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4.2 Hypersurfaces with Nonnegative Mean Curvature

We shall now consider the formation of type II singularities for hypersurfaces which are mean
convex, that is, with nonnegative mean curvature everywhere.
An important result for the analysis of singularities of mean convex hypersurfaces is the follow-
ing estimate on the elementary symmetric polynomials of the curvatures Sk proved in [75], which
holds in general for any mean curvature flow.

Theorem 4.2.1 (Huisken–Sinestrari [75]). Let ϕ : M × [0, T ) → R
n+1 be the mean curvature flow of

a compact, mean convex, immersed hypersurface, for n ≥ 2. Then, for any η > 0 there exists a positive
constant C = C(η, ϕ0) such that Sk ≥ −ηHk−C for any k = 2, . . . , n at every point of M and t ∈ [0, T ).

This estimate easily implies the following one, which has a more immediate interpretation.

Corollary 4.2.2. Under the same hypotheses of the previous theorem, for any η > 0 there exists a positive
constant C = C(η, ϕ0) such that λmin ≥ −ηH−C at every point of M and t ∈ [0, T ), where λmin is the
smallest eigenvalue of the second fundamental form.

The interest in the above estimates lies in the fact that η can be chosen arbitrarily small and
C is a constant not depending on the curvatures and time. Thus, roughly speaking, we see that
the negative curvatures become negligible with respect to the others when the singular time is
reached, as H is going to +∞. This implies that the second fundamental form of the hypersurface
becomes asymptotically nonnegative definite at a singularity.
Let us observe that these results cannot be valid for general hypersurfaces, even in low dimen-
sion. Indeed, Angenent’s homothetically shrinking torus in [17] has a behavior which is incom-
patible with these convexity estimates.

Proposition 4.2.3. If n ≥ 2 and the initial hypersurface is mean convex, the limit flow M∞
s obtained by

the Hamilton’s procedure described in the previous section, consists of convex hypersurfaces.

Proof. First, since we are taking the limit of hypersurfaces with H ≥ 0 the limit also is mean
convex. By the strong maximum principle applied to the evolution equation for the mean curva-
ture of the limit flow ∂tH∞ = ∆H∞ + H∞|A∞|2, we actually have H∞(p, t) > 0 for every point
in space and time, otherwise H∞ is identically zero and also A∞ would be identically zero (by
Proposition 2.4.1 and the pinching estimates in Corollary 2.4.3, which are invariant by rescaling
and pass to the limit), in contradiction with the fact that the limit flow is nonflat.
Fixing any η > 0 and a pair (p, s) with p ∈ M∞

s , if Qk → +∞ is the rescaling factor for the
flow ϕk and qk ∈ M is such that pk = ϕk(qk, s) converges to p as k → ∞, we have Hk(qk, s) =
H(qk, s/Q

2
k+tk)/Qk → H∞(p, t) > 0 hence H(qk, s/Q

2
k+tk) → +∞. Now, since by Corollary 4.2.2

there exists a constant C > 0 such that λmin ≥ −ηH−C for the original flow ϕ and H > ε at least
for every t > δ > 0, we have λmin/H ≥ −η−C/H everywhere. When we rescale the hypersurfaces
we get

λmin
k (qk, s)

Hk(qk, s)
=

λmin(qk, s/Q
2
k + tk)

H(qk, s/Q2
k + tk)

≥ −η − C

H(qk, s/Q2
k + tk)

and sending k → ∞ we conclude λmin
∞ (p, s)/H∞(p, s) ≥ −η.

Since η > 0 was arbitrary and this argument holds for every pair (p, s) with p ∈ M∞
s , the second

fundamental form is nonnegative definite on the whole limit flow, hence all the hypersurfaces
are convex.

Remark 4.2.4. Instead of using Corollary 4.2.2, one can apply the same argument directly to the
estimates of Theorem 4.2.1 obtaining that all the elementary symmetric polynomials of the eigen-
values of the second fundamental form are nonnegative at every point in space and time for the
limit flow. By relations (2.5.1) the conclusion follows.

Remark 4.2.5. This result also holds if the Hamilton’s procedure is applied type I singularities (see
Exercise 4.1.5).



4. TYPE II SINGULARITIES 80

Remark 4.2.6. This proposition (in a slightly stronger form) has also been obtained by White [126]
by completely different techniques. His approach also works for the subsequent singularities of
“weak” mean curvature flows which continue after the first singular time.

The hypersurfaces of the limit flow are convex, but in general not strictly convex. However, if
they are not strictly convex then they necessarily split as the product of a flat factor with a strictly
convex one, as shown by the following result.

Proposition 4.2.7 (Theorem 4.1 in [75]). If any of the convex hypersurfaces of the limit flow M∞
s is not

strictly convex, then (up to a rigid motion) M∞
s = Nm

s × R
n−m, where 1 ≤ m ≤ n − 1 and Nm

s is a
family of strictly convex, m–dimensional, complete hypersurfaces moving by mean curvature in R

m+1.

Proof. The proof is based on Hamilton’s strong maximum principle for tensors in [58, Section 8]
(see Appendix C, Theorem C.1.3), which holds also if the manifold is not compact (as it is in our
case).
If m(s) ∈ N is the minimal rank of A∞ on M∞

s , arguing as in Remark 2.5.6 this integer valued
function is nondecreasing. Letting m < n be its global minimum which is realized at some point
of M∞

s0
, it follows that m(s) = m for every s ≤ s0. Again by the argument in Remark 2.5.6, for

every s ≤ s0 the hypersurface M∞
s must contain an (n−m)–dimensional affine subspace of Rn+1

which is invariant under parallel transport and in time. Clearly, such subspace is the same for all
s ≤ s0.
Thus, the limit flow for s ∈ (−∞, s0] splits as a product of an (n−m)–dimensional flat part and a
family of strictly convex m–dimensional hypersurfaces Nm

s ⊂ R
m+1 evolving by mean curvature.

By uniqueness of the flow as A∞ is bounded (see the discussion in Remark 1.5.4), this must hold
also for every s > s0.

Exercise 4.2.8. For a type I singularity of the mean curvature flow of a mean convex, embedded
initial hypersurface the Hamilton’s procedure (see Exercise 4.1.5) gives a flow M∞

s which is of
the form S

m
s × R

n−m, for some 1 ≤ m ≤ n where S
m
s is an m–dimensional shrinking sphere.

In the case of the evolution of mean convex hypersurfaces in a time interval [0, T ), by Propo-
sition 2.4.2 and Corollary 2.4.3, the mean curvature H and |A| are comparable quantities, that
is, there exists a constant α, independent of time such that α|A| ≤ H ≤ √

n|A| for t ∈ [δ, T ).
This implies that we can modify Hamilton’s blow up procedure, substituting H2 in place of |A|2
in equation (4.1.1), with the same estimates on the second fundamental form and its covariant
derivatives.
We then still get an eternal smooth limit flow, complete with bounded curvature and its covari-
ant derivatives, with the only difference that this time it is the mean curvature H which gets a
global maximum equal to one at time zero. This will be crucial to continue the analysis in the
next sections.
Analogously, it is easy to see that the conclusions of Propositions 4.2.3 and 4.2.7 are not affected
by this modification so also in this case the limit flow consists of convex hypersurfaces.
We call this limit flow Hamilton’s modified blow up limit.

Remark 4.2.9. Notice that for curves in R
2 the two procedures coincide as |A| = |H| = |k|, where

k is the usual curvature of a curve in the plane.

As the argument leading to Proposition 4.2.3 does not work in the one–dimensional case of
curves, we deal with this latter separately in the next section.

4.3 The Special Case of Curves

Again, the case of a closed curve in R
2 is special.

We suppose to deal with a generic initial closed curve, smoothly immersed in the plane R
2 and

moving by mean curvature γ : S1 × [0, T ) → R
2 where at time T we have a type II singularity.

Setting ξ and k to be respectively the arclength and the curvature of γt, we have the evolution
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equation ∂tk = kξξ + k3, then we define the function z(t) = #{p ∈ γt | k(p) = 0} “counting” the
number of points on γt such that k = 0.
We need the following result of Angenent in [16, Proposition 1.2] and [15, Section 2] (see [13] for
the proof).

Proposition 4.3.1. If we have a mean curvature flow of a (possibly unbounded) curve in R
2 which is not

a line, in an open interval of time, at every fixed time the points where k is zero are isolated in space. In
particular, this implies that for a closed curve, the function z is finite at every time.
The function z is nonincreasing during the flow, hence if at some time it is finite, it remains finite.
Finally, if at some point p ∈ γt we have k(p) = 0 and kξ(p) = 0 then the zero point p for k immediately
vanishes. To be precise, this means that there exists a small space interval I around p and a small r > t
such that k is never zero in I × (t, r).

We only mention that the proof is based on the application of the maximum principle to the
above evolution equation for the curvature.

By this proposition, in our case we can define It to be the finite family of open intervals on γt
where k 6= 0 and the following computation is justified,

d

dt

∫

γt

|k| dξ =
∑

I∈It

∫

I

[
(signk)(kξξ + k3)− |k|3

]
dξ

=
∑

I∈It

∫

I

(signk)kξξ dξ

= − 2
∑

{p∈γt | k(p)=0}

|kξ(p)| .

Hence, the integral
∫
γt

|k| dξ, which is positive and finite at every time by compactness, is not

increasing during the flow so it converges to some value L ≥ 0 as t → T , moreover it is scaling
invariant.
Then we have, for every t1 < t2,

∫

γt1

|k| dξ −
∫

γt2

|k| dξ = 2

∫ t2

t1

∑

{p∈γt | k(p)=0}

|kξ(p)| dt .

If now we apply the Hamilton’s procedure, calling γn
s the rescaled curves at step n with curva-

tures kn and denoting by Kn → +∞ the rescaling factor, we have for every interval (a, b) ⊂ R

2

∫ b

a

∑

{p∈γn
s
| kn(p)=0}

|∂ξkn| ds =
∫

γn
a

|kn| dξ −
∫

γn

b

|kn| dξ (4.3.1)

=

∫

γ a

Kn
+tn

|k| dξ −
∫

γ b

Kn
+tn

|k| dξ ,

since
∫
γt

|k| dξ is scaling invariant and where, by simplicity, we used ξ also for the arclength of

the rescaled curves.
It is easy to see that the integral

∫ b

a

∑
{p∈γs | k(p)=0} |kξ| ds is lower semicontinuous under the

smooth local convergence of curves, hence

∫ b

a

∑

{p∈γ∞

s
| k∞(p)=0}

|∂ξk∞| ds ≤ lim
n→∞

∫ b

a

∑

{p∈γn
s
| kn(p)=0}

|∂ξkn| ds

= lim
n→∞

(∫

γ a

Kn
+tn

|k| dξ −
∫

γ b

Kn
+tn

|k| dξ
)

=0
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for the limit flow γ∞
s , as both a

Kn

+ tn and b
Kn

+ tn converge to T , hence both integrals in equa-
tion (4.3.1) converge to L. As a and b were arbitrary, we conclude for almost every s ∈ R

∑

{p∈γ∞

s
| k∞(p)=0}

|∂ξk∞(p)| = 0 ,

that is, ∂ξk∞ is zero at every point in space and time where k∞ is zero.
Again by means of Proposition 4.3.1, fixing s ∈ R and choosing any small r > s, the zero points
of the curvature vanish for the curve γ∞

r , hence k∞ > 0 on γ∞
r for every r > s, as it is a condition

which is preserved under the flow. Since we can draw this conclusion for almost every s ∈ R, at
every time the flow γ∞

s consists of curves such that k∞ is never zero.
Hence, we have the following one–dimensional analogue of Proposition 4.2.3.

Proposition 4.3.2. The limit flow γ∞
s obtained by the Hamilton’s procedure at a type II singularity of

the evolution by curvature of any initial closed curve, consists of curves such that k∞ is never zero, in
particular if the initial curve was embedded all such curves are strictly convex.

Remark 4.3.3. We underline that we did not assume that the initial curve was embedded. The
above conclusion holds for the flow of any immersed closed curve in the plane (like the results
of the previous section holding for general immersed–only hypersurfaces).

4.4 Hamilton’s Harnack Estimate for Mean Curvature Flow

We have seen in the previous two sections that if a closed curve or a compact hypersurface with
H ≥ 0 develops a type II singularity then the limit of the rescaled flows by the “modified” Hamil-
ton’s procedure is an eternal mean curvature flow of convex, complete, hypersurfaces such that
H takes its maximum in space and time at some point. We want now to see that this implies
that such limit flow is translating, this is obtained by means of the following two deep results of
Hamilton in [64].

Theorem 4.4.1 (Harnack Estimate for Mean Curvature Flow). Let ϕ : M × (T0, T ) → R
n+1 be the

mean curvature flow of a complete, convex hypersurface with bounded second fundamental form at every
time.
Let X be a time dependent, smooth tangent vector field on M . Then the following inequality holds,

∂H

∂t
+

H

2(t− T0)
+ 2〈∇H |X〉+ hijX

iXj ≥ 0

for every t ∈ (T0, T ).

Theorem 4.4.2. Let ϕ : M × (−∞, T ) → R
n+1 be an ancient mean curvature flow of a complete,

strictly convex hypersurface with bounded second fundamental form at every time and such that H takes
its maximum in space and time. Then, ϕ is a translating flow with some constant velocity v ∈ R

n+1, that
is, it satisfies H = 〈v | ν〉 at every point in space and time.

The proofs of these two theorems involve some smart and heavy computations with a strong
use of the maximum principle, we show the complete proof of Theorem 4.4.1 only in the one–
dimensional, compact case and of Theorem 4.4.2 only in the one–dimensional case, referring the
reader to the original paper [64] (see also [59]).

Proof of Theorem 4.4.1 – One–Dimensional Compact Case. As the evolving curves are compact, the
curvature k and all its derivatives are bounded in (C, T − ε), for every ε > 0 and C ∈ (T0, T − ε).
Moreover, by Proposition 2.4.1, in the same interval, k > k0 > 0 for some positive constant k0.
Since any tangent vector field X can be written as X = λτ for some function λ : S1× (T0, T ) → R,
we define the Hamilton’s quadratic

Z(λ) = ∂tk +
k

2(t− C)
+ 2λks + kλ2 = kss + k3 +

k

2(t− C)
+ 2λks + kλ2
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which is clearly bounded from below by

Z = kss + k3 − k2s/k +
k

2(t− C)
.

We also define

W = kss + k3 − k2s/k

and we start computing the evolution equation for this latter quantity by means of the evolution
equations in Remark 2.3.2,

(∂t − ∂ss)W = ∂tkss −
2ks∂tks

k
+

k2skt
k2

+ 3k2kt − kssss +
2ksksss

k
+

2k2ss
k

− 5k2skss
k2

+
2k4s
k3

− 6kk2s − 3k2kss

= ∂s∂tks + k2kss −
2ks∂skt

k
− 2kk2s +

k2skss
k2

+ kk2s + 3k2kss + 3k5

− kssss +
2ksksss

k
+

2k2ss
k

− 5k2skss
k2

+
2k4s
k3

− 6kk2s − 3k2kss

= ∂ss(kss + k3) + 2k2kss − 5kk2s −
2ks∂s(kss + k3)

k

+
k2skss
k2

+ 3k5 − kssss +
2ksksss

k
+

2k2ss
k

− 5k2skss
k2

+
2k4s
k3

= kssss + 5k2kss − 5kk2s −
2ksksss

k

− 4k2skss
k2

+ 3k5 − kssss +
2ksksss

k
+

2k2ss
k

+
2k4s
k3

= − 5kk2s + 3k5 +
2k4s
k3

+ 5k2kss +
2k2ss
k

− 4k2skss
k2

.

As kss = (W + k2s/k − k3), substituting we get

(∂t − ∂ss)W = − 5kk2s + 3k5 +
2k4s
k3

(4.4.1)

+ 5k2(W + k2s/k − k3)

+
2(W + k2s/k − k3)2

k
− 4k2s(W + k2s/k − k3)

k2

= − 5kk2s + 3k5 +
2k4s
k3

+ 5k2W + 5kk2s − 5k5

+
2W 2

k
+

2k4s
k3

+ 2k5 +
4Wk2s
k2

− 4Wk2 − 4kk2s

− 4k2s(W + k2s/k − k3)

k2

=
2W 2

k
+Wk2 .

We notice that, since k > k0 > 0, by the maximum principle if W is positive at some time it
remains positive.
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As Z = W + k/(2(t− C)), we then get

(∂t − ∂ss)Z =(∂t − ∂ss)W +
k3

2(t− C)
− k

2(t− C)2

=
2W 2

k
+Wk2 +

k3

2(t− C)
− k

2(t− C)2

=
2(Z − k/(2(t− C)))2 + k3(Z − k/(2(t− C)))

k
+

k3

2(t− C)
− k

2(t− C)2

=
2Z2 + k2/(2(t− C)2)− 2Zk/(t− C)

k
+

k3Z − k4/(2(t− C))

k

+
k3

2(t− C)
− k

2(t− C)2

=
2Z2

k
− 2Z

t− C
+ k2Z .

As k > k0 > 0 the term k/(2(t− C)) diverges as t → C+ and W is bounded from below, then we
have that Z goes uniformly to +∞ as t → C+. Hence, Z is positive in S

1 × (C,C + δ) for some
δ > 0 and by the maximum principle it cannot get zero on γt for every t ∈ (C, T − ε).
As Z(λ) ≥ Z > 0 for every function λ : M × (T0, T ) → R, sending ε → 0 and C → T0 we have
the thesis of the theorem.

Remark 4.4.3. When the curves γt are not compact there are two nontrivial technical points to
take care of: the possible nonexistence of the minimum in space of Z( · , t) and the fact that it is
not granted that limt→C+ infγt

Z( · , t) = +∞, as k could go to zero at infinity (possibly, a value
k0 > 0 such that k > k0 uniformly does not exist). This requires a perturbation of Z in space with
a function growing enough at infinity and the addition to Z of another function assuring that the
resulting term uniformly diverges as t → C+ (see [59, 64] for the details).

Remark 4.4.4. The higher complexity of the proof in dimension larger than one is essentially due
to the fact that the minimum of the quadratic

Z(X) =
∂H

∂t
+

H

2(t− C)
+ 2〈∇H |X〉+ hijX

iXj ,

which is given by

Z =
∂H

∂t
+

H

2(t− C)
− (A−1)pq∇pH∇qH ,

is clearly more difficult to deal with than in the one–dimensional case (here (A−1)pq denotes the
inverse matrix of the second fundamental form hij , that is (A−1)pqhqr = δpr ).
Anyway, after a quite long computation one can see that

∂Z

∂t
−∆Z = 2gij(A−1)klJikJjl +

(
|A|2 − 2

t− C

)
Z ≥

(
|A|2 − 2

t− C

)
Z

where

Jik = ∇2
ikH+Hh2

ik − (A−1)pq∇pH∇qhik +
hik

2(t− C)
,

see [27, Chapter 15].
Actually, another possibility is to keep the vector field X generic and to compute the evolution
equation for Z(X), like in the original proof of Hamilton.

Proof of Theorem 4.4.2 – One–Dimensional Case. Suppose that we have an ancient curvature flow γt
of complete, connected curves in the plane with k > 0. By Theorem 4.4.1 we have

Z = ∂tk − k2s/k + k/(t− T0) ≥ 0
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at every point and for every t, T0 ∈ R with T0 < t < T . Sending T0 → −∞ we get

W = ∂tk − k2s/k ≥ 0 .

As we computed in equation (4.4.1) that

(∂t − ∂ss)W =
2W 2

k
+Wk2 ,

if W is zero at some point in space and time, it must be zero everywhere by the strong maximum
principle. By hypothesis k takes a maximum at some point in space and time, hence at such point
kt = ks = 0 which implies W = 0.
Thus, kt = k2s/k for all the curves of the flow, or equivalently kss + k3 − k2s/k = 0.
If we set v = −(ks/k)τ + kν as a vector field in R

2 along γt, obviously 〈v | ν〉 = k, then

∂sv = − (kss/k − k2s/k
2)τ − (ks/k)kν + ksν − k2τ

= − (−k2 + k2s/k
2 − k2s/k

2)τ − k2τ = 0

and

∂tv =(−kts/k + kskt/k
2 − kks)τ + (−k2s/k + kt)ν

=(−kst/k − kks + k3s/k
3 − kks)τ

=(−[∂s(k
2
s/k)]/k + k3s/k

3 − 2kks)τ

=(−2kskss/k
2 + 2k2s/k

3 − 2kks)τ

= − 2
ks
k
(kss − k2s/k + k3)τ = 0 .

Hence, as the curves of the flow are connected, v is a vector field along γt constant in space and
time.
Since k = 〈v | ν〉, we have that the curves γt move by translation under the mean curvature
flow.

Then, putting together Propositions 4.2.3, 4.2.7, 4.3.2 and Theorem 4.4.2, we have the follow-
ing results.

Theorem 4.4.5. The blow up limit flow obtained by the Hamilton’s modified procedure at a type II
singularity of the motion of a initial hypersurface with H ≥ 0 is a translating mean curvature flow of
complete, nonflat, convex hypersurfaces with bounded curvature and its covariant derivatives, that is, it
satisfies H = 〈v | ν〉 at every point in space and time.
If any of the convex hypersurfaces of the limit flow is not strictly convex, then the limit flow splits as the
product of an m–dimensional strictly convex, translating flow as above and R

n−m.

Theorem 4.4.6. The blow up limit flow obtained by the Hamilton’s procedure at a type II singularity of
the motion of a closed curve in the plane is a translating curvature flow of complete, nonflat curves with
bounded curvature and its covariant derivatives. Moreover, for all the curves k > 0.
Hence, this flow is given (up to rigid motions) by the grim reaper (see Section 1.4).

Remark 4.4.7. For curves in the plane, possibly with self–intersections, such that the initial curva-
ture is never zero, this result was obtained via a different method by Angenent [15] (see also [3]),
studying directly the parabolic equation satisfied by the curvature function.

In [126], White was able to exclude the possibility of getting as a blow up limit the product of
a grim reaper with R

n−1, when n ≥ 2.
In dimension two, by this result of White and the analysis of Wang [123], the only possible

blow up limit flow is given (up to a rigid motion) by the unique rotationally symmetric, trans-
lating hypersurface which is the graph of an entire, strictly convex function described by the
ODE (1.4.1), in Section 1.4.
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In general, without assuming the condition H ≥ 0, one could conjecture that blow up limits
like the minimal catenoid surface M in R

3 given by

Ω =
{
(x, y) ∈ R

2 × R | cosh |y| = |x|
}

cannot appear. See White [126], Ecker [38] for more details and the recent paper by Sheng and
Wang [107].

4.5 Embedded Closed Curves in the Plane

In the special case of the evolution of an embedded closed curve in the plane, it is possible to
exclude at all the type II singularities. This, together with the case of convex, compact, hypersur-
faces (as we have seen in the proof of Theorem 3.4.11) are the only known cases in which this can
be done in general.

By Theorem 4.4.6 and embeddedness, any blow up limit must a unit multiplicity grim reaper.
We apply now a very geometric argument by Huisken in [72] in order to exclude also such pos-
sibility (see also [65] for another similar quantity).

Given the smooth flow γt of an initial embedded closed curve in some interval [0, T ), we
know that the curve stays embedded during the flow so we can see every γt as a subset of R2.
At every time t ∈ [0, T ), for every pair of points p and q in γt we define dt(p, q) to be the geodesic
distance in γt of p and q, |p− q| the standard distance in R

2 and Lt the length of γt.
We consider the function Φt : γt × γt → R defined as

Φt(p, q) =

{
π|p−q|

Lt

/ sin πdt(p,q)
Lt

if p 6= q,

1 if p = q ,

which is a perturbation of the quotient between the extrinsic and the intrinsic distance of a pair
of points on γt.
Since γt is smooth and embedded for every time, the function Φt is well defined and positive.
Moreover, it is easy to check that even if dt is not C1 at the pairs of points such that dt(p, q) = Lt/2,
the function Φt is C2 in the open set {p 6= q} ⊂ γt × γt and continuous on γt × γt.
By compactness, the following minimum there exists,

E(t) = min
p,q∈γt

Φt(p, q) .

We call this quantity Huisken’s embeddedness ratio.
Since the evolution is smooth it is easy to see that the function E : [0, T ) → R is continuous.

Remark 4.5.1. The quantity E can be defined also for nonembedded closed curves, but in such
case E = 0, indeed its positivity is equivalent to embeddedness.

Lemma 4.5.2 (Huisken [72]). The function E(t) is monotone increasing in every time interval where
E(t) < 1.
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Proof. We start differentiating in time Φt(p, q),

d

dt
Φt(p, q) =

π

Lt

〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|

/
sin

πdt(p, q)

Lt

+

(
π|p− q|

L2
t

∫

γt

k2 ds

)/
sin

πdt(p, q)

Lt

− π2|p− q|
L2
t

cos
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds−
∫ p

q

k2 ds

)/
sin2

πdt(p, q)

Lt

=

[ 〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|2 +

1

Lt

∫

γt

k2 ds

− π

Lt

cot
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds−
∫ p

q

k2 ds

)]
Φt(p, q)

=

[ 〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|2 +

1

Lt

(
1− πdt(p, q)

Lt

cot
πdt(p, q)

Lt

)∫

γt

k2 ds

+
π

Lt

cot
πdt(p, q)

Lt

∫ p

q

k2 ds

]
Φt(p, q)

where s is the arclength and k the curvature of γt. It is easy to see that being the function E
the minimum of a family of uniformly locally Lipschitz functions, it is also locally Lipschitz,
hence differentiable almost everywhere. Then, to prove the statement it is enough to show that
dE(t)
dt

> 0 for every time t such that this derivative exists. We will do that as usual, by Hamilton’s
trick (Lemma 2.1.3).
Let (p, q) be a minimizing pair at a differentiability time t and suppose that E(t) < 1. By the very
definition of Φt, it must be p 6= q.
We set α = πdt(p, q)/Lt and notice that α cotα < 1 as α ∈ (0, π/2]. Moreover,

∫
γt

k2 ds ≥
(∫

γt

k ds
)2

/Lt ≥ 4π2/Lt. Then, we have

d

dt
E(t) ≥

[ 〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|2 +

4π2

L2
t

(1− α cotα) +
π

Lt

cotα

∫ p

q

k2 ds

]
E(t)

that is,

d

dt
logE(t) ≥ 〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2 +
4π2

L2
t

(1− α cotα) +
π

Lt

cotα

∫ p

q

k2 ds , (4.5.1)

for any minimizing pair (p, q).
Assume that the curve is parametrized counterclockwise by arclength and that p and q are like in
Figure 4.1.

We set p(s) = γt(s1 + s) with p = γt(s1), then, by minimality we have

0 =
d

ds
Φt(p(s), q)

∣∣∣∣
s=0

=
π

Lt

〈p− q | τ(p)〉
|p− q| sin πdt(p,q)

Lt

− π|p− q|
Lt sin

2 πdt(p,q)
Lt

·
π cos πdt(p,q)

Lt

Lt

where we denoted by τ(p) the oriented unit tangent vector to γt at p.
By this equality we get

cosβ(p) =
〈p− q | τ(p)〉

|p− q| =
π|p− q|

Lt sin
πdt(p,q)

Lt

cos
πdt(p, q)

Lt

= E(t) cosα

where β(p) ∈ [0, π/2] is the angle between the vectors p− q and τ(p).
Repeating this argument for the point q we get

cosβ(q) = −E(t) cosα
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β(q)

p

γt

qβ(p)

Figure 4.1:

where, as before, β(q) is the angle between q − p and τ(q), see Figure 4.1. Clearly, it follows that
β(p) + β(q) = π.
Notice that if one of the intersections of the segment [p, q] with the curve is tangential, we would
have E(t) cosα = 1 which is impossible as we assumed that E(t) < 1. Moreover, by the relation
cosβ(p) = E(t) cosα < cosα it follows that β(p) > α.

We look now at the second variation of Φt at the same minimizing pair of points (p, q). With
the same notation, if p = γt(s1) and q = γt(s2) we set p(s) = γt(s1 + s) and q(s) = γt(s2 − s).
After a straightforward computation, one gets

0 ≤ d2

ds2
Φt(p(s), q(s))

∣∣∣∣
s=0

=
π

Lt

( 〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q| +

4π2|p− q|
L2
t

)/
sin

πdt(p, q)

Lt

=

[ 〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|2 +

4π2

L2
t

]
E(t) .

Hence, getting back to inequality (4.5.1) we have

d

dt
logE(t) ≥ 〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2 +
4π2

L2
t

(1− α cotα) +
π

Lt

cotα

∫ p

q

k2 ds

≥ − 4π2

L2
t

α cotα+
π

Lt

cotα

∫ p

q

k2 ds

=
π cotα

Lt

(∫ p

q

k2 ds− 4π

Lt

α

)
,

so it remains to show that this last expression is positive. As

∫ q

p

k2 ds ≥
(∫ q

p

k ds

)2

/dt(p, q)

and noticing that
∫ q

p
k ds is the angle between the tangent vectors τ(p) and τ(q) we have

(∫ q

p
k ds

)2

=

4β(p)2 < 4α2, as we concluded before.
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Thus,

d

dt
logE(t) ≥ π cotα

Lt

(∫ p

q

k2 ds− 4π

Lt

α

)

>
π cotα

Lt

(
4α2

dt(p, q)
− 4π

Lt

α

)

=0

recalling that α = πdt(p, q)/Lt.

Remark 4.5.3. By its definition and this lemma, the function E is always nondecreasing. Actually,
to be more precise, by means of a simple geometric argument it can be proved that if E(t) = 1
the curve γt must be a circle. Hence, in any other case E is strictly increasing in time.

An immediate consequence is that for every initial embedded, closed curve in R
2, there exists

a positive constant C depending on the initial curve such that on all [0, T ) we have E(t) ≥ C.
The same conclusion holds for any rescaling of such curves as the function E is scaling invariant
by construction.

Remark 4.5.4. This lemma also provide an alternative proof of the fact that an initial embedded,
closed curve stays embedded. Indeed, it cannot develop a self–intersection during its curvature
flow, otherwise E would get zero.

We can then exclude type II singularities in the curvature flow of embedded closed curves.
Any blow up limit flow γ∞ is given (up to rigid motions) by a grim reaper, that is, the translating
graph Γ of the function y = − log cosx in the interval (−π/2, π/2). Assuming that γ∞

0 = Γ,
we consider the following four points p1 = (−x1,− log cosx1), q1 = (x1,− log cosx1), p2 =
(−x2,− log cosx2) and q2 = (x2,− log cosx2) belonging to Γ, for 0 < x1 < x2 < π/2 such that
− log cosx2 > π/2− 3 log cosx1.

As the rescaled curves γk
0 converge locally in C1 to Γ, for any ε > 0 such that x2+ε < π/2 and

k is large enough the curve γk
0 will be C1–close to Γ in the open rectangle Rε = (−x2 − ε, x2 +

ε)×(−ε,− log cosx2+ε), hence there will be a pair of points (p, q) ∈ γk
0 arbitrarily close to (p1, q1)

and another pair (p̃, q̃) ∈ γk
0 arbitrarily close to (p2, q2). As k → ∞, the geodesic distance dγk

0
(p, q)

on the closed curve γk
0 between p and q is definitely given by the length of the part of the curve

which is close to the vertex of Γ, indeed, this latter is smaller than π− 2 log cosx1, when k is large
enough, instead the other part of the curve has a length which is at least the sum of the Euclidean
distances |p̃ − p| + |q̃ − q| which is definitely larger than 2(log cosx1 − log cosx2) and this last
quantity is larger than π − 4 log cosx1, by construction.

Hence, when k is large enough, the Huisken’s embeddedness ratio for the rescaled curve γk
0

is not larger than

π|p− q|
L

/
sin

πdγk

0
(p, q)

L
≤ π(π + 2ε)

L

/
sin

πdγk

0
(p, q)

L

≤ π(π + 2ε)

L

/ 2dγk

0
(p, q)

L

=
π(π + 2ε)

2dγk

0
(p, q)

≤ π2

dγk

0
(p, q)

,

where L is the total length of the curve γk
0 and we used the inequality sinx ≥ 2x/π holding for

every x ∈ [0, π/2].
Finally, again by the C1–convergence of γk

0 to Γ in Rε, we can also assume that dγk

0
(p, q) is larger

than − log cosx1.
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Now we consider a sequence of pairs xi
1 < xi

2 as above such that xi
1 → π/2, then we have a

sequence of rescaled curves γki

0 such that the associated Huisken’s embeddedness ratio tends to
zero, as d

γ
ki

0

(p, q) → +∞ when i → ∞.

This is in contradiction with the fact that the function E is scaling invariant and uniformly
bounded from below by some positive constant C for all the curves of the flow.
As this argument does not change if we apply to Γ any rigid motion, in presence of a type II
singularity in the embedded case, we would have a contradiction with the conclusion of Theo-
rem 4.4.6.

Theorem 4.5.5. Type II singularities cannot develop during the curvature flow of an embedded, closed
curve in R

2.

Collecting together Theorem 3.5.1 about type I singularities and this last proposition, we ob-
tain Theorem 3.4.10 by Gage and Hamilton and the following theorem due to Grayson [53],
whose original proof is more geometric and direct, showing that the intervals of negative cur-
vature vanish in finite time before any singularity. We underline that the success of the line of
proof we followed is due to the bound from below on Huisken’s embeddedness ratio implied by
Lemma 4.5.2.
Modifying a little such quantity, Andrews and Bryan [12] were even able to give a simple and
direct proof without passing through the classification of singularities.

Theorem 4.5.6 (Grayson’s Theorem). Let γt be the curvature flow of a closed, embedded, smooth curve
in the plane, in the maximal interval of smooth existence [0, T ).
Then, there exists a time τ < T such that γτ is convex.
As a consequence, the result of Gage and Hamilton 3.4.10 applies and subsequently the curve shrinks
smoothly to a point as t → T .

Remark 4.5.7. This result, extended by Grayson to curves moving inside general surfaces, allowed
him to have a proof of the three geodesics theorem on the sphere [55] (first outlined by Lusternik
and Schnirelman in [92]).

We add a final remark in this case of embedded closed curves.
Letting A(t) be the area enclosed by γt which moves by curvature, we have

d

dt
A(t) = −

∫

γt

k ds = −2π ,

hence, as the evolution is smooth till the curve shrinks to a point at time T > 0 and clearly A(t)
goes to zero, we have A(0) = 2πT . That is, the maximal time of existence is exactly equal to the
initially enclosed area divided by 2π.

4.6 An Example of Singularity Analysis

We give an example how the results of this and previous lectures can be used to fully understand
the singularity formation in some cases (following a suggestion of Or Hershkovits).
We consider a torus of rotation in R

3 such that H > 0, obtained rotating around the z axis a small
circle in the xz plane with center on the x axis quite far from the origin. One clearly expects that
the torus collapses on a circle.

Suppose that a type II singularity develops, by the Hamilton’s modified procedure, every
blow up limit flow is a complete, nonflat, convex, embedded surface M∞, translating by mean
curvature with some constant velocity v ∈ R

3 (Theorem 4.4.5). Moreover, by the structural equa-
tion H = 〈v | ν〉, it follows that if p ∈ M∞ is the point where H takes its maximum, the velocity
of the flow is given by v = H(p)ν(p). Depending on the behavior of the radius of the circum-
ferences passing by the sequence of points of blow up in Hamilton’s modified procedure, in the
limit surface M∞ we can find either a straight line or a circle of maximum points for H, by rota-
tional symmetry around the z axis of the evolving tori. In this second case, since the unit normal



4. TYPE II SINGULARITIES 91

vectors in all the points of this circle must be parallel to the velocity v and the surface must be
convex, the only possibility would be a plane, which is not admissible. Hence, in case of a type
II singularity, every blow up limit must contain a straight line, then, by Proposition 4.2.7, it is the
product of a straight line with a convex, embedded curve, translating by mean curvature, that is,
a grim reaper (Theorem 4.4.6). By White’s result in [126], mentioned at the end of Section 4.4, this
cannot happen, thus we conclude that every possible singularity must be of type I.

The only possible type I blow up of a nonconvex, compact surface with positive mean curva-
ture are cylinders, hence, by the rotational symmetry, it clearly means that the torus is collapsing
on a circumferences and the rotating closed curves are becoming asymptotically circular at type
I singularity rate.

Notice that it is not possible that such circumference (with all the torus) “vanishes” at a single
point (which then must be the origin of R3) at the singular time, otherwise the type I blow up,
again by the rotational symmetry, must be a “vertical” cylinder but this is excluded by the geo-
metric structure of the torus that also share symmetry with respect to reflection on the xy plane
and its intersection with such plane is given by two circles around the origin. Such property must
clearly be satisfied also by every type I blow up limit surface, as it cannot have multiplicity larger
than one, being embedded, by Proposition 3.2.10.


