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Proposition 2.4.8. If the second fundamental form is bounded in the interval [0, T ) with T < +∞, then
all its covariant derivatives are also bounded.

Proof. By Proposition 2.3.5 we have

∂

∂t
|∇kA|2 =∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

≤∆|∇kA|2 + P (|A|, . . . , |∇k−1A|)|∇kA|2 +Q(|A|, . . . , |∇k−1A|) ,

where P and Q are smooth functions independent of time (actually they are polynomials in their
arguments). Notice that in the arguments of P,Q there is not ∇kA, indeed, in the terms ∇pA ∗
∇qA ∗ ∇rA ∗ ∇kA there can be only one or two occurrences of ∇kA, since p + q + r = k and
p, q, r ∈ N. If there are two, suppose that r = k, then necessarily p = q = 0 and we estimate
|A ∗ A ∗ ∇kA ∗ ∇kA| ≤ |A|2|∇kA|2, if there is only one this means that p, q, r < k and we again
estimate |∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA| ≤ |∇pA ∗ ∇qA ∗ ∇rA|2/2 + |∇kA|2/2.

Reasoning by induction on k, being the case k = 0 in the hypotheses, we assume that all the
covariant derivatives of A up to the order k− 1 are bounded, hence also P (|A|, . . . , |∇k−1A|) and
Q(|A|, . . . , |∇k−1A|) are bounded, thus

∂

∂t
|∇kA|2 ≤ ∆|∇kA|2 + C|∇kA|2 +D .

By the maximum principle, this implies

d

dt
|∇kA|2max ≤ C|∇kA|2max +D ,

and since the interval [0, T ) is bounded, the quantity |∇kA|2max is also bounded, as one can obtain
an easy exponential estimate for the function u(t) = |∇kA|2max, integrating the ordinary differen-
tial inequality u′ ≤ Cu+D, holding for almost every time t ∈ [0, T ).

Proposition 2.4.9. If the second fundamental form is bounded in the interval [0, T ) with T < +∞, then
T cannot be a singular time for the mean curvature flow of a compact hypersurface ϕ : M×[0, T ) → R

n+1.

Proof. By the previous proposition we know that all the covariant derivatives of A are bounded
by constants depending on T and the geometry of the initial hypersurface. As H is bounded, we
have

|ϕ(p, t)− ϕ(p, s)| ≤

∫ t

s

|H(p, ξ)| dξ ≤ C(t− s)

for every 0 ≤ s ≤ t < T , then the maps ϕt = ϕ( · , t) uniformly converge to a continuous limit
map ϕT : M → R

n+1 as t → T .
We fix now a vector v = {vi} ∈ TpM ,

d
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which implies that the metrics g(t) are all equivalent and the norms | · |g(t) uniformly converge,
as t → T , to an equivalent norm | · |T which is continuous. As the parallelogram identity passes
to the limit, it must hold also for | · |T , hence this latter comes from a metric tensor gT which can
be obtained by polarization. Moreover, since gT is equivalent to all the other metrics, it is also
positive definite.



2. EVOLUTION OF GEOMETRIC QUANTITIES 38

Another consequence of such equivalence is that we are free to use any of these metrics in doing
our estimates.

By the evolution equation for the Christoffel symbols, we see that

∣

∣Γk
ij(t)

∣
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∣
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ij(0)
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∣

dξ ≤ C +

∫ T

0

|A ∗ ∇A| dξ ≤ C +DT ,

for some constants depending only on the initial hypersurface. Thus, the Christoffel symbols are
equibounded in time, after fixing a local chart. This implies for every tensor S,
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that is, the derivatives in coordinates differ by the relative covariant ones by equibounded terms.
In the rest of the proof, by simplicity, we will denote by ∂ the coordinate derivatives and by ∇ the

covariant ones.
As the time derivative of the Christoffel symbols is a tensor of the form A ∗ ∇A, we have

|∂t∂
s
l1...ls

Γk
ij | = |∂s

l1...ls
∂tΓ

k
ij | = |∂s

l1...ls
A ∗ ∇A| ,

hence, by an induction argument on the order s and integration as above, one can show that
∣

∣∂s
l1...ls

Γk
ij

∣

∣ ≤ C for every s ∈ N.
Then, again by induction, the following formula (where we avoid indicating the indices) relating
the iterated covariant and coordinate derivatives of a tensor S, holds

| |∇sS| − |∂sS| | ≤

s
∑

i=1
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∣

∣∂j1Γ . . . ∂jiΓ∂kS
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∣ .

This implies that if a tensor has all its covariant derivatives bounded, also all the coordinate
derivatives are bounded. In particular this holds for the tensor A, that is,

∣

∣∂kA
∣

∣ ≤ Ck. Moreover,
by induction, as ∇kg = 0 all the coordinate derivatives of the metric tensor g are equibounded.

We already know that |ϕ| is bounded and |∂ϕ| = 1, then by the Gauss–Weingarten rela-
tions (1.1.1)

∂2ϕ = Γ∂ϕ+Aν , ∂ν = A ∗ ∂ϕ ,

we get
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where we estimated with a constant all the occurrences of ∂kA and ∂kg. Hence, we obtain by
induction that |∂kϕ| < Ck for constants Ck independent of time t ∈ [0, T ). By the Ascoli–Arzelà
theorem we can conclude that ϕT : M → R

n+1 is a smooth immersion and the convergence
ϕ( · , t) → ϕT is in C∞.

Moreover, with the same argument, repeatedly differentiating the evolution equation ∂tϕ =
Hν one gets also uniform boundedness of the time derivatives of the map ϕ, that is |∂s

t ∂
k
xϕ| ≤

Cs,k. Hence the map ϕ : M × [0, T ) → R
n+1 can be extended smoothly to the boundary of the

domain of ϕ with the map ϕT .
By means of the short time existence Theorem 1.5.1 we can now “restart” the flow with the

immersion ϕT , obtaining a smooth extension of the map ϕ which is in contradiction with the fact
that T was the maximal time of smooth existence.

Open Problem 2.4.10. Recently the condition of bounded second fundamental form was weak-
ened by Le and Sesum [87] to a lower bound on A and an integral bound on H.
An interesting open problem is whether actually a uniform bound only on the mean curvature H
is sufficient to exclude singularities during the flow (see [86]).

Thus, we conclude this section stating the following slightly improved version of Theorem 1.5.1.

Theorem 2.4.11. For any initial, compact, smooth hypersurface immersed in R
n+1 there exists a unique

mean curvature flow which is smooth in a maximal time interval [0, Tmax).
Moreover, Tmax is finite and

max
p∈M

|A(p, t)| ≥
1

√

2(Tmax − t)

for every t ∈ [0, Tmax).

Notice that it follows that the maximal time of smooth existence of the flow can be estimated
from below as Tmax ≥ 1

2|A( · ,0)|2max
.

2.5 Convexity Invariance

Corollary 2.4.3 is a consequence of a more general invariance property of the elementary sym-
metric polynomials of the curvatures, as we are going to show.
We recall that the elementary symmetric polynomial of degree k of λ1, . . . , λn is defined as

Sk =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik

for k = 1, . . . , n. In particular, if λi are the eigenvalues of the second fundamental form A we
have S1 = H, S2 is the scalar curvature and |A|2 = S21 − 2S2.
It is not difficult to show that

λ1 ≥ 0, . . . , λn ≥ 0 ⇐⇒ S1 ≥ 0, . . . , Sn ≥ 0 , (2.5.1)

λ1 > 0, . . . , λn > 0 ⇐⇒ S1 > 0, . . . , Sn > 0 .

These polynomials enjoy various concavity properties, see [74, 93].

Proposition 2.5.1. Let Γk ⊂ R
n denote the connected component of {Sk > 0} containing the positive

cone. Then Sl > 0 in Γk for all l = 1, . . . , k and the quotient Sk+1/Sk is concave on Γk.

The above properties remain unchanged if we regard the polynomials Sk as functions of the
Weingarten operator hi

j instead of the principal curvatures, as we have the following algebraic
result, see [9, Lemma 2.22] or [74, Lemma 2.11].

Proposition 2.5.2. Let f(λ1, . . . , λn) be a symmetric convex (concave) function of its arguments and let
F (A) = f(eigenvalues of A) for any n × n symmetric matrix A whose eigenvalues belong to the domain
of f . Then F is convex (concave).
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We are now ready to derive the evolution equations of some relevant quantities and to apply
the maximum principle to obtain some invariance properties.

Proposition 2.5.3. Let F (hi
j) be a homogeneous function of degree one. Let ϕ be a mean curvature flow

of a compact, n–dimensional hypersurface with H > 0 and such that hi
j belongs everywhere to the domain

of F . Then,
∂

∂t

F

H
−∆

F

H
=

2

H

〈

∇H
∣

∣

∣
∇
F

H

〉

−
1

H

∂2F

∂hi
j∂h

k
l

gpq∇ph
i
j∇qh

k
l .

As a consequence, if F is concave (convex), any pinching of the form F ≥ αH (F ≤ αH) is preserved
during the flow by the maximum principle, as the last term is then nonnegative (nonpositive).

Proof. A straightforward computation using formula (2.3.3) in Proposition 2.3.1 and Euler’s the-
orem on homogeneous functions yields
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H
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H
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k
l

gpq∇ph
i
j∇qh

k
l .

In particular, the previous proposition can be applied to the quantity F = Sk+1/Sk, provided
Sk 6= 0. This leads to the following result, which generalizes Corollary 2.4.3.

Proposition 2.5.4. Let the initial, compact hypersurface satisfy Sk > 0 everywhere for a given k ∈
{1, . . . , n} and let ϕ : M × [0, T ) → R

n+1 be its evolution by mean curvature. Then, for any i = 2, . . . , k
there exists αi such that Si ≥ αiH

i > 0 for every p ∈ M and t ∈ [0, T ).

Proof. We assume that the hypersurface M is connected, otherwise we argue component by com-
ponent.
For every pair of of points p and q in M , the set of principal curvatures at p and the set of principal
curvatures at q belong to the same connected component of {Sk > 0} ⊂ R

n, seeing Sk as a map
from R

n to R (connect with an arc the two points). Then, as the initial hypersurface is compact,
there exists a point p ∈ M where all the principal curvatures are positive (consider a tangent
sphere containing the hypersurface), hence, the set of principal curvatures at all the points of M
belongs to the connected component Γk of the positive cone defined in Proposition 2.5.1. Hence,
for every i = 1, . . . , k we have Si > 0 everywhere on the initial hypersurface. In particular
H = S1 > 0 and, by compactness, we have Si ≥ βiHSi−1 for suitable constants βi > 0, for any
i = 2, . . . , k.
We know from Proposition 2.4.2 that H > 0 everywhere on M for every t ∈ [0, T ). Then we can
consider the quotient S2/H

2 = S2/(HS1) which is well defined for every t and it is greater than
β2 at time t = 0. By Proposition 2.5.3 its minimum is nondecreasing, hence S2 ≥ β2H

2 for every
t ∈ [0, T ).
We now apply the same procedure to the quotient S3/(HS2) to conclude that it is greater than β3

for every t ∈ [0, T ), then in general Si ≥ βiHSi−1 for i = 2, . . . , k.
Multiplying together all these inequalities we get

Si ≥ βiHSi−1 ≥ βiβi−1H
2Si−2 ≥ · · · ≥ βiβi−1 · · ·β2H

i

and the claim follows by setting αi = βiβi−1 · · ·β2.

Corollary 2.5.5. If the initial, compact hypersurface is strictly convex, it remains strictly convex under
the mean curvature flow.

Proof. Strict convexity is equivalent to the set of conditions S1, . . . , Sn > 0 on the eigenvalues of
the second fundamental form, by relations (2.5.1) and these conditions are preserved under the
mean curvature flow, by the previous proposition.
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Remark 2.5.6. By Hamilton’s strong maximum principle for tensors in [57, Section 8] (Theo-
rem C.1.3 in Appendix C), if an initial, compact hypersurface is only convex (not necessarily
strictly convex), then it becomes immediately strictly convex. Even more precisely, in this case,
the smallest eigenvalue of the second fundamental form on all M increases in time.
Indeed, the Weingarten operator is nonnegative definite for every positive time and satisfies (see
Proposition 2.3.1)

∂

∂t
hj
i = ∆hj

i + |A|2hj
i ,

then by Theorem C.1.3 its rank (hence the rank of A) is constant in some time interval (0, δ),
moreover, the null space is invariant under parallel transport and in time. Then, supposing that
such rank m is less than the dimension n of the hypersurface, we have an (n −m)–dimensional
subspace Np ⊂ TpM at every point p ∈ M , invariant under parallel transport, where Ap(v, v) = 0
for every v ∈ Np.
If v ∈ TpM is a vector in the null space, any geodesic γ in M starting at p is also a geodesic in
R

n+1 as γ̇ remains always in the null space of A and

∇R
n+1

γ̇ γ̇ = ∇M
γ̇ γ̇ +A(γ̇, γ̇)ν = 0 .

Hence, all the (n−m)–dimensional null space (as an affine subspace of Rn+1) is contained in M ,
this is in contradiction with the compactness of M .

Remark 2.5.7. If the initial hypersurface is not convex, it is not true that the smallest eigenvalue
of A increases, think of Angenent’s homothetically shrinking torus we mentioned in Section 1.4
(see [17]).

Notice that the results about the strict monotonicity of geometric quantities during the flow
are valid when the initial hypersurface is compact and can fail otherwise. For instance, an evolv-
ing cylinder does not become immediately strictly convex.

Proposition 2.5.8. If for a constant α ∈ R there holds A ≥ αHg (as forms) for the initial, compact
hypersurface, this condition is preserved during the mean curvature flow.

Proof. We consider the function f = hijv
ivj−αHgijv

ivj where vi(p, t) is a time dependent smooth
vector field such that ∂vi/∂t = Hhi

kv
k,

∂f

∂t
=

∂hij

∂t
vivj + 2hijv

i ∂v
j

∂t
− α

∂H

∂t
gijv

ivj + 2αH2hijv
ivj − 2αHgijv

i ∂v
j

∂t

=(∆hij − 2Hh2
ij + |A|2hij)v

ivj + 2Hh2
ijv

ivj − α(∆H + H|A|2)gijv
ivj

=(∆hij + |A|2hij)v
ivj − α∆Hgijv

ivj − αH|A|2gijv
ivj

=∆(hijv
ivj − αHgijv

ivj) + |A|2(hij − αHgij)v
ivj − 4(∇khij − α∇kHgij)v

i∇kvj

− 2(hij − αHgij)∇kv
i∇kvj − 2(hij − αHgij)v

i∆vj

=∆f + |A|2f − 4(∇khij − α∇kHgij)v
i∇kvj

− 2(hij − αHgij)∇kv
i∇kvj − 2(hij − αHgij)v

i∆vj .

Let µ(t) be the smallest value of hij(q, t)v
ivj − αHgij(q, t)v

ivj for t fixed, q ∈ M and v ∈ TqM a
unit tangent vector of (M, gt).
Being µ a locally Lipschitz function, it is differentiable at almost every time, moreover by the
hypotheses, we have µ(0) ≥ 0.
We suppose that there exists an open interval of time (t0, t1) where µ is negative and µ(t0) = 0.
Let t̃ ∈ (t0, t1) be a differentiability point of µ, then there exists a point p ∈ M and a unit vector
v ∈ TpM such that

µ(t̃) = hij(p, t̃)v
ivj − αH(p, t̃)gij(p, t̃)v

ivj ≤ hij(q, t̃)w
iwj − αH(q, t̃)gij(q, t)w

iwj

for every q ∈ M and w ∈ TqM of unit norm. We extend the unit vector v ∈ TpM in space to a
vector field that we still call v with the following properties,
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• gt̃(v(q), v(q)) ≤ 1 for every q ∈ M ,

• ∇gt̃
v(p) = 0,

• ∆gt̃
v(p) = 0.

This can be done as follows: we choose local normal coordinates around p ∈ M (the point p
“goes” to the origin), then, the last two conditions are fulfilled by a local vector field w if

∂wi

∂xj

(0) = 0 and ∆wi(0) +
∂Γi

jk

∂xj

(0, t̃)wk(0) = 0 ,

where this Laplacian is the standard Laplacian of Rn. Hence, the field with coordinates

wi(x) = vi(0)−
x2
1

2

∂Γi
j1

∂xj

(0, t̃)vk(0)

satisfies them as w(0) = v(0). It is now easy to check that the normalized unit vector field v =
w/|w| is locally defined in a neighborhood of the point p and satisfies all the three conditions
above. Then, we consider a smooth function with compact support contained where such unit
vector field v is defined, with modulus not larger than one and equal to one in a neighborhood
of the point p. The product of the vector field v with such function gives a global smooth vector
field on the whole manifold M with the above properties.
Now, we extend v also in time in the interval (t0, t1) by solving the ODE ∂vi/∂t = Hhi

kv
k and we

consider the associated function f as above.
Notice that since µ(t) is negative in (t0, t1), the function f( · , t̃) gets a minimum in space at p ∈ M ,
indeed, if f(q, t̃) < 0, we have v(q) 6= 0 and

f(p, t̃) = µ(t̃) ≤
hij(q, t̃)v

i(q)vj(q)− αH(q, t̃)gt̃(v(q), v(q))

gt̃(v(q), v(q))

=
f(q, t̃)

gt̃(v(q), v(q))

≤ f(q, t̃)

as gt̃(v(q), v(q)) ≤ 1 by construction. Hence, ∆f(p, t̃) ≥ 0 and at the point (p, t̃) we have

∂f

∂t
= ∆f + |A|2f ≥ Cf

where C > 0 is a constant such that |A|2 ≤ C on [0, t1).
By this inequality, given ε > 0, there exists some t2 ∈ (t0, t̃), such that if t ∈ (t2, t̃) we have

f(p, t) < f(p, t̃)− C(t̃− t)f(p, t̃) + ε(t̃− t) .

Being v(p, t) still a unit vector, as ∂g(v, v)/∂t = −2Hhijv
ivj + 2g(∂v/∂t, v) = 0 so the norm of

v(p, t) is constant in time, we get

µ(t) ≤ f(p, t) < f(p, t̃)− C(t̃− t)f(p, t̃) + ε(t̃− t) = µ(t̃)− C(t̃− t)µ(t̃) + ε(t̃− t) .

In other words µ(t̃)−µ(t)

t̃−t
≥ Cµ(t̃)− ε and being t̃ a differentiability time for µ, passing to the limit

as t ր t̃, we obtain µ′(t̃) ≥ Cµ(t̃)− ε.
Finally, as ε is arbitrarily small, we conclude µ′(t̃) ≥ Cµ(t̃).
Since this relation holds at every differentiability time t̃ in (t0, t1) where µ(t̃) < 0, hence almost
everywhere in (t0, t1), we can integrate it in such interval. Recalling that µ(t0) = 0 by continuity,
we conclude that µ(t) must be identically zero in [t0, t1) which is in contradiction with the hy-
potheses.
Notice the similarities with the proofs of Lemma 2.1.3 and Proposition 2.4.1.
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Exercise 2.5.9. Show that for an initial hypersurface with H > 0 the smallest eigenvalue of the
form hij/H is nondecreasing during the flow.

Finally, further invariance properties for the mean curvature flow can be obtained again by
means of Hamilton’s maximum principle for tensors [57, Sections 4 and 8] (whose proof is a
generalization of the argument above), see Appendix C. Let us first recall a definition, we say that
an immersed hypersurface is k–convex, for some 1 ≤ k ≤ n, if the sum of the k smallest principal
curvatures is nonnegative at every point. In particular, one–convexity coincides with convexity,
while n–convexity means nonnegativity of the mean curvature H, that is, mean convexity.
Then we mention the following result generalizing Corollary 2.5.5 (see [76]).

Proposition 2.5.10. If an initial, compact hypersurface is k–convex, then it is so for every positive time
under the mean curvature flow.

Proof. The result follows from Hamilton’s maximum principle for tensors, provided we show
that the inequality λ1 + · · ·+ λk ≥ αH describes a convex cone in the set of all matrices, and that
this cone is invariant under the system of ODE’s dhi

j/dt = |A|2hi
j for the Weingarten operator.

As
(λ1 + · · ·+ λk)(p) = min

e1,...,ek∈TpM

gp(ei,ej)=δij

{Ap(e1, e1) + · · ·+Ap(ek, ek)} ,

the quantity λ1 + · · · + λk is a concave function of the Weingarten operator, being the infimum
of a family of linear maps. Therefore the inequality λ1 + · · · + λk ≥ αH describes a convex
cone of matrices. In addition, the system dhi

j/dt = |A|2hi
j changes the Weingarten operator by

homotheties, thus leaves any cone invariant. The conclusion follows.


