based on a different strategy: if at a singular
time T the whole hypersurface vanishes, then we do nothing and consider the flow terminated
at time T . Otherwise, we consider the flow at some time t0 slightly smaller than T and we cut
from the hypersurface ϕt0 : M → R

n+1 the regions with large curvature replacing them with
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less curved ones. Such an operation is called a surgery. Possibly, in doing that we could discon-
nect the hypersurface into several components, in this case we restart the flow independently for
each component (or sometimes we simply forget some of them when their topology is trivial)
until a new singular time is approached. This procedure is repeated till the vanishing of all these
independent components.

The rigorous definition of such a procedure involves a precise knowledge of the geometric
properties of the regions that are removed and of the ones that are added as replacement. To this
purpose, one introduces the notion of neck. The precise definition is given in [77]; roughly speak-
ing, a neck is a portion of a hypersurface which is close, up to a homothety and a rigid motion,
to a standard cylinder [a, b]× S

n−1. The surgeries which we consider consist of removing a neck
and of replacing it with two regions diffeomorphic to disks which fill smoothly the two holes left
at the two ends of the neck. We have then two situations: if the remaining hypersurface is still
connected this topological operation was the inverse of “adding an handle” to the hypersurface
(a connected sum with S

n−1 × S
1), if instead the removal of the neck disconnected the hypersur-

face in two pieces, what we actually performed was the inverse of the connected sum of the two
components.
If after a finite number of surgeries we know the topology of all the remaining components, keep-
ing track of all the operations we performed, we can reconstruct backward the topology of the
initial hypersurface.

This program can be actually carried out and we have the following result.

Theorem 5.3.3. Let ϕ0 : M → R
n+1 be a compact, immersed, n–dimensional, two–convex, initial

hypersurface, with n ≥ 3. Then there is a mean curvature flow with surgeries such that, after a finite
number of surgeries, all the remaining connected components are diffeomorphic either to Sn or to Sn−1×S

1.

As we said, this theorem implies that the initial manifold can be recovered (up to diffeomor-
phisms) adding a finite number of handles to the connected sum of a finite family of components
all diffeomorphic to S

n or to S
n−1 × S

1 (all these topological operations are commutative and
associative). Recalling that a connected sum with S

n leaves the topology unchanged, we obtain
the following classification of two–convex hypersurfaces.

Corollary 5.3.4. Any smooth, compact, n–dimensional, two–convex, immersed hypersurface in R
n+1

with n ≥ 3 is diffeomorphic either to S
n or to a finite connected sum of Sn−1 × S

1.

Topological results on k–convex hypersurfaces were already known in the literature (see
e.g. [128]). However, these results were based on Morse theory and only ensured homotopic
equivalence.

Since the only simply connected hypersurface in the family above is the sphere, another con-
sequence (with some extra arguments) of this surgery procedure based on mean curvature flow
is the following Schoenflies type theorem for simply connected, two–convex hypersurfaces.

Corollary 5.3.5. Any smooth, compact, simply connected, n–dimensional, two–convex, embedded hyper-
surface in R

n+1 with n ≥ 3 is diffeomorphic to S
n and bounds a region whose closure is diffeomorphic to

the (n+ 1)–dimensional, standard closed ball.

The proof of Theorem 5.3.3 is quite long and technical, we only describe the main points and
ideas.

As we said in the previous section, the only possible blow up limits of the flow of a two–
convex hypersurface are the sphere S

n, the cylinder S
n−1 × R and the n–dimensional, strictly

convex, translating hypersurfaces.
When the limit is a sphere, this means that at some time the hypersurface became convex, thus,
no surgery is necessary in this case.
If the limit is a cylinder, then we already have the right geometric structure to perform a surgery
In the case of a translating hypersurface, corresponding to a type II singularity, we have a paraboloid–
like hypersurface, but the cylindrical estimates above tell us that a strip of this paraboloid far
from the vertex, where the first eigenvalue of the second fundamental form is smaller compared
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to the others, is actually very close to a strip of a cylinder. Hence, in this case we can choose
to perform the surgery not at the point where the curvature takes its maximum, but in a region
nearby where the curvature is still quite large. After the surgery, the region containing the vertex
of the paraboloid will be thrown away, since it is diffeomorphic to a disc (alternatively, one can
“close” such a region in order to have a convex hypersurface that will shrink to a point).

An important point in the surgery procedure is being sure that the curvature actually de-
creases. To achieve this, one has to choose the necks to be removed in such a way that the “ra-
dius” in the central part is much smaller than at the ends. In this way, it is possible to “close”
smoothly the holes that are formed in the hypersurface, with two convex caps with small curva-
ture.
The above estimates in Theorems 5.3.1 and 5.3.3 (hence the two–convexity, which also restricts
the family of the possible blow up limits) play a fundamental role to prove the existence of necks
suitable for the surgery.

To conclude, there are other two essential technical points to be showed in order to make
this procedure effective. First, the estimates, with the same constants, must “survive” every
surgery. Second, at every step the volume of the hypersurface have to decrease of a fixed positive
amount, this clearly implies that the flow necessarily terminates after a finite number of steps, as
the volume is decreasing in the time intervals where the flow is smooth.

5.4 Some Problems and Research Directions

We mention some problems that are recently receiving attention by the community.

• Noncollapsing results in order to exclude multiplicities in the blow up limits and to reduce
the possible singularity profiles (discussion at the end of Section 4.4).
See White [126], Ecker [38] and the recent paper by Sheng and Wang [107] where a direct
argument by Andrews [10] is also quoted.

• Surgery in dimension two: the extension of the work by Huisken and Sinestrari to the
case of mean convex surfaces in R

3 (see Colding and Kleiner [32]) and surgery without the
assumption of two–convexity.

• Generic singularities of the flow, that is, showing that the only singularity profiles of the
flow for a generic initial hypersurface are spheres or cylinders (a long–standing conjecture
of Huisken).
See Colding and Minicozzi [29].

Finally, we list here some references to research directions related to the mean curvature flow,
present in literature. We do not pretend to be exhaustive, we simply want to suggest some start-
ing points for the interested reader.

5.4.1 Motion of Noncompact Hypersurfaces

Some very nice results about existence for short time and regularity in the large were obtained
by Ecker and Huisken [39, 40], in particular, for graphs of functions and by Chou and Zhu [25]
for unbounded curves in the plane.

5.4.2 Motion of Hypersurfaces with Boundary

One can consider the mean curvature flow of a hypersurface such that its boundary is fixed or it is
forced to have a prescribed angle with another hypersurface, see Huisken [68] or Stahl [116, 117],
for instance.
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5.4.3 Higher Codimension

See the survey of White [125] and, for instance, the global results of Wang [121], the works of
Altschuler and Grayson [3, 5] about the evolution of curves in space and the recent paper by
Andrews and Baker [11].

5.4.4 Evolutions by Different Functions of the Curvature

Instead of taking the mean curvature as the normal speed of the hypersurface, one can consider
different functions of the curvature, in particular, any expression in the symmetric functions of
the eigenvalues of the second fundamental form, see [8], for instance.

Other possibilities are adding “forcing terms” to a function of the curvature, driving the flow
of a hypersurface, or considering evolutions in an ambient different from the Euclidean space,
like a Riemannian manifold.

5.4.5 Weak Solutions

The literature on weak formulations of mean curvature flow is quite huge, we simply list some
of the main papers that established such weak approaches, see [2, 7, 20, 23, 44, 80].


