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Proposition 1.4.1. If an initial hypersurface ϕ0 :M → R
n+1 satisfies

H(p) + λ〈ϕ0(p)− x0 | ν0(p)〉 = 0

at every point p ∈ M for some constant λ > 0 and x0 ∈ R
n+1, then it generates a homothetically

shrinking mean curvature flow (according to Definition 1.3.7) around the point x0 ∈ R
n+1, described by

ϕ(p, t) = x0 +
√
1− 2λt (ϕ0(p)− x0)

in the time interval [0, 1/2λ).
Conversely, if ϕ : M × [0, T ) → R

n+1 is a homothetically shrinking mean curvature flow (according to
Definition 1.3.7) around some point x0 ∈ R

n+1 in a maximal time interval, then either H is identically
zero or

H(p, t) +
〈ϕ(p, t)− x0 | ν(p, t)〉

2(T − t)
= 0 ,

for every point p ∈M and time t ∈ [0, T ).

Proof. If the condition is satisfied, we consider the homothetically shrinking flow

ϕ(p, t) = x0 +
√
1− 2λt (ϕ0(p)− x0)

and we see that

〈∂tϕ(p, t) | ν(p, t)〉 = −λ〈ϕ0(p)− x0 | ν(p, t)〉√
1− 2λt

=
H(p, 0)√
1− 2λt

= H(p, t) ,

as ν(p, t) = ν0(p). Hence, by Corollary 1.3.5, this is a mean curvature flow of the initial hypersur-
face ϕ0, according to Definition 1.3.7.

Conversely, if the homothetically shrinking evolution ϕ(p, t) = x0+f(t)(ϕ0(p)−x0) is a mean
curvature flow, for some positive smooth function f : [0, T ) → R with f(0) = 1, limt→T f(t) = 0
and f ′(t) ≤ 0, by Corollary 1.3.5 we have 〈∂tϕ | ν〉 = H, hence

H(p, 0) = f(t)H(p, t)

= f(t)〈∂tϕ(p, t) | ν(p, t)〉
= f(t)f ′(t)〈ϕ0(p)− x0 | ν(p, t)〉
= f ′(t)〈ϕ(p, t)− x0 | ν(p, t)〉 .

If H 6= 0 at some point, as ν(p, t) = ν0(p) we have that f(t)f ′(t) is equal to some constant C
for every t ∈ [0, T ), combining the first and the third line of the above formula. Hence, f(t) =√
2Ct+ 1 as f(0) = 1 and since limt→T f(t) = 0, we conclude f(t) =

√
1− t/T . The thesis then

follows from the first and last line of the formula.

We underline that again |A(t)| ∼ 1√
2(Tmax−t)

.

Up to a rigid motion and rescaling, solving the above structural equation is equivalent to solving
H + 〈ϕ0 | ν0〉 = 0. The hypersurfaces satisfying this equation are often called shrinkers, they gen-
erate a homothetically shrinking mean curvature flow (according to Definition 1.3.7) around the
origin of Rn+1, in the time interval [0, 1/2).
In the special case of curves in R

2, supposing γ parametrized by its arclength s, the unit tangent
vector is given by τ = γs and the unit normal by ν = Rγs, where R : R2 → R

2 is the counter-
clockwise rotation of π/2. Then, such equation becomes

k + 〈γ | ν〉 = 0 that is, γss = kν = −〈γ | ν〉ν = −〈γ |Rγs〉Rγs ,

hence one can find the homothetically shrinking curves by integrating this ODE.
The only embedded solutions are the circle S

1 and the lines through the origin of R2 (see Ap-
pendix E), but there are also several other nonembedded closed curves found by Abresch and
Langer [1] that classified all the possible solutions, see also the work of Epstein and Weinstein [41].
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Finding homothetically shrinking hypersurfaces when the dimension is higher than one is
difficult (see the discussion in [81]). It is known that besides the “standard” examples given by
the hyperplanes through the origin, the spheres and the cylinders, there exists a homothetically
shrinking, embedded torus in R

3, found by Angenent [17] (it seems that Grayson was the first to
suggest its existence, see [68]). Moreover, there is numerical evidence that higher genus surfaces
in R

3 could also exist, see Chopp [25] and Angenent, Chopp and Ilmanen [18] (see also [81]).
Finally, a tentative strategy to produce new examples is being carried on in some recent papers
by Nguyen [98, 97, 99]).

One can also look for homothetically expanding hypersurfaces (around the origin of Rn+1),
which are characterized by the same equation H + λ〈ϕ0 | ν0〉 = 0 but with a negative constant λ.
These cannot be compact, as one can see easily by looking at their point of maximum distance
from the origin of Rn+1.
As an example, every angle less than π in R

2 contains a convex, unbounded, homothetically
expanding curve under the curvature flow, asymptotic to the edges of the angle (see also the
discussion in [21, Appendix C]). A classification of graph solutions of the above equation with at
most linear growth can be found in [117].

Another notable family of hypersurfaces moving by mean curvature are the ones generating
translating flows, these are hypersurfaces that during the motion do not change their shape but
simply move in a fixed direction with constant velocity.

Proposition 1.4.2. If an initial hypersurface ϕ0 : M → R
n+1 satisfies H(p) = 〈v | ν0(p)〉 at every point

p ∈M for some constant vector v ∈ R
n+1, then it generates a translating mean curvature flow (according

to Definition 1.3.7) with constant velocity v.
Conversely, if ϕ :M× [0, T ) → R

n+1 is a translating mean curvature flow (according to Definition 1.3.7)
then there exists a vector v ∈ R

n+1 (which is the velocity of the motion) such that H(p, t) = 〈v | ν(p, t)〉
for every point p ∈M and t ∈ [0, T ).

Proof. If the condition is satisfied, we consider the translating flow ϕ(p, t) = ϕ0(p) + tv and we
see that

〈∂tϕ(p, t) | ν(p, t)〉 = 〈v | ν(p, t)〉 = 〈v | ν0(p)〉 = H(p, 0) = H(p, t) ,

as ν(p, t) = ν0(p). Hence, by Corollary 1.3.5, this is a mean curvature flow of the initial hypersur-
face ϕ0, according to Definition 1.3.7.

Conversely, if the translating flow ϕ(p, t) = ϕ0(p) + w(t) is a mean curvature flow, for some
smooth, time dependent vector w : [0, T ) → R

n+1 with w(0) = 0, by Corollary 1.3.5 we have
〈∂tϕ | ν〉 = H, hence

〈∂tϕ(p, t) | ν(p, t)〉 = 〈w′(t) | ν(p, t)〉 = H(p, t) = H(p, 0) .

Suppose that varying p in M , the image of the unit normal is a subset of Rn+1 whose span is
the whole R

n+1, then, as ν(p, t) = ν0(p), if we differentiate in time the equality 〈w′(t) | ν0(p)〉 =
H(p, 0), we get 〈w′′(t) | ν0(p)〉 = 0 which implies that w′′(t) = 0 for every t and w′(t) constant.
Then, letting w′ = v, we have the thesis.

In the case that the span of the image of the unit normal is not the whole R
n+1, all the tangent

spaces TpM to ϕ0 have a common nontrivial vector subspace L ⊂ R
n+1. Decomposing w(t) =

l(t) + z(t) with l(t) ∈ L and z(t) ∈ L⊥ we have l(0) = z(0) = 0 and z′′(t) = 0 by the above
argument, as l′(t), l′′(t) ∈ L and z′(t), z′′(t) ∈ L⊥. Hence, z′(t) is constant and

H(p, t) = 〈w′(t) | ν(p, t)〉 = 〈z′(t) | ν(p, t)〉 = 〈v | ν(p, t)〉

where we set v = z′.
By Proposition 1.3.4 (see also Remark 1.3.6) the translating flow ϕ̃(p, t) = ϕ0(p) + tv coincides (as
sets) with the flow ϕ as ∂tϕ̃ = v, ∂tϕ = w′(t) = l′(t)+ v and l′(t) ∈ L ⊂ TpM for every p ∈M and
t ∈ [0, T ).
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In the special case of curves in R
2, if γ is parametrized by its arclength s and the unit normal

is ν = Rγs as before, the above equation becomes

k = 〈v | ν〉 that is, γss = kν = 〈v | ν〉ν = 〈v |Rγs〉Rγs ,

where R : R2 → R
2 is the counterclockwise rotation of π/2. By integrating such ODE, one can

see that the only possible translating curve is given (up to homotheties and rigid motions) by the
graph of the function x = − log cos y in the interval (−π/2, π/2), which was called the grim reaper
by Grayson [52].

e1

y = π/2

y = −π/2

✲

Figure 1.1: The grim reaper moving with constant velocity e1.

In higher dimension, for every fixed vector v ∈ R
n+1 there is a unique rotationally symmetric,

strictly convex hypersurface (which is actually an entire graph) moving by translation under the
mean curvature flow. Indeed, looking for a convex graph over a domain in R

n (identified with
the hyperplane {xn+1 = 0} ⊂ R

n+1), translating in the en+1 direction with unit speed, one has to
find a convex function f : Ω → R such that

∆f − Hessf(∇f,∇f)
1 + |∇f |2 = 1

and f(0) = ∇f(0) = 0, where Hessf is the Hessian of f .
Imposing rotational symmetry around the origin f(x) = f(ρ) with ρ = |x|, this problem becomes
the following ODE

fρρ +
(n− 1)fρ

ρ
−
fρρf

2
ρ

1 + f2ρ
= 1 ,

that is,

fρρ = (1 + f2ρ )

(
1− (n− 1)fρ

ρ

)
(1.4.1)

with limρ→0 f(ρ) = limρ→0 f
′(ρ) = 0 for a convex function f : R+ → R.

When n = 1 the solution of this ODE gives the grim reaper, when n > 1 there is only one solution,
defined on all R+ and growing quadratically at infinity. This solution provides the only rotation-
ally symmetric, convex, translating hypersurface moving by mean curvature, up to homotheties
and rigid motions.

Exercise 1.4.3. Show the claimed properties of the solution of such ODE.

In the paper by Wang [122] it is proved that in dimension two every convex and translating
flow must be either the product of a grim reaper with R or a rotationally symmetric strictly
convex entire graph and that in every dimension larger than two there exist examples which
are not rotationally symmetric and also non entire solutions of the above PDE (actually, convex
solutions defined in strips of Rn). See also [124, page 536] and [55].
Recently, Nguyen [98, 100] exhibited some new nonconvex, embedded examples of translating
hypersurfaces, with a trident–like shape at “large scales”.
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Finally, there are also rotating (or rotating and dilating/contracting) flows, see [77, 82] and [27,
Section 2.2], like the unbounded spiral in the plane called the Yin–Yang curve that rotates during
its motion by curvature, depicted in the paper [3] by Altschuler.

We have seen that the homothetically shrinking hypersurfaces cannot ”live” forever, at some
maximal time Tmax > 0 the map ϕ becomes singular. This is a common fact to any compact initial
hypersurface, as we will see in Corollary 2.2.5.
There are two possible reasons why this happens: the first is analytic, the function ϕ could stop
being smooth, usually because some derivatives of ϕ are not bounded as t → Tmax, the second
reason is geometric, when the map ϕ stops being an immersion, that is, dϕt becomes singular (not
one–to–one) at some point of M and time t = Tmax. We will see that in both cases the curvature
of the evolving hypersurface has to become unbounded, that is, if the second fundamental form
A stays uniformly bounded till Tmax then this latter cannot be the maximal time of existence of a
smooth flow (Proposition 2.4.6).

In all the above self–similar examples, either the flow is smoothly defined for every positive
time or at some finite time the hypersurface instantly completely vanishes. This is quite a special
behavior, indeed, in general the singularities develop only in some regions of the evolving hy-
persurface. An example of a more generic and ”concrete” singularity is a nonembedded cardioid
curve in the plane with a small loop: at some time the small loop has shrunk while the rest of the
curve has remained smooth and a cusp has developed (see [14, 15, 16]).
In this example the initial curve was not embedded (we will see in the sequel why this was nec-
essary), another example, this time embedded, of what can happen at the singular time is the
dumbbell surface [53], or standard neckpinch.
Consider a long thin cylinder (the neck) in R

3 smoothly connecting symmetrically two large
spheres at its ends (it is possible to construct an example of such a surface also with H > 0),
then, during the flow one can guess that the cylinder, which has a large positive mean curvature,
shrinks faster than the two big spheres at its ends which share instead a small curvature, having
a large radius. Then, the cylinder collapses at some time and the hypersurface tends to the sym-
metric union of two “water drops” joined at the vertices of their cusps.
The existence of surfaces with this behavior under the mean curvature flow was first proved
rigorously by Grayson [53]. Another similar example was worked out by Huisken in [68]. The
following simple argument can be found in [17]: consider the Angenent’s homothetically shrink-
ing torus, mentioned above, surrounding the “cylindrical” part of a symmetric dumbbell surface
and a couple of spheres “inside” the two side balls, in a way that neither the torus nor the two
spheres touch the dumbbell. We will see in Theorem 2.2.1 that then the four surfaces cannot touch
each other during all their flows, as they have no intersections at the initial time. If the dumb-
bell is chosen in such a way that the torus (which is shrinking homothetically to a point) has an
extinction time T smaller than the one of the two “inside” spheres, the dumbbell must develop
some kind of singularity before T since it is “squeezed” by the torus, but it cannot vanish as it
has still to “contain” the two spheres.

Our last example is the standard torus in R
3 obtained by rotating around the z axis a very

small circle with a center far enough from such axis (if the circle is small enough with respect
to its distance from the z axis, this torus has H > 0). During the evolution by mean curvature,
the circle tends to shrink before the whole torus has time to collapse, hence, by the rotational
symmetry which is maintained during the flow, one expects that at the maximal time the torus
develops a circle of singularities around the z axis (this will be discussed in detail in Section 4.6).
This suggests that in general the limit shape of an evolving hypersurface at a singular time can
be quite wild (some results on the “size” of the singular sets have been obtained by White [123]).

These last examples motivated the large research in literature about suitable weak solutions
of the mean curvature flow, in order to define a generalized evolution even after a singular time.
In a physical model, indeed, the interface could continue the evolution even after such time,
possibly in a nonsmooth way. In the dumbbell situation above, for instance, we intuitively expect
that the surface splits in two parts, each of them moving independently after the splitting. Also
for topological applications, in the same spirit of Hamilton’s program for the Ricci flow, it is
important to be able to continue the flow after any singular time until the hypersurface (or all the
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parts in which it separates) converges to some known limit.
Weak solutions of the mean curvature flow have been introduced by many authors in different
ways; among the others, we recall the definition by Brakke [21], based on geometric measure
theory and the ones by Chen, Giga, Goto [24] and Evans, Spruck [43] based on the level sets
formulation and the theory of viscosity solutions.

1.5 Short Time Existence of the Flow

Theorem 1.5.1. For any initial, smooth and compact hypersurface of Rn+1 given by an immersion ϕ0 :
M → R

n+1, there exists a unique, smooth solution of system (1.3.1) in some positive time interval.
Moreover, the solution continuously depends in C∞ on the initial immersion ϕ0.

Remark 1.5.2. In literature this result was proved in several ways:

• Gage and Hamilton used the Nash–Moser inverse function theorem, actually a very strong
tool for the existence of solutions of parabolic systems of PDE’s (we recall that we are deal-
ing with a degenerate quasilinear system), see [49]. To the author’s knowledge, this is the first
published proof of smooth existence for short time, moreover it works in general for the
motion by mean curvature of a compact submanifold of any codimension immersed in a
Riemannian manifold.

• Evans and Spruck in [43, 44] showed the existence of a smooth solution of the PDE satisfied
by the distance function from an embedded hypersurface moving by mean curvature (see
also [90]).

• Huisken and Polden in [73] (or in the Ph.D. Thesis of Polden [104]) reduced the degenerate
parabolic system to a nondegenerate parabolic equation, representing the evolving hypersur-
faces as graphs over the initial one in a tubular neighborhood of this latter (this line is
mentioned also in [17] and [39]).
This is the proof that we are going to show below and which is the most natural one in the
“classical” approach to mean curvature flow. Moreover it is quite elastic to be adapted to a
very general class of flows of hypersurfaces and to be generalized to any codimension and
any Riemannian ambient space (see [40]).

Another possibility is to use some version of the so called DeTurck’s trick (see [34]), coupling
the mean curvature flow with another flow, in order to eliminate the diffeomorphism invariance
of the problem (see [129] and [23]).

Moreover, there are also many existence proofs of generalized evolutions by mean curvature
(after introducing weak definitions of hypersurfaces) of nonregular or possibly “wild” subsets of
R

n+1, some even allow these latter to be merely closed sets in the Euclidean space. It should be
said that, considering nonsmooth subsets in these generalized definitions of the flow, the unique-
ness fails in several situations.
We mention some of these approaches:

• The use of theory of viscosity solutions to study the PDE satisfied by the function f in the
formulation of the motion via level sets mentioned in Exercise 1.3.9, exploited by Evans and
Spruck in [43, 44] and Chen, Giga and Goto in [24].

• The study by Soner [112] of the evolution equation satisfied by the signed distance function
from an embedded hypersurface moving by mean curvature (see Exercise 1.3.10) by means
of barrier comparison arguments and Perron’s method.

• The varifold approach of Brakke using geometric measure theory, see [21] (a hint of Brakke’s
weak definition of mean curvature flow is given in Exercise 1.3.11).

• Almgren, Taylor and Wang discretization–minimization procedure in [2].
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• Ilmanen’s approximation in [78, 79].

Remark 1.5.3. One can show that the mean curvature flow shares a kind of the usual regulariz-
ing property of parabolic equations, for instance, any C2 initial hypersurface becomes analytic at
every positive time, in the sense that it is not the map ϕt which becomes analytic, but the image
hypersurface ϕt(M) ⊂ R

n+1, that is, it admits an analytic reparametrization.
Moreover, with the right definition, one can let evolve a hypersurface with corners or other sin-
gularities and these latter immediately vanish, see for instance [14, 16] and [39, 121].

Proof. We follow Huisken and Polden in [73].
Let ϕ0 : M → R

n+1 be a smooth immersion of a compact n–dimensional manifold. For the
moment we assume that this hypersurface is embedded, hence the inner pointing unit normal
vector field ν0 is globally defined and smooth.
We look for a smooth solution ϕ :M × [0, T ) → R

n+1 of the parabolic problem

{
∂
∂t
ϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)

for some T > 0.
Since we are interested in a solution for short time, we can forget about the immersion condition
(dϕt nonsingular) as it will follow automatically by the smoothness of the solution and by the
fact that ϕ0 is a compact immersion, when t is close to zero.
Keeping in mind Proposition 1.3.4 and Corollary 1.3.5, if we find a smooth solution ϕ : M ×
[0, T ) → R

n+1 of the problem

{〈
∂
∂t
ϕ(p, t) | ν(p, t)

〉
= H(p, t)

ϕ(p, 0) = ϕ0(p)
(1.5.1)

then we are done.
We consider the regular tubular neighborhood Ω = {x ∈ R

n+1 | d(x, ϕ0(M)) < ε}, which exists
for ε > 0 small enough. By regular we mean that the map Ψ : M × (−ε, ε) → Ω defined as
Ψ(p, s) = ϕ0(p) + sν0(p) is a diffeomorphism.
Any small C∞ deformation of ϕ0(M) inside Ω can be represented as the graph of a “height”
function f over ϕ0(M) (see later for the details) and conversely, to any function f : M → (−ε, ε)
we can associate the hypersurface Mf ⊂ Ω given by ϕ(p) = ϕ0(p) + f(p)ν0(p). We want to
compute now the equation for a smooth function f , time dependent, in order that such map ϕ
satisfies system (1.5.1).
Obviously, as f( · , 0) gives the hypersurface ϕ0, we have f(p, 0) = 0 for every p ∈M .
First we compute the metric and the normal of the perturbed hypersurfaces, we set fi = ∂if then,

gij(p, t) =

〈
∂ϕ(p, t)

∂xi

∣∣∣∣
∂ϕ(p, t)

∂xj

〉

=

〈
∂ϕ0

∂xi
+ fiν0 − fhki (0)

∂ϕ0

∂xk

∣∣∣∣
∂ϕ0

∂xj
+ fjν0 − fhlj(0)

∂ϕ0

∂xl

〉

=

〈
∂ϕ0

∂xi
− fhki (0)

∂ϕ0

∂xk

∣∣∣∣
∂ϕ0

∂xj
− fhlj(0)

∂ϕ0

∂xl

〉
+ fifj

= gij(p, 0)− 2f(p, t)hij(p, 0) + f2(p, t)hik(p, 0)g
kl(p, 0)hlj(p, 0) + fi(p, t)fj(p, t)

where we used Gauss–Weingarten equations (1.1.1).
The vectors

∂ϕ(p, t)

∂xi
=
∂ϕ0(p)

∂xi
+ fi(p, t)ν0(p)− f(p, t)hki (p, 0)

∂ϕ0(p)

∂xk
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generate the tangent space, hence the normal ν(p, t) is given by

ν(p, t) =
ν0(p)−

〈
ν0(p)

∣∣∣∂ϕ(p,t)
∂xi

〉
gij(p, t)∂ϕ(p,t)

∂xj∣∣∣ν0(p)−
〈
ν0(p)

∣∣∣∂ϕ(p,t)
∂xi

〉
gij(p, t)∂ϕ(p,t)

∂xj

∣∣∣

=
ν0(p)− fi(p, t)g

ij(p, t)∂ϕ(p,t)
∂xj∣∣∣ν0(p)− fi(p, t)gij(p, t)

∂ϕ(p,t)
∂xj

∣∣∣
.

Notice that the normal, the metric and thus its inverse depend only on first space derivatives
of the function f . Moreover, as f(p, 0) = ∇f(p, 0) = 0, everything is smooth and since M is
compact, when t is small the denominator of the above expression for the normal is uniformly
bounded below away from zero (actually it is close to one).
Then, we find out the second fundamental form,

hij(p, t) =
〈
ν(p, t)

∣∣∣ fij(p, t)ν0(p) +
∂2ϕ0(p)

∂xi∂xj
− fi(p, t)h

k
j (p, 0)

∂ϕ0(p)

∂xk

− fj(p, t)h
l
i(p, 0)

∂ϕ0(p)

∂xl
+ f(p, t)

∂2ν0(p)

∂xi∂xj

〉

= 〈ν(p, t) | fij(p, t)ν0(p)〉+ Pij(p, f(p, t),∇f(p, t))

where Pij is a smooth form when f and ∇f are small, hence for t small.
Computing in normal coordinates around p ∈M with respect to the metric g(t), the mean curva-
ture is then given by

H(p, t) = gij(p, t)hij(p, t)

= 〈ν(p, t) | ν0(p)〉fij(p, t)gij(p, t) + Pij(p, f(p, t),∇f(p, t))gij(p, t)
= 〈ν(p, t) | ν0(p)〉∆g(t)f(p, t) + P (p, f(p, t),∇f(p, t)) ,

where P is a smooth function for f and ∇f small.
We are finally ready to write down the condition 〈∂tϕ | ν〉 = H in terms of the function f ,

∂f(p, t)

∂t
〈ν0(p) | ν(p, t)〉 = 〈∂tϕ(p, t) | ν(p, t)〉

=H(p, t)

= 〈ν(p, t) | ν0(p)〉∆g(t)f(p, t) + P (p, f(p, t),∇f(p, t)) ,

thus, if we divide both sides by 〈ν(p, t) | ν0(p)〉, which we can assume to be nonzero for a small
positive time, we get

∂f(p, t)

∂t
=∆g(t)f(p, t) +

P (p, f(p, t),∇f(p, t))
〈ν(p, t) | ν0(p)〉

=∆g(t)f(p, t) +Q(p, f(p, t),∇f(p, t))

where Q(p, · , · ) is a smooth function when its arguments are small. Moreover, as the coefficients
of ∆g(t) smoothly converge to the coefficients of ∆g(0) as t→ 0, for t small the operators ∆g(t) are
uniformly strictly elliptic.
Then, the smooth function f : M × [0, T ) → (−ε, ε) solves the following partial differential
equation (before we had to deal with a system of PDE’s)

{
∂f
∂t
(p, t) = ∆g(t)f(p, t) +Q(p, f(p, t),∇f(p, t))

f(p, 0) = 0
(1.5.2)

if and only if ϕ(p, t) = ϕ0(p) + f(p, t)ν0(p) is a solution of system (1.5.1) for the initial compact
embedding ϕ0, for t ∈ [0, T ).
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This PDE is a quasilinear strictly parabolic equation, by what we said about the uniform ellipticity
of ∆g(t), in particular it is not degenerate (in some sense, passing to the height function f we
“killed the degeneracy” of systems (1.3.1) and (1.5.1)) hence, we can apply the (almost standard)
theory of quasilinear parabolic PDE’s to have a smooth solution in a positive interval of time,
continuously depending in C∞ on the coefficients of the operator (which smoothly depend on
the initial data ϕ0).
The proof of a general theorem about existence, uniqueness and continuous dependence of a
solution for a class of problems including (1.5.2) can be found again in [73] (see Appendix A).
Using the unique solution f of problem (1.5.2) we consider the associated map ϕ = ϕ0 + fν0,
we possibly restrict the time interval in order that ϕt are all immersions with image in Ω and we
apply Corollary 1.3.5 to reparametrize globally the hypersurfaces in a unique way in order to get
a smooth solution of system (1.3.1) in some time interval.

Conversely, if we have a solution ϕ of system (1.3.1), for a small time interval [0, T ) the hyper-
surfaces ϕt are all embedded in the tubular neighborhood Ω of ϕ0(M) and representable as graph
of a uniquely defined height function f , as above. Indeed, if we consider the smooth function
L :M × [0, T ) →M given by

L(p, t) = πM [Ψ−1(ϕ(p, t))] ,

where πM is the projection map on the first factor of M × (−ε, ε), it is not difficult to see that all
the maps Lt :M →M given by Lt(p) = L(p, t) are diffeomorphisms, hence we define a function
f as

f(q, t) = π(−ε,ε)[Ψ
−1(ϕ(L−1

t (q), t))]

for every q ∈M and t ∈ [0, T ). Then, the map ϕ̃ = ϕ0 + fν0 satisfies

ϕ̃(Lt(p), t) =ϕ0(Lt(p), t) + f(Lt(p), t)ν0(Lt(p), t)

=ϕ0(πM [Ψ−1(ϕ(p, t))], t) + π(−ε,ε)[Ψ
−1(ϕ(p, t))]ν0(πM [Ψ−1(ϕ(p, t))], t)

=ϕ(p, t) ,

that is, ϕ̃ and ϕ are obtained each other by composition with a time–dependent family of diffeo-
morphisms, in particular, they represent the same hypersurface in R

n+1 at every time. Moreover,
by the second part of Proposition 1.3.4, as ϕ is a solution of system (1.3.1), then the map ϕ̃ is a
solution of system (1.5.1), hence, by the above computations, f must solve system (1.5.2).

If we have two solutions ϕ and ψ of system (1.3.1), then, the two respectively associated
height functions (via the above argument) must coincide, by the uniqueness of the solution of

system (1.5.2). Hence, also the two associated maps ϕ̃ and ψ̃ coincide and they are given by com-
positions of ϕ and ψ with some time–dependent family of diffeomorphisms. This clearly implies
that also ϕ and ψ can be obtained each other by composition with a time–dependent family of
diffeomorphisms, that is ψ(p, t) = ϕ(Φt(p), t), with clearly Φ0 = IdM . By the argument in the
proof of the second part of Proposition 1.3.4, since both ϕ and ψ are solutions of system (1.3.1)
(their motion is only in normal direction), all the diffeomorphisms Φt : M → M are the identity
IdM , hence ϕ = ψ. This proves the uniqueness of the solution of system (1.3.1).

If the initial hypersurface ϕ0 is not embedded, that is, it has self–intersections, since locally
every immersion is an embedding, we only need a little bit more care in the definition of the
height function associated to a mean curvature flow (a regular tubular neighborhood is missing),
in order to define the correspondence between a map ϕ and the associated height function f , then
the same argument gives the conclusion also in the nonembedded case.

Remark 1.5.4. This theorem gives the existence and uniqueness of the mean curvature flow in
the case of a compact initial hypersurface. The noncompact case is more involved, as one needs
estimates on the initial hypersurface (like similarly, on the initial datum in order to deal with the
heat equation in all Rn) to have existence in some positive interval of time. One possibility is to
assume a uniform control on the norm of the second fundamental form of the initial hypersurface
(see [39]).
Actually, by means of interior estimates (see Appendix B) Ecker and Huisken in [39] showed that
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a uniform local Lipschitz condition on a hypersurface is sufficient to guarantee short time existence.
Another remarkable consequence of their work is the fact that the entire graph of a smooth func-
tion u : Rn → R has a unique smooth global mean curvature evolution for every time, remaining
always a graph, see [38, 39] (notice that the same statement is not true for the heat equation with-
out assuming some growth condition at infinity).
Similar interior estimates, depending only on a local bound on the value of a function (not on
its gradient) whose graph is moving by mean curvature, were obtained by Colding and Mini-
cozzi [29].

The uniqueness of the evolution by mean curvature of a noncompact initial hypersurface is
another delicate point, like for the heat equation in R

n. One possibility is to restrict the class of
“admissible” evolutions, in order to have uniqueness, to the ones with a uniform bound (local in
time) on the second fundamental form along the flow, see anyway [23] for the strongest result in
this context.

Remark 1.5.5. The apparent loss of uniqueness of the flow if one consider the evolution by mean
curvature of a hypersurface given as a subset of Rn+1 (see Remark 1.3.6), due to the arbitrariness
in choosing the parametrization, can actually be dealt with by noticing that the system (1.3.1) is
invariant by reparametrization. Hence, even if possibly the immersions describing the hypersur-
faces at time t are different, the hypersurfaces in R

n+1 are however the same, that is, the flow is
“geometrically” unique.

1.6 Other Second Order Flows

Let S = S(λ1, . . . , λn) be a symmetric function of the principal curvatures. Given an initial smooth
immersion ϕ0 :M → R

n+1 of the n–dimensional manifold M , one can consider the more general
evolution problem {

∂
∂t
ϕ(p, t) = S(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(1.6.1)

where S(p, t) is a short way to denote the value of S associated to the curvatures λ1, . . . , λn of the
hypersurface ϕt at the point p ∈M . Besides the mean curvature flow, which is given by the choice
S = λ1 + · · ·+ λn, other studied cases are the Gauss curvature flow, where S = λ1λ2 · · ·λn = detA
is the Gauss curvature and the inverse mean curvature flow considering S = (λ1+· · ·+λn)−1 = 1/H
(see [72], for instance).

For all these flows, we have the following existence result [73], which follows along the same
line of Theorem 1.5.1.

Theorem 1.6.1. Let M be compact and assume that at every point p ∈M we have

∂S

∂λi
(λ1(p), . . . , λn(p)) > 0, i = 1, . . . , n, (1.6.2)

for an initial hypersurface ϕ0, then system (1.6.1) has a unique smooth solution in some positive time
interval.

It can be checked that condition (1.6.2) is equivalent to the parabolicity of the PDE’s system
at the initial time. In the case of the mean curvature flow such condition is satisfied for every
initial hypersurface. For other flows one possibly needs to restrict the initial hypersurfaces to
certain classes. For instance, the above result ensures the well–posedness of the Gauss curvature
flow only when all the eigenvalues λi are positive everywhere on the initial hypersurface, that is,
when it is strictly convex.


