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Evolution of Geometric Quantities

In studying the long term behavior of solutions of parabolic equations and systems, in particular
in the analysis of singularities, a basic step is always to obtain a priori estimates. These can
be integral or pointwise, the main tool in order to get these latter is the maximum principle, in
particular in the context of mean curvature flow.

2.1 Maximum Principle

Theorem 2.1.1. Assume that gt, for t ∈ [0, T ), is a family of Riemannian metrics on a manifold M , with
a possible boundary ∂M , such that the dependence on t is smooth.
Let u :M × [0, T ) → R be a smooth function satisfying

∂tu ≤ ∆gtu+ gt
(

∇u,X(p, u,∇u, t)
)

+ b(u)

whereX and b are respectively a continuous vector field and a locally Lipschitz function in their arguments.
Then, suppose that for every t ∈ [0, T ) there exists a value δ > 0 and a compact subset K ⊂ M \ ∂M
such that at every time t′ ∈ (t− δ, t+ δ)∩ [0, T ) the maximum of u( · , t′) is attained at least at one point
of K (this is clearly true if M is compact without boundary).
Setting umax(t) = maxp∈M u(p, t) we have that the function umax is locally Lipschitz, hence differentiable
at almost every time t ∈ [0, T ) and at every differentiability time there holds

dumax(t)

dt
≤ b(umax(t)) .

As a consequence, if h : [0, T ′) → R is a solution of the ODE

{

h′(t) = b(h(t))

h(0) = umax(0)

for T ′ ≤ T , then u ≤ h in M × [0, T ′).
Moreover, if M is connected and at some time τ ∈ (0, T ′) we have umax(τ) = h(τ) then u(p, t) = h(t)
for every p ∈M and t ∈ [0, τ ], that is, u( · , t) is constant in space for every t ∈ [0, τ ].

Corollary 2.1.2. Under the same hypotheses, when M is connected and the function b is nonpositive (in
particular if it is identically zero), if the maximum of u is nondecreasing in a time interval I , the function
u is constant in M × I .

The first part of the theorem is a consequence of the following lemma. The last claim, the
strong maximum principle, is more involved, see the book of Landis [84] for a proof and the
extensive discussion in [28, Chapter 12].
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Lemma 2.1.3 (Hamilton’s Trick [57]). Let u :M×(0, T ) → R be aC1 function such that for every time
t, there exists a value δ > 0 and a compact subset K ⊂M \ ∂M such that at every time t′ ∈ (t− δ, t+ δ)
the maximum umax(t

′) = maxp∈M u(p, t′) is attained at least at one point of K.
Then, umax is a locally Lipschitz function in (0, T ) and at every differentiability time t ∈ (0, T ) we have

dumax(t)

dt
=
∂u(p, t)

∂t

where p ∈M \ ∂M is any interior point where u( · , t) gets its maximum.

Proof. Fixing t ∈ (0, T ), we have δ > 0 and K as in the hypotheses, hence on K × (t − δ, t + δ)
the function u is Lipschitz with some Lipschitz constant C. Consider a value 0 < ε < δ, then we
have

umax(t+ ε) = u(q, t+ ε) ≤ u(q, t) + εC ≤ umax(t) + εC ,

for some q ∈ K, hence,
umax(t+ ε)− umax(t)

ε
≤ C .

Analogously,
umax(t) = u(p, t) ≤ u(p, t+ ε) + εC ≤ umax(t+ ε) + εC ,

for some p ∈ K, hence,
umax(t)− umax(t+ ε)

ε
≤ C .

With the same argument, considering −δ < ε < 0, we conclude that umax is a locally Lipschitz
function in (0, T ), hence differentiable at almost every time.
Suppose that t is one of such times, let p be a point in the nonempty set
{p ∈M \ ∂M |u(p, t) = umax(t)}.

By Lagrange’s theorem, for every 0 < ε < δ, u(p, t+ ε) = u(p, t) + ε∂u(p,ξ)
∂t

for some ξ, hence

umax(t+ ε) ≥ u(p, t+ ε) = umax(t) + ε
∂u(p, ξ)

∂t
,

which implies, as ε > 0,
umax(t+ ε)− umax(t)

ε
≥ ∂u(p, ξ)

∂t
.

Sending ε to zero, we get u′max(t) ≥ ∂u(p,t)
∂t

.
If instead we choose −δ < ε < 0 we get

umax(t+ ε)− umax(t)

ε
≤ ∂u(p, ξ)

∂t

and when ε→ 0, we have u′max(t) ≤ ∂u(p,t)
∂t

. Thus, we are done.

Exercise 2.1.4. Prove that the conclusion of the lemma holds also if the function u is merely locally
Lipschitz, provided that all the derivatives involved in the computations there exist.

Proof of Theorem 2.1.1 – First Part. By the previous lemma, the function umax is locally Lipschitz
and letting t be a differentiability time of umax, we have, choosing any p ∈ M \ ∂M such that
u(p, t) = umax(t),

u′max(t) =
∂u(p, t)

∂t
≤∆gtu+ gt

(

∇u,X(p, u,∇u, t)
)

+ b(u(p, t))

≤ b(u(p, t))

= b(umax(t)) .
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Let now h : [0, T ′) → R be as in the hypothesis. We define, for ε > 0, the approximating functions
hε : [0, T

′′) → R to be the maximal solutions of the family of ODE’s

{

h′ε(t) = b(hε(t))

hε(0) = umax(0) + ε .

It is easy to see that, as the function b is locally Lipschitz, there holds limε→0 hε = h uniformly
on [0, T ′ − δ] for any δ > 0. Suppose that at some positive time umax > hε and set t > 0 to be
the positive infimum of such times (at time zero umax(0) = hε(0) − ε). Then, umax(t) = hε(t)
and, setting Hε = hε − umax, at every differentiability point of umax in the interval [0, t) we have
Hε(0) = ε > 0 and

H ′
ε(t) ≥ b(hε(t))− b(umax(t)) ≥ −C(hε(t)− umax(t)) = −CHε(t)

where C > 0 is a local Lipschitz constant for b.
Then, (logHε)

′(t) ≥ −C and integrating, logHε|t0 ≥ −Ct, that is, Hε(t) ≥ Hε(0)e
−Ct = εe−Ct.

In particular, if t → t, we conclude Hε(t) ≥ εe−Ct > 0 which is in contradiction with Hε(t) = 0.
Hence, umax(t) ≤ hε(t) for every t ∈ [0, T ′ − δ) and sending ε to zero, umax(t) ≤ h(t) for every
t ∈ [0, T ′ − δ). As δ > 0 was arbitrary, we conclude the proof of the first part of the theorem.

Exercise 2.1.5. When the function umax is not differentiable at t, actually one can still say some-
thing using the upper derivative, that is the lim sup of the incremental ratios, we call this operator
d+. Prove that

d+umax(t)

dt
= sup

{p∈M |u(p,t)=umax(t)}

∂u(p, t)

∂t
.

Roughly speaking, the sup and the upper derivative operators can be interchanged.
The same holds for the inf and the lower derivative defined analogously.
What can be said about the left/right derivatives of umax?

Remark 2.1.6. Clearly, there hold analogous results for the minimum of the solution of the oppo-
site partial differential inequality. Moreover, the maximum principle for elliptic equations easily
follows as the special case where all the quantities around do not depend on the time variable t.

2.2 Comparison Principle

Theorem 2.2.1 (Comparison Principle for Mean Curvature Flow). Let ϕ : M1 × [0, T ) → R
n+1

and ψ :M2 × [0, T ) → R
n+1 be two hypersurfaces moving by mean curvature, with M1 compact and the

mean curvature of M2 uniformly bounded in space and locally in time. Then the distance between them is
nondecreasing in time.

Proof. The distance between the two hypersurfaces ϕt : M1 → R
n+1 and ψt : M2 → R

n+1 at
time t is given by dϕψ(t) = inf(p,q)∈M1×M2

|ϕ(p, t) − ψ(q, t)|. As the mean curvature is uniformly
bounded in space and locally in time for both hypersurfaces, this function is locally Lipschitz,
hence differentiable almost everywhere, we assume in the following that t is a differentiability
point.
This infimum is actually a minimum as M1 is compact, suppose then that it is positive and let
(pt, qt) be any pair realizing such minimum.
It is easy to see that, by minimality, the respective tangent hyperplanes dϕt(TptM1) and dψt(TqtM2)
of the two hypersurfaces, seen as submanifolds of Rn+1, have to be parallel. Then we can write
locally ϕ(p, t) and ψ(p, t) as graphs of two functions f(p, t) and h(p, t) over one of these tangent
spaces for a small interval of time (t−ε, t+ε). We can assume that 〈e1, . . . , en〉 ⊂ R

n+1 is such tan-
gent space with ϕ(pt, t) = (0, f(0, t)) and ψ(qt, t) = (0, h(0, t)) at time t, moreover f(0, t) > h(0, t).

We know, by Exercise 1.3.8 that ft = ∆f − Hessf(∇f,∇f)
1+|∇f |2 and ht = ∆h− Hessh(∇h,∇h)

1+|∇h|2 .

Again, by minimality, the function x 7→ f(x, t)−h(x, t) has a minimum at x = 0, hence, ∆f(0, t)−
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∆h(0, t) ≥ 0 and ∇f(0, t) = ∇h(0, t) = 0, but we saw that for graphs, ∆f(0, t) = Hϕ(pt, t)〈νϕ(pt, t) | en+1〉
and ∆h(0, t) = Hψ(qt, t)〈νψ(qt, t) | en+1〉, thus,

〈Hϕ(pt, t)νϕ(pt, t)−Hψ(qt, t)ν
ψ(qt, t) | en+1〉 = ∆f(0, t)−∆h(0, t) ≥ 0 .

Now we have ϕ(pt,t)−ψ(qt,t)
|ϕ(pt,t)−ψ(qt,t)| = en+1 by construction and, by Lemma 2.1.3, we can conclude that

d

dt
dϕψ(t) =

∂

∂t
|ϕ(pt, t)− ψ(qt, t)|

=
〈ϕ(pt, t)− ψ(qt, t) |Hϕ(pt, t)νϕ(pt, t)−Hψ(qt, t)ν

ψ(qt, t)〉
|ϕ(pt, t)− ψ(qt, t)|

= 〈Hϕ(pt, t)νϕ(pt, t)−Hψ(qt, t)ν
ψ(qt, t) | en+1〉

≥ 0 .

If the minimum is zero, there is nothing to show, obviously the derivative, if it exists, cannot be
negative.

Exercise 2.2.2. Show the following facts for a compact hypersurface moving by mean curvature.

• The diameter of the hypersurface decreases during the flow.

• The circumradius of the hypersurface (the radius of the smallest sphere enclosing the hy-
persurface) decreases.

Corollary 2.2.3. Let ϕ : M1 × [0, T ) → R
n+1 and ψ : M2 × [0, T ) → R

n+1 be two hypersurfaces
moving by mean curvature such that M1 is compact, M2 is embedded and ϕ(M1, 0) is strictly “inside”
ψ(M2, 0). Then ϕ(M1, t) remains strictly “inside” ψ(M2, t) for every time t ∈ [0, T ).

Proof. This is an easy consequence of the fact that the distance between the two hypersurfaces
is nondecreasing, so it cannot get to zero, as it starts positive. Hence, the hypersurface “inside”
cannot “touch” the other during the flow.

Remark 2.2.4. By means of the continuous dependence result in Theorem 1.5.1 one has a slight
improvement of the previous corollary, allowing the two hypersurfaces, one “inside” the other,
to have common points at the initial time. To prove this fact one can “push” a little inside the
initial hypersurface ϕ0 along the gradient of the distance function from ψ(M2, 0) in a local small
tubular neighborhood (M1 is compact), then conclude by the above corollary and the continuous
dependence of the flow on the initial hypersurface.

By means of the strong maximum principle we can actually show something more, that is,
evolving by mean curvature, the distance between two connected hypersurfaces (with at least
one compact) with possibly only tangent intersections and such that they “do not cross each
other”, is always increasing, otherwise they must coincide.
This can be seen by using again the idea of the proof of Theorem 1.5.1, writing the two hypersur-
faces as graphs over the initial “external” hypersurface in a small regular tubular neighborhood
of this latter and applying the strong maximum principle to the “height” functions representing
them. As a preliminary step, one has to consider an “intermediate” hypersurface close enough
to the “external” one which stays in its tubular neighborhood for some positive time. We leave
the technical details to the reader as an exercise.

In other words, if two connected hypersurfaces (one compact “inside” the other) touch each
other at time zero but they are not the same, immediately they get disjoint, at every positive time.

Even more, in the special case of curves in the plane the number of intersections (or of self–
intersections) is nonincreasing in time, see [14, 16].

Applying Corollary 2.2.3 to the case that ϕ(M2, 0) is a sphere of radius R, we have the follow-
ing estimate for the maximal time of smooth existence.
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Corollary 2.2.5. Let ϕ : M × [0, T ) → R
n+1 be the mean curvature flow of a compact hypersurface. If

ϕ(M, 0) ⊂ BR(x0) then the flow is contained in BR(x0) at every time and T ≤ R2/(2n).
Hence, the mean curvature flow of every compact immersed hypersurface develops a singularity in finite
time.
In particular, if Tmax is the maximal time of smooth existence of the flow, then Tmax ≤ diam2

Rn+1 [ϕ(M, 0)]/2n.

Proof. We have already seen that a sphere of radius R shrinks to a point with the rule R(t) =√
R2 − 2nt, hence at time t = R2/(2n) its radius gets to zero. As ϕ(M, t) ⊂ B√

R2−2nt(x0), at most

at time t = R2/(2n) the evolving hypersurface ϕt must develop a singularity, since at such time
it cannot be an immersion.
The last claim is trivial.

Another consequence of the maximum principle is the following characterization of the points
of Rn+1 “reached” by the flow at time T , that is, an estimate on the rate of convergence to a limit
hypersurface as t → T (this will be particularly interesting when T is a singular time). Roughly
speaking, if a hypersurface moving by mean curvature is “reaching” a point of the Euclidean
space at some time, then it cannot stay “too far” from such point in the past.

Proposition 2.2.6. Let ϕ : M × [0, T ) → R
n+1 be a mean curvature flow and define S to be the set

of points x ∈ R
n+1 such that there exists a sequence of pairs (pi, ti) ∈ M × [0, T ) with ti ր T and

ϕ(pi, ti) → x.
Then, S is closed (and bounded if M is compact), moreover x ∈ S if and only if for every t ∈ [0, T ) the

closed ball of radius
√

2n(T − t) and center x intersects ϕ(M, t).

Proof. One implication is obvious.
Suppose that x ∈ S and let dt(x) = minp∈M |ϕ(p, t)− x|, that is, the Euclidean distance from x to
the hypersurface at time t.
The function dt : [0, T ) → R is obviously locally Lipschitz and at a differentiability time with
dt(x) > 0, by the Hamilton’s trick 2.1.3, we have

d′t(x) =
∂

∂t
|ϕ(q, t)− x| = H(q, t)〈ν(q, t) |ϕ(q, t)− x〉

|ϕ(q, t)− x|

for any point q ∈M such that dt(x) = |ϕ(q, t)− x|.
As the closed ball Bdt(x)(x) intersects the hypersurface ϕt only on its boundary and the vec-

tor ϕ(q,t)−x
|ϕ(q,t)−x| is parallel to the normal ν(q, t) by minimality, an easy geometric argument on the

principal eigenvalues of the second fundamental form shows that

H(q, t)〈ν(q, t) |ϕ(q, t)− x〉
|ϕ(q, t)− x| ≥ −n/dt(x) .

Hence, we conclude that for almost every time t ∈ [0, T ),

d′t(x) ≥ −n/dt(x)

if dt(x) 6= 0.
Integrating this differential inequality on [t, s] we get d2t (x) − d2s(x) ≤ 2n(s − t) and by the hy-
pothesis on x we have d2ti(x) → 0, hence

d2t (x) = lim
i→∞

d2t (x)− d2ti(x) ≤ lim
i→∞

2n(ti − t) = 2n(T − t)

which is the thesis of the proposition.
The closure of S is obvious, if M is compact S is clearly also bounded by Corollary 2.2.5.

A very important fact about hypersurfaces moving by mean curvature is the following.

Proposition 2.2.7. If the initial hypersurface is compact and embedded, then it remains embedded during
the flow.
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Proof. Given the mean curvature flow ϕt, if the hypersurface ϕ0 is embedded it remains so for
a small positive time, otherwise we will have a sequence of points and times, with ϕ(pi, ti) =
ϕ(qi, ti) and ti → 0, then, extracting a subsequence (not relabeled) such that pi → p and qi → q,
either p 6= q so ϕ(p, 0) = ϕ(q, 0), which is a contradiction, or p = q. By the smooth existence of
the flow, in particular by the nonsingularity of the differential dϕt(p) there exists a ball B ⊂ M
around p such that for t ∈ [0, ε) the map ϕt|B is one–to–one, which is in contradiction with the
hypotheses.
This short time embeddedness property is also immediate by revisiting the proof of the short
time existence theorem, representing the moving hypersurfaces as graphs on the initial one.

This argument also implies that the embeddedness holds in an open time interval, then we
assume that T > 0 is the first time such that the hypersurface ϕt is no more embedded. The
set S of pairs (p, q) with p 6= q and ϕ(p, T ) = ϕ(q, T ) is a nonempty closed set disjoint from the
diagonal in M ×M , otherwise ϕT fails to be an immersion at some point in M . Then, we can find
a smooth open neighborhood Ω of the diagonal with Ω ∩ S = ∅.
We consider the following quantity,

C = inf
t∈[0,T ]

inf
(p,q)∈∂Ω

|ϕ(p, t)− ϕ(q, t)| ,

then C is positive, as Ω ∩ S = ∅ and ∂Ω is compact. We claim that the following function

L(t) = min
(p,q)∈M×M\Ω

|ϕ(p, t)− ϕ(q, t)| ,

is bounded from below by min{L(0), C} > 0 on [0, T ], this is clearly in contradiction with the fact
that S is nonempty and contained in M ×M \ Ω.
If at some time L(t) < C it follows that L(t) is achieved by some pairs (p, q) not belonging to ∂Ω,
then (p, q) are inner points of M ×M \ Ω and a geometric argument analogous to the one of the

comparison Theorem 2.2.1 shows that dL(t)
dt

≥ 0, hence L(t) is nondecreasing in time. This last
fact clearly implies the claim.

Remark 2.2.8. Theorem 2.2.1 and Proposition 2.2.7 also hold if the involved hypersurfaces are not
compact, with some additional assumptions on the behavior at infinity (for instance, uniform
bounds on the curvature), the analysis is anyway more complicated.

2.3 Evolution of Curvature

Now we derive the evolution equations for g, ν, µ, Γijk, A and H. Computing as in Section 1.2,
we have

∂

∂t
gij =

∂

∂t

〈

∂ϕ

∂xi

∣

∣

∣

∣

∂ϕ

∂xj

〉

=

〈

∂(Hν)

∂xi

∣

∣

∣

∣

∂ϕ

∂xj

〉

+

〈

∂(Hν)

∂xj

∣

∣

∣

∣

∂ϕ

∂xi

〉

=H

[〈

∂ν

∂xi

∣

∣

∣

∣

∂ϕ

∂xj

〉

+

〈

∂ν

∂xj

∣

∣

∣

∣

∂ϕ

∂xi

〉]

= − 2Hhij ,

where we used the Gauss–Weingarten relations (1.1.1) in the last step.
It follows that the canonical measure µ associated to the hypersurface satisfies

d

dt
µ = −H2µ , (2.3.1)

as

∂

∂t

√

det(gij) =

√

det(gij) g
ij ∂
∂t
gij

2
= −H2

√

det(gij) .
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Differentiating the formula gisg
sj = δji we get

∂

∂t
gij = −gis ∂

∂t
gslg

lj = 2Hgishslg
lj = 2Hhij .

The time derivative of the normal ν is determined by

〈

∂ν

∂t

∣

∣

∣

∣

∂ϕ

∂xi

〉

= −
〈

ν

∣

∣

∣

∣

∂2ϕ

∂t∂xi

〉

= −
〈

ν

∣

∣

∣

∣

∂(Hν)

∂xi

〉

= − ∂H

∂xi
,

hence,
∂ν

∂t
= − ∂H

∂xl
gls

∂ϕ

∂xs

or simply (with a little abuse of notation), identifying the tangent space at every point p ∈ M
with the tangent hyperplane in R

n+1 given by dϕt(TpM),

∂ν

∂t
= −∇H .

Finally, the derivative of the Christoffel symbols is

∂

∂t
Γijk =

1

2
gil

{

∂

∂xj

(

∂

∂t
gkl

)

+
∂

∂xk

(

∂

∂t
gjl

)

− ∂

∂xl

(

∂

∂t
gjk

)}

+
1

2

∂

∂t
gil

{

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1

2
gil

{

∇j

(

∂

∂t
gkl

)

+∇k

(

∂

∂t
gjl

)

−∇l

(

∂

∂t
gjk

)}

+
1

2
gil

{

∂

∂t
gkzΓ

z
jl +

∂

∂t
glzΓ

z
jk +

∂

∂t
gjzΓ

z
kl +

∂

∂t
glzΓ

z
jk −

∂

∂t
gjzΓ

z
kl −

∂

∂t
gkzΓ

z
jl

}

− 1

2
gis

∂

∂t
gszg

zl

{

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1

2
gil

{

∇j

(

∂

∂t
gkl

)

+∇k

(

∂

∂t
gjl

)

−∇l

(

∂

∂t
gjk

)}

+ gil
∂

∂t
glzΓ

z
jk − gis

∂

∂t
gszΓ

z
jk

=
1

2
gil

{

∇j

(

∂

∂t
gkl

)

+∇k

(

∂

∂t
gjl

)

−∇l

(

∂

∂t
gjk

)}

= − gil {∇j(Hhkl) +∇k(Hhjl)−∇l(Hhjk)}
= − hik∇jH− hij∇kH+ hjk∇iH−H(∇jh

i
k +∇kh

i
j −∇ihjk) .

Summarizing, we have

∂

∂t
gij = − 2Hhij

∂

∂t
gij =2Hhij

∂

∂t
ν = −∇H

∂

∂t
Γijk =∇H ∗A+H ∗ ∇A = ∇A ∗A .

Proposition 2.3.1. The second fundamental form satisfies the evolution equation

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij . (2.3.2)
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It follows

∂

∂t
hji = ∆hji + |A|2hji , (2.3.3)

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

and
∂

∂t
H = ∆H+H|A|2 . (2.3.4)

Proof. Keeping in mind the Gauss–Weingarten relations (1.1.1) and the previous evolution equa-
tions, we compute

∂

∂t
hij =

∂

∂t

〈

ν

∣

∣

∣

∣

∂2ϕ

∂xi∂xj

〉

=

〈

ν

∣

∣

∣

∣

∂2(Hν)

∂xi∂xj

〉

−
〈

∇H

∣

∣

∣

∣

∂2ϕ

∂xi∂xj

〉

=
∂2H

∂xi∂xj
−H

〈

ν

∣

∣

∣

∣

∂

∂xi

(

hjlg
ls ∂ϕ

∂xs

)〉

−
〈

∂H

∂xl
gls

∂ϕ

∂xs

∣

∣

∣

∣

Γkij
∂ϕ

∂xk
+ hijν

〉

=
∂2H

∂xi∂xj
−Hhjlg

ls

〈

ν

∣

∣

∣

∣

∂2ϕ

∂xi∂xs

〉

− Γkij
∂H

∂xk

=∇i∇jH−Hhilg
lshsj .

Then using Simons’ identity (1.1.4) we conclude

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij .

The other equations follow from straightforward computations, as ∂
∂t
gij = 2Hhij .

Remark 2.3.2. Since it will be useful in the sequel, we see in detail the evolution equations in the
special one–dimensional case of the flow by curvature γ : S1 × [0, T ) of a closed curve in the
plane.

We denote by θ the parameter on S
1 and by s = s(θ, t) =

∫ θ

0
|∂θγ(θ, t)| dθ the arclength, τ = ∂sγ is

the tangent unit vector and ν = Rτ is the unit normal, where R : R2 → R
2 is the counterclockwise

rotation of an angle of π/2, finally k = 〈∂sτ | ν〉 is the curvature.
Notice that ∂s = |γθ|−1∂θ and that the evolution equation reads ∂tγ = kν = ∂2ssγ. Then, we easily
get the following commutation rule ∂t∂s = ∂s∂t + k2∂s which implies

∂tτ = ∂t∂sγ = ∂s∂tγ + k2∂sγ = ∂s(kν) + k2τ = ksν

∂tν = ∂t(Rτ) = R ∂tτ = −ksτ
∂tk = kss + k3 .

Now we deal with the covariant derivatives of A.

Lemma 2.3.3. The following formula for the interchange of time and covariant derivative of a tensor T
holds

∂

∂t
∇T = ∇ ∂

∂t
T + T ∗A ∗ ∇A .
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Proof. We suppose that T = Ti1...ik is a covariant tensor, the general case is analogous, as it will
be clear by the following computation,

∂

∂t
∇jTi1...ik =

∂

∂t

(∂Ti1...ik
∂xj

−
k

∑

s=1

ΓljisTi1...is−1lis+1...ik

)

=
∂

∂xj

∂Ti1...ik
∂t

−
k

∑

s=1

Γljis
∂Ti1...is−1lis+1...ik

∂t

−
k

∑

s=1

∂

∂t
ΓljisTi1...is−1lis+1...ik

=∇j

∂Ti1...ik
∂t

−
k

∑

s=1

(A ∗ ∇A)ljisTi1...is−1lis+1...ik ,

which is the formula we wanted.

Lemma 2.3.4. We have, for k ≥ 0, denoting by ∇k the k–th iterated covariant derivative,

∂

∂t
∇khij = ∆∇khij +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA .

Proof. We work by induction on k ∈ N. The case k = 0 is given by equation (2.3.2), we then
suppose that the formula holds for k − 1. We have, by the previous lemma,

∂

∂t
∇khij =∇ ∂

∂t
∇k−1hij +∇k−1A ∗ ∇A ∗A

=∇
(

∆∇k−1hij +
∑

p+q+r=k−1 | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA
)

+∇k−1A ∗ ∇A ∗A
=∇∆∇k−1hij +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA .

Interchanging now the Laplacian and the covariant derivative and recalling that Riem = A ∗ A,
we have the conclusion, as all the extra terms we get are of the form A ∗ A ∗ ∇kA and A ∗ ∇A ∗
∇k−1A.

Proposition 2.3.5. The following formula holds,

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA . (2.3.5)

Proof. We compute

∂

∂t
|∇kA|2 =2g

(

∇kA,
∂

∂t
∇kA

)

+∇kA ∗ ∇kA ∗A ∗A

=2g
(

∇kA,∆∇kA+
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA
)

+∇kA ∗ ∇kA ∗A ∗A
=2g

(

∇kA,∆∇kA
)

+
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

=∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA .



2. EVOLUTION OF GEOMETRIC QUANTITIES 34

2.4 Consequences of Evolution Equations

Let us see some consequences of the application of the maximum principle to the evolution equa-
tions for the curvature.
Suppose that we have a mean curvature flow of a compact hypersurface M in the time interval
[0, T ), we have seen that

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4

and
∂

∂t
H = ∆H+H|A|2 .

First we deal with the so called mean convex hypersurfaces that play a major role in the subject.
A hypersurface is mean convex if H ≥ 0 everywhere. We will see in the next proposition that this
property is preserved by the mean curvature flow. Mean convexity is a significant generalization
of convexity, for instance, it is enough general to allow the neckpinch behavior described in
Section 1.4, in particular, mean convex hypersurfaces do not necessarily shrink to a point at the
singular time.

Proposition 2.4.1. Assume that the initial, compact hypersurface satisfies H ≥ 0. Then, under the mean
curvature flow, the minimum of H is increasing, hence H is positive for every positive time.

Proof. Arguing by contradiction, suppose that in an interval (t0, t1) ⊂ R
+ we have Hmin(t) < 0

and Hmin(t0) = 0 (Hmin is obviously continuous in time and Hmin(0) ≥ 0).
Let |A|2 ≤ C in such interval, then

∂H

∂t
= ∆H+H|A|2

implies

∂Hmin

∂t
≥ CHmin

for almost every t ∈ (t0, t1).
Integrating this differential inequality in [s, t] ⊂ (t0, t1) we get Hmin(t) ≥ eC(t−s)Hmin(s), then
sending s→ t+0 we conclude Hmin(t) ≥ 0 for every t ∈ (t0, t1) which is a contradiction.

Since then H ≥ 0 we get

∂H

∂t
= ∆H+H|A|2 ≥ ∆H+H3/n .

With the notation of Theorem 2.1.1, we let u = −H, X = 0 and b(x) = x3/n, then, if Hmin(0) = 0
the ODE solution h(t) is always zero, so if at some positive time Hmin(τ) = 0, we have that
H( · , τ) is constant equal to zero on M , but there are no compact hypersurfaces with zero mean
curvature. Hence, Hmin is always increasing during the flow and H is positive on all M at every
positive time.

Actually, this proposition can be slightly improved as follows.

Proposition 2.4.2. If the initial, compact hypersurface satisfies |A| ≤ αH for some constant α, then
|A| ≤ αH for every positive time.

Proof. We know that H > 0 for every positive time, hence also |A| > 0 for every positive time
which implies that it is smooth as |A|2.
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Let [0, T ) be the interval of smooth existence of the flow. Computing the evolution equation of
the function f = |A| − αH, we get

∂f

∂t
=

1

2|A| (∆|A|2 − 2|∇A|2 + 2|A|4)− α(∆H + H|A|2)

=∆|A|+ 1

2|A| (2|∇|A||2 − 2|∇A|2) + |A|3 − α(∆H + H|A|2)

=∆f + |A|2f +
1

2|A| (2|∇|A||2 − 2|∇A|2)

≤∆f + |A|2|f | ,

as the term |∇|A||2 − |∇A|2 is nonpositive.
Hence, choosing any T ′ < T , if C is the maximum of |A|2 onM× [0, T ′], we have ∂tf ≤ ∆f+C|f |
on M × [0, T ′]. By the maximum principle 2.1.1, as fmax(0) ≤ 0, we conclude f ≤ 0 on M × [0, T ′].
By the arbitrariness of T ′ < T , the thesis follows.

Corollary 2.4.3. If H > 0 for the initial, compact, n–dimensional hypersurface, then there exists α0 > 0
such that α0|A|2 ≤ H2 ≤ n|A|2 everywhere on M for every time.
If the initial hypersurface has positive scalar curvature, then the same holds for every positive time.

Proof. The first claim is immediate by the compactness of M and the previous proposition (the
second inequality is algebraic).
Recalling that the scalar curvature is equal to H2−|A|2, positive scalar curvature implies that H >
0 (H cannot change sign on M and there is always a point where it is positive, as M is compact)
and H2/|A|2 > 1, the second part of this corollary is also a consequence of Proposition 2.4.2.

Corollary 2.4.4. Assume that the initial, compact hypersurface has H ≥ 0, then, if A is not bounded as
t→ T then H is also not bounded.

Proof. Immediate consequence of Proposition 2.4.1 and the estimate of the previous corollary.

Now we consider the evolution equation of |A|2 which implies

∂

∂t
|A|2max ≤ 2|A|4max .

Notice that |A|2max is always positive, otherwise at some time t we would have A = 0 identically
on M , which would imply that M is a hyperplane in R

n+1 in contradiction with the compact-
ness hypothesis of M . Hence, we can divide both members by |A|2max obtaining the following
differential inequality for the locally Lipschitz function 1/|A|2max, holding at almost every time
t ∈ [0, T ),

− d

dt

1

|A|2max

≤ 2 .

Integrating in time in any interval [t, s] ⊂ [0, T ), we get

1

|A( · , t)|2max

− 1

|A( · , s)|2max

≤ 2(s− t) .

Suppose now that A is not bounded in [0, T ), that is, there exists a sequence of times si ր T
such that |A( · , si)|2max → +∞. Substituting these times si in the previous inequality and sending
i→ ∞, we get

1

|A( · , t)|2max

≤ 2(T − t) .

Exercise 2.4.5. Show that the only compact hypersurfaces in R
n+1 with constant mean curvature

are the spheres. What can be said about a compact hypersurface in R
n+1 with constant |A|?
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In other words, we proved the following.

Proposition 2.4.6. If the second fundamental form A during the mean curvature flow of a compact hy-
persurface is not bounded as t→ T < +∞, then it must satisfy the following lower bound for its blow up
rate

max
p∈M

|A(p, t)| ≥ 1
√

2(T − t)
(2.4.1)

for every t ∈ [0, T ).
Hence,

lim
t→T

max
p∈M

|A(p, t)| = +∞ .

Exercise 2.4.7. Assume that the initial, compact hypersurface has H > 0, then the maximal time
of smooth existence of the flow can be estimated as Tmax ≤ n

2H2
min

(0)
.


