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Monotonicity Formula and Type I
Singularities

In all this lecture ϕ :M× [0, T ) → R
n+1 is the mean curvature flow of an n–dimensional, compact

hypersurface in the maximal interval of smooth existence [0, T ).

As before we will use the notation ϕt = ϕ( · , t) and H̃n will be the n–dimensional Hausdorff
measure in R

n+1 counting multiplicities.

3.1 The Monotonicity Formula for Mean Curvature Flow

We show the fundamental monotonicity formula for mean curvature flow, discovered by Huisken
in [68] and then generalized by Hamilton in [59, 60].

Lemma 3.1.1. Let f : Rn+1 × I → R be a smooth function. By a little abuse of notation, we denote by∫
M
f dµt the integral

∫
M
f(ϕ(p, t), t) dµt(p).

Then the following formula holds

d

dt

∫

M

f dµt =

∫

M

(ft −H2f +H〈∇f | ν〉) dµt .

Proof. Straightforward computation.

If u : Rn+1 × [0, τ) → R is a smooth solution of the backward heat equation ut = −∆R
n+1

u, by
this lemma, we have

d

dt

∫

M

u dµt =

∫

M

(ut −H2u+H〈∇u | ν〉) dµt (3.1.1)

= −
∫

M

(∆R
n+1

u+H2u−H〈∇u | ν〉) dµt .

Lemma 3.1.2. If ψ : M → R
n+1 is a smooth isometric immersion of an n–dimensional Riemannian

manifold (M, g), for every smooth function u defined in a neighborhood of ψ(M) we have,

∆g(u(ψ)) = (∆R
n+1

u)(ψ)− (∇2
ννu)(ψ) + H〈(∇u)(ψ) | ν〉 ,

where (∇2
ννu)(ψ(p)) is the second derivative of u in the normal direction ν(p) ∈ R

n+1 at the point ψ(p).
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3. MONOTONICITY FORMULA AND TYPE I SINGULARITIES 45

Proof. Let p ∈M and choose normal coordinates at p. Then,

∆g(u(ψ)) =∇2
ii(u(ψ))

=∇i

(
∂u

∂yα
(ψ)

∂ψα

∂xi

)

=
∂2u

∂yα∂yβ
(ψ)

∂ψα

∂xi

∂ψβ

∂xi
+

∂u

∂yα
(ψ)

∂2ψα

∂x2i

=
∂2u

∂yα∂yβ
(ψ)

∂ψα

∂xi

∂ψβ

∂xi
+

∂u

∂yα
(ψ)hiiν

α

=(∆R
n+1

u)(ψ)− (∇2
ννu)(ψ) + H〈(∇u)(ψ) | ν〉 ,

where we used the Gauss–Weingarten relations (1.1.1).

It follows that, substituting ∆R
n+1

u in formula (3.1.1) and using the previous lemma, if the
function u is positive we get

d

dt

∫

M

u dµt = −
∫

M

(∆g(t)(u(ϕt)) +∇2
ννu+H2u− 2H〈∇u | ν〉) dµt

= −
∫

M

(∇2
ννu+H2u− 2H〈∇u | ν〉) dµt

= −
∫

M

∣∣∣∣H− 〈∇u | ν〉
u

∣∣∣∣
2

u dµt +

∫

M

( |∇⊥u|2
u

−∇2
ννu

)
dµt ,

where ∇⊥u denotes the projection on the normal space to M of the gradient of u.
Then, assuming that u : Rn+1 × [0, τ) → R is a positive smooth solution of the backward heat

equation ut = −∆R
n+1

u for some τ > 0, the following formula easily follows,

d

dt

[√
4π(τ − t)

∫

M

u dµt

]
= −

√
4π(τ − t)

∫

M

|H− 〈∇ log u | ν〉|2u dµt (3.1.2)

−
√
4π(τ − t)

∫

M

(
∇2

ννu− |∇⊥u|2
u

+
u

2(τ − t)

)
dµt

in the time interval [0,min{τ, T}).
As we can see, the right hand side consists of a nonpositive quantity and a term which is non-

positive if
∇2

ννu
u − |∇⊥u|2

u2 + 1
2(τ−t) = ∇2

νν log u+ 1
2(τ−t) is nonnegative.

Setting v(x, s) = u(x, τ−s), the function v : Rn+1×(0, τ ] → R is a positive solution of the standard
forward heat equation in all Rn+1 and setting t = τ−swe have ∇2

νν log u+
1

2(τ−t) = ∇2
νν log v+

1
2s .

This last expression is exactly the Li–Yau–Hamilton 2–form ∇2 log v + g/(2s) for positive solu-
tions of the heat equation on a compact manifold (M, g), evaluated on ν ⊗ ν (see [59]).
In the paper [59] (see also [95]) Hamilton generalized the Li–Yau differential Harnack inequal-
ity in [88] (concerning the nonnegativity of ∆ log v + dimM

2s ) showing that, under the assump-
tions that the compact manifold (M, g) has parallel Ricci tensor (∇Ric = 0) and nonnegative
sectional curvatures, the 2–form ∇2 log v + g/(2s) is nonnegative definite (Hamilton’s matrix Li–
Yau–Harnack inequality). Even if it is not compact, this result also holds in R

n+1 with the canon-
ical flat metric (which clearly satisfies the above hypotheses on the curvature), assuming the
boundedness in space of the function v (equivalently of u), at every fixed time, see Appendix D

for details. Hence, ∇2
νν log u + 1

2(τ−t) =
(
∇2 log v + gR

n+1

can /(2s)
)
(ν ⊗ ν) ≥ 0. It follows that, if

a smooth solution u of the backward heat equation is bounded in space at every fixed time, the

monotonicity formula implies that
√
4π(τ − t)

∫
M
u dµt is nonincreasing in time.

We resume this discussion in the following theorem by Hamilton [59, 60].
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Theorem 3.1.3 (Huisken’s Monotonicity Formula – Hamilton’s Extension in R
n+1). Assume that

for some τ > 0 we have a positive smooth solution of the backward heat equation ut = −∆R
n+1

u in
R

n+1 × [0, τ), bounded in space for every fixed t ∈ [0, τ), then

d

dt

[√
4π(τ − t)

∫

M

u dµt

]
≤ −

√
4π(τ − t)

∫

M

|H− 〈∇ log u | ν〉|2u dµt

in the time interval [0,min{τ, T}).

Choosing in particular a backward heat kernel of Rn+1, that is,

u(x, t) = ρx0,τ (x, t) =
e−

|x−x0|2

4(τ−t)

[4π(τ − t)](n+1)/2

in formula (3.1.2), we get the standard Huisken’s monotonicity formula, as the Li–Yau–Hamilton

expression ∇2
ννu− |∇⊥u|2

u + u
2(τ−t) is identically zero in this case.

Theorem 3.1.4 (Huisken’s Monotonicity Formula). For every x0 ∈ R
n+1 and τ > 0 we have (see [68])

d

dt

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2
dµt = −

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2

∣∣∣∣H+
〈x− x0 | ν〉
2(τ − t)

∣∣∣∣
2

dµt

in the time interval [0,min{τ, T}).

Hence, the integral
∫
M

e
−

|x−x0|2

4(τ−t)

[4π(τ−t)]n/2 dµt is nonincreasing during the flow in [0,min{τ, T}).

Exercise 3.1.5. Show that for every x0 ∈ R
n+1, τ > 0 and a smooth function v : M × [0, T ) → R,

we have

d

dt

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2
v dµt = −

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2

∣∣∣∣H+
〈x− x0 | ν〉
2(τ − t)

∣∣∣∣
2

v dµt

+

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2
(vt −∆g(t)v) dµt ,

in the time interval [0,min{τ, T}).
In particular if v :M × [0, T ) → R is a smooth solution of vt = ∆g(t)v, it follows

d

dt

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2
v dµt = −

∫

M

e−
|x−x0|2

4(τ−t)

[4π(τ − t)]n/2

∣∣∣∣H+
〈x− x0 | ν〉
2(τ − t)

∣∣∣∣
2

v dµt

in [0,min{τ, T}).

3.2 Type I Singularities and the Rescaling Procedure

In the previous lecture we showed that the curvature must blow up at the maximal time T with
the following lower bound

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

.

Definition 3.2.1. Let T be the maximal time of existence of a mean curvature flow. If there exists
a constant C > 1 such that we have the upper bound

max
p∈M

|A(p, t)| ≤ C√
2(T − t)

,
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we say that the flow is developing at time T a type I singularity.
If such a constant does not exist, that is,

lim sup
t→T

max
p∈M

|A(p, t)|
√
T − t = +∞

we say that we have a type II singularity.

In this lecture we will deal exclusively with type I singularities and the monotonicity formula
will be the main tool for the analysis. The next lecture will be devoted to type II singularities.

From now on, we assume that there exists some constant C0 > 1 such that

1√
2(T − t)

≤ max
p∈M

|A(p, t)| ≤ C0√
2(T − t)

, (3.2.1)

for every t ∈ [0, T ).
Let p ∈M and 0 ≤ t ≤ s < T , then

|ϕ(p, s)− ϕ(p, t)| =
∣∣∣∣
∫ s

t

∂ϕ(p, ξ)

∂t
dξ

∣∣∣∣ ≤
∫ s

t

|H(p, ξ)| dξ ≤
∫ s

t

C0
√
n√

2(T − ξ)
dξ ≤ C0

√
n(T − t)

which implies that the sequence of functions ϕ( · , t) converges as t → T to some function ϕT :
M → R

n+1. Moreover, as the constant C0 is independent of p ∈M , such convergence is uniform
and the limit function ϕT is continuous. Finally, passing to the limit in the above inequality, we
get

|ϕ(p, t)− ϕT (p)| ≤ C0

√
n(T − t) . (3.2.2)

In all the lecture we will denote ϕT (p) also by p̂.

Definition 3.2.2. Let S be the set of points x ∈ R
n+1 such that there exists a sequence of pairs

(pi, ti) ∈M × [0, T ) with ti ր T and ϕ(pi, ti) → x.
We call S the set of reachable points.

We have seen in Proposition 2.2.6 that S is compact and that x ∈ S if and only if, for every

t ∈ [0, T ) the closed ball of radius
√
2n(T − t) and center x intersects ϕ(M, t). We show now that

S = {p̂ | p ∈M}.
Clearly {p̂ | p ∈M} ⊂ S , suppose that x ∈ S and ϕ(pi, ti) → x, then, by inequality (3.2.2) we have

|ϕ(pi, ti)− p̂i| ≤ C0

√
n(T − ti), hence, p̂i → x as i→ ∞. As the set {p̂ | p ∈M} is closed it follows

that it must contain the point x.
We define now a tool which will be fundamental in the sequel.

Definition 3.2.3. For every p ∈M , we define the heat density function

θ(p, t) =

∫

M

e−
|x−p̂|2

4(T−t)

[4π(T − t)]n/2
dµt

and the limit heat density function

Θ(p) = lim
t→T

θ(p, t) .

Since M is compact, we can also define the following maximal heat density function

σ(t) = max
x0∈Rn+1

∫

M

e−
|x−x0|2

4(T−t)

[4π(T − t)]n/2
dµt (3.2.3)

and its limit Σ = limt→T σ(t).
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Clearly, θ(p, t) ≤ σ(t) for every p ∈M and t ∈ [0, T ) and Θ(p) ≤ Σ for every p ∈M .
The function Θ is well defined as the limit exists finite since θ(p, t) is monotone nonincreasing in
t and positive. Moreover, the functions θ( · , t) are all continuous and monotonically converging
to Θ, hence this latter is upper semicontinuous and nonnegative.

The function σ : [0, T ) → R is also positive and monotone nonincreasing, being the maximum
of a family of nonincreasing smooth functions, hence the limit Σ is well defined and finite. More-
over, such family is uniformly locally Lipschitz (look at the right hand side of the monotonicity
formula), hence also σ is locally Lipschitz, then by Hamilton’s trick 2.1.3, at every differentiability
time t ∈ [0, T ) of σ we have the following maximal monotonicity formula

σ′(t) = −
∫

M

e−
|x−xt|

2

4(T−t)

[4π(T − t)]n/2

∣∣∣∣H+
〈x− xt | ν〉
2(T − t)

∣∣∣∣
2

dµt (3.2.4)

where xt ∈ R
n+1 is any point where the maximum defining σ(t) is attained, that is,

σ(t) =

∫

M

e−
|x−xt|

2

4(T−t)

[4π(T − t)]n/2
dµt .

Remark 3.2.4. Notice that we did not define σ(t) as the maximum of θ( · , t)

max
p∈M

∫

M

e−
|x−p̂|2

4(T−t)

[4π(T − t)]n/2
dµt

which is taken among p ∈M . Clearly, this latter can be smaller than σ(t).


