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Definition and Short Time Existence

1.1 Notations and Preliminaries

In this section we introduce some basic notations and facts about Riemannian manifolds and
their submanifolds, a good reference is [50].

In all the lectures the convention of summing over the repeated indices will be adopted.

The main objects we will consider are n–dimensional, complete hypersurfaces immersed in
R

n+1, that is, pairs (M,ϕ) where M is an n–dimensional, smooth manifold with empty boundary
and ϕ : M → R

n+1 is a smooth immersion (the rank of the differential dϕ is equal to n everywhere
on M ).

The manifold M gets in a natural way a metric tensor g turning it into a Riemannian manifold
(M, g) by pulling back the standard scalar product of Rn+1 with the immersion map ϕ.

Taking local coordinates around p ∈ M , we have local bases of TpM and T ∗

pM , respectively

given by vectors
{

∂
∂xi

}
and 1–forms {dxj}.

We will denote the vectors on M by X = Xi, which means X = Xi ∂
∂xi

, the 1–forms by ω = ωj ,

that is, ω = ωjdxj and a general mixed tensor by T = T i1...ik
j1...jl

, where the indices refer to the local
basis.

Sometimes we will consider tensors along M viewing it as a submanifold of R
n+1 via the

map ϕ, in such case we will use the Greek indices to denote the components of the tensors in
the canonical basis {eα} of Rn+1, for instance, given a vector field X along M , not necessarily
tangent, we will have X = Xαeα.

The metric g of M extended to tensors is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ik

j1...jl
Ss1...sk
z1...zl

,

where gij is the matrix of the coefficients of g in local coordinates and gij is its inverse matrix.
Clearly, the norm of a tensor is then

|T | =
√

g(T, T ) .

The scalar product of Rn+1 will be denoted by 〈· | ·〉. As the metric g is obtained by pulling it
back via ϕ, we have

gij = g

(
∂

∂xi
,
∂

∂xj

)
= (dϕ∗〈· | ·〉)

(
∂

∂xi
,
∂

∂xj

)
=

〈
∂ϕ

∂xi

∣∣∣∣
∂ϕ

∂xj

〉
.

The canonical measure induced by the metric g is given in a coordinate chart by µ =
√
GLn

where G = det(gij) and Ln is the standard Lebesgue measure on R
n.
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1. DEFINITION AND SHORT TIME EXISTENCE 7

The induced covariant derivative on (M, g) of a vector field X and of a 1–form ω are respec-
tively given by

∇jX
i =

∂Xi

∂xj
+ Γi

jkX
k , ∇jωi =

∂ωi

∂xj
− Γk

jiωk ,

where the Christoffel symbols Γi
jk are expressed by the formula,

Γi
jk =

1

2
gil
(

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
.

The covariant derivative ∇T of a general tensor T = T i1...ik
j1...jl

will be denoted by ∇sT
i1...ik
j1...jl

=

(∇T )i1...iksj1...jl
(we recall that such extension of the covariant derivative is uniquely defined on the

full tensor algebra by imposing the Leibniz rule and the commutativity with any metric contrac-
tion).
∇mT will stand for the m–th iterated covariant derivative of T .

The gradient ∇f of a function and the divergence divX of a vector field at a point p ∈ M are
defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM

and

divX = tr∇X = ∇iX
i =

∂

∂xi
Xi + Γi

ikX
k .

The (rough) Laplacian ∆T of a tensor T is given by

∆T = gij∇i∇jT .

If X is a smooth vector field with compact support on M , as ∂M = ∅ the following divergence
theorem holds ∫

M

divX dµ = 0 ,

which clearly implies, in particular, ∫

M

∆f dµ = 0

for every smooth function f : M → R with compact support.
Since ϕ is locally an embedding in R

n+1, at every point p ∈ M we can define up to a sign a
unit normal vector ν(p). Locally, we can always choose ν in order that it is smooth.
If the hypersurface M is compact and embedded, that is, the map ϕ is one–to-one, the inside of M
is easily defined and we will consider ν to be the inner pointing unit normal vector at every point
of M . In this case the vector field ν : M → R

n+1 is globally smooth.
The second fundamental form A = hij of M is the symmetric 2–form defined as follows,

hij =

〈
ν

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

and the mean curvature H is the trace of A, that is H = gijhij . Despite its name, H is the sum of the
eigenvalues of the second fundamental form, not their average mean (some few authors actually
define H/n as the mean curvature).

Remark 1.1.1. Notice that since the unit normal ν is defined up to a sign, the same is true for A
and H. Instead, the vector valued second fundamental form hijν, which is a 2–form with values in
R

n+1, and the mean curvature vector Hν are uniquely defined.
With our choice of ν as the inner pointing unit normal, the sphere S

n ⊂ R
n+1 has a positive

definite second fundamental form and positive mean curvature and the same holds for every
strictly convex hypersurface of Rn+1.
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We advise the reader that, by a little abuse of terminology, we will always say that a hypersurface
is convex when its second fundamental form is nonnegative definite, strictly convex when it is positive
definite. If the hypersurface is embedded, convexity in such sense is equivalent to the usual definition that
the hypersurface bounds a convex subset of the Euclidean space.

The linear map Wp : TpM → TpM given by Wp(v) = hi
j(p)v

j ∂
∂xi

is called the Weingarten
operator and its eigenvalues λ1 ≤ · · · ≤ λn the principal curvatures at the point p ∈ M . It is easy to
see that H = λ1 + · · ·+ λn and |A|2 = λ2

1 + · · ·+ λ2
n.

Exercise 1.1.2. Show that if the hypersurface M ⊂ R
n+1 is locally the graph of a function f :

R
n → R, that is, ϕ(x) = (x, f(x)), we have

gij = δij + fifj , ν = − (∇f,−1)√
1 + |∇f |2

hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f,∇f)

(
√

1 + |∇f |2)3
= div

(
∇f√

1 + |∇f |2

)

where fi = ∂if and Hessf is the Hessian of the function f .

Exercise 1.1.3. Show that if the hypersurface M ⊂ R
n+1 is locally the zero set of a smooth function

f : Rn+1 → R, with ∇f 6= 0 on such level set, we have

H =
∆f

|∇f | −
Hessf(∇f,∇f)

|∇f |3 = div

( ∇f

|∇f |

)
.

The following Gauss–Weingarten relations will be fundamental,

∂2ϕ

∂xi∂xj
= Γk

ij

∂ϕ

∂xk
+ hijν ,

∂ν

∂xj
= −hjlg

ls ∂ϕ

∂xs
. (1.1.1)

Actually, they express the fact that ∇M = ∇R
n+1 − Aν. We recall that considering M locally as a

regular submanifold of Rn+1, we have ∇M
X Y = (∇R

n+1

X Ỹ )M where the sign M denotes the projec-

tion on the tangent space to M and Ỹ is a local extension of the field Y in a local neighborhood
Ω ⊂ R

n+1 of ϕ(M).
Notice that, by these relations, it follows

∆ϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj
− Γk

ij

∂ϕ

∂xk

)
= gijhijν = Hν . (1.1.2)

By straightforward computations, we can see that the Riemann tensor, the Ricci tensor and
the scalar curvature can be expressed by means of the second fundamental form as follows,

Rijkl = g
(
∇2

ji

∂

∂xk
−∇2

ij

∂

∂xk
,
∂

∂xl

)
= hikhjl − hilhjk ,

Ricij = gklRikjl = Hhij − hilg
lkhkj ,

R = gijRicij = gijgklRikjl = H2 − |A|2 .

Hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇i∇jX
s −∇j∇iX

s =Rijklg
ksX l = (hikhjl − hilhjk) g

ksX l ,

∇i∇jωk −∇j∇iωk =Rijklg
lsωs = (hikhjl − hilhjk) g

lsωs .
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The symmetry properties of the covariant derivative of A are given by the following Codazzi
equations,

∇ihjk = ∇jhik = ∇khij (1.1.3)

which imply the following Simons’ identity (see [109]),

∆hij = ∇i∇jH+Hhilg
lshsj − |A|2hij . (1.1.4)

We will write T ∗ S, following Hamilton [56], to denote a tensor formed by a sum of terms
each one of them obtained by contracting some indices of the pair T , S with the metric gij and/or
its inverse gij .
A very useful property of such ∗–product is that

|T ∗ S| ≤ C |T | |S|

where the constant C depends only on the algebraic “structure” of T ∗ S.
Sometimes we will need the n–dimensional Hausdorff measure in R

n+1, we will denote it by
Hn.

We advise the reader that in all the computations the constants could vary between different formulas
and from a line to another.

1.2 First Variation of the Area Functional

Given an immersion ϕ : M → R
n+1 of a smooth hypersurface in R

n+1, we consider the Area
functional

Area(ϕ) =

∫

M

dµ

where µ is the canonical measure associated to the metric g induced by the immersion.
In this section we are going to analyze the first variation of such functional which is nothing

else than the volume of the hypersurface.
We consider a smooth one parameter family of immersions ϕt : M → R

n+1, with t ∈ (−ε, ε)
and ϕ0 = ϕ, such that, outside of a compact set K ⊂ M , we have ϕt(p) = ϕ(p) for every t ∈
(−ε, ε).

Defining the field X = ∂ϕt

∂t

∣∣∣
t=0

along M (as a submanifold of Rn+1) we see that X is zero outside

K, we call such field the infinitesimal generator of the variation ϕt.
We compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ϕt

∂xi

∣∣∣∣
∂ϕt

∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣
∂ϕ

∂xj

〉
+

〈
∂X

∂xj

∣∣∣∣
∂ϕ

∂xi

〉

=
∂

∂xi

〈
X

∣∣∣∣
∂ϕ

∂xj

〉
+

∂

∂xj

〈
X

∣∣∣∣
∂ϕ

∂xi

〉
− 2

〈
X

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=
∂

∂xi

〈
XM

∣∣∣∣
∂ϕ

∂xj

〉
+

∂

∂xj

〈
XM

∣∣∣∣
∂ϕ

∂xi

〉
− 2Γk

ij

〈
XM

∣∣∣∣
∂ϕ

∂xk

〉
− 2hij〈X | ν〉 ,

where XM is the tangent component of the field X and we used the Gauss–Weingarten rela-
tions (1.1.1) in the last step.
Letting ω be the 1–form defined by ω(Y ) = g(dϕ∗(XM ), Y ), this formula can be rewritten as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj

∂xi
+

∂ωi

∂xj
− 2Γk

ijωk − 2hij〈X | ν〉 = ∇iωj +∇jωi − 2hij〈X | ν〉 .
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Hence, using the formula ∂t detA(t) = detA(t)Trace[A−1(t)∂tA(t)], we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij) g

ij ∂
∂tgij

∣∣
t=0

2

=

√
det(gij) g

ij
(
∇iωj +∇jωi − 2hij〈X | ν〉

)

2

=
√
det(gij)

(
div dϕ∗(XM )−H〈X | ν〉

)
.

If the Area of the immersion ϕ is finite, the same holds for all the maps ϕt, as they are compact
deformations of ϕ. Assuming that the compact K is contained in a single coordinate chart, we
have

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

=
∂

∂t

∫

K

dµt

∣∣∣∣
t=0

=
∂

∂t

∫

K

√
det(gij) dLn

∣∣∣∣
t=0

=

∫

K

∂

∂t

√
det(gij)

∣∣∣∣
t=0

dLn

=

∫

K

(
div dϕ∗(XM )−H〈X | ν〉

)√
det(gij) dLn

=

∫

M

(
div dϕ∗(XM )−H〈X | ν〉

)
dµ

= −
∫

M

H〈X | ν〉 dµ

where we used the fact that X is zero outside K and in the last step we applied the divergence
theorem. Notice that all the integrals are well defined because we are actually integrating only
on the compact set K.
In the case that K is contained in several charts, the same conclusion follows from a standard
argument using a partition of unity.

Proposition 1.2.1. The first variation of the Area functional depends only on the normal component of

the infinitesimal generator X = ∂ϕt

∂t

∣∣∣
t=0

of the variation ϕt, precisely

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

= −
∫

M

H〈X | ν〉 dµ .

Clearly, such dependence is linear.

Given any immersion ϕ : M → R
n+1 and any vector field X with compact support along M ,

we can always construct a variation with infinitesimal generator X as ϕt(p) = ϕ(p) + tX(p). It is
easy to see that for |t| small the map ϕt is still a smooth immersion.
Hence, as the hypersurfaces which are critical points of the Area functional must satisfy

∫

M

H〈X | ν〉 dµ = 0

for every field X with compact support, they must have H = 0 everywhere, that is, zero mean
curvature (and conversely). This is the well known definition of the so called minimal surfaces.

As the quantity −Hν can be interpreted as the gradient of the Area functional (be careful here,
the measure µ is varying with the immersion, we are not computing the gradient with respect
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to some fixed L2–structure on the space of immersions of M in R
n+1), we can consider the mo-

tion of a hypersurface by minus this gradient, that is, the mean curvature flow. So, one looks
for hypersurfaces moving with velocity Hν at every point. This means choosing, among all the

velocity functions with fixed L2(µ)–norm equal to
(∫

M
H2 dµ

)1/2
, the one such that the Area of

hypersurface decreases most rapidly.
This idea is quite natural and arises often in studying the dynamics of models of physical sit-

uations where the energy is given by the “Area” of the interfaces between the phases of a system.
Moreover, as the Area functional is the simplest (in terms of derivatives of the parametrization)
geometric functional, that is, invariant by isometries of Rn+1 and diffeomorphisms of M , the mo-
tion by mean curvature is the simplest variational geometric flow for immersed hypersurfaces.
Other geometric functionals (for instance, depending on the next simpler geometric invariant,
the curvature) generally produce a first variation of order higher than two in the derivatives of
the parametrization and a relative higher order PDE’s system.
One can consider second order flows where the velocity of the motion is related to different func-
tions of the curvature, like the Gauss flow of surfaces, for instance, where the velocity is given
by Gν (G is the Gauss curvature of M , that is, G = detA) or more complicated flows, but these
evolutions are usually not variational, they do not arise as “gradients” (in the above sense) of
geometric functionals (see Section 1.6).

1.3 The Mean Curvature Flow

Definition 1.3.1. Let ϕ0 : M → R
n+1 be a smooth immersion of an n–dimensional manifold. The

mean curvature flow of ϕ0 is a family of smooth immersions ϕt : M → R
n+1 for t ∈ [0, T ) such

that setting ϕ(p, t) = ϕt(p) the map ϕ : M × [0, T ) → R
n+1 is a smooth solution of the following

system of PDE’s {
∂
∂tϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(1.3.1)

where H(p, t) and ν(p, t) are respectively the mean curvature and the unit normal of the hyper-
surface ϕt at the point p ∈ M .

Remark 1.3.2. Notice that even if the unit normal vector is defined up to a sign, the field H(p, t)ν(p, t)
is independent of such choice.

Using equation (1.1.2), this system can be rewritten in the appealing form

∂ϕ

∂t
= ∆ϕ

but, despite its formal analogy with the heat equation, actually, it is a second order, quasilinear and
degenerate, parabolic system, as the Laplacian is the one associated to the evolving hypersurfaces
at time t,

∆ϕ(p, t) = ∆g(p,t)ϕ(p, t) = gij(p, t)∇g(p,t)
i ∇g(p,t)

j ϕ(p, t)

and its coefficients as second order partial differential operator depend on the first derivatives of
ϕ. Moreover, this operator is degenerate, as its symbol (the symbol of the linearized operator)
admits zero eigenvalues due to the invariance of the Laplacian by diffeomorphisms, see [49] for
details.

Like the Area functional, the flow is obviously invariant by rotations and translations, or
more generally under any isometry of Rn+1. Moreover, if ϕ(p, t) is a mean curvature flow and
Ψ : M → M is a diffeomorphism, then the reparametrization ϕ̃(p, t) = ϕ(Ψ(p), t) is still a mean
curvature flow. This last property can be reread as “the flow is invariant under reparametriza-
tion”, suggesting that the important objects in the flow are actually the subsets Mt = ϕ(M, t) of
R

n+1.
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The problem also satisfies the following parabolic invariance under rescaling (consequence
of the property Area(λϕ) = λnArea(ϕ), for any n–dimensional immersion), if ϕ(p, t) is a mean
curvature flow of ϕ0 and λ > 0, then ϕ̃(p, t) = λϕ(p, λ−2t) is a mean curvature flow of the initial
hypersurface λϕ0.

During the flow the Area of the hypersurfaces (which is the natural energy of the problem) is
nonincreasing, indeed, by the same computation for the first variation of such functional in the
previous section, we have

∂

∂t
Area(ϕt) =

∂

∂t

∫

M

dµt = −
∫

M

H2 dµt .

This clearly implies the estimate

∫ Tmax

0

∫

M

H2 dµt ≤ Area(ϕ0)

in the maximal time interval [0, Tmax) of smooth existence of the flow.

Exercise 1.3.3. By means of this last inequality, try to get an estimate from above for the maximal
time of smooth existence Tmax for closed curves in R

2 and compact surfaces in R
3.

Proposition 1.3.4 (Geometric Invariance under Tangential Perturbations). If a smooth family of
immersions ϕ : M × [0, T ) → R

n+1 satisfies the system of PDE’s

{
∂
∂tϕ(p, t) = H(p, t)ν(p, t) +X(p, t)

ϕ(p, 0) = ϕ0(p)

where X is a time dependent smooth vector field along M such that X(p, t) belongs to dϕt(TpM) for every
p ∈ M and every time t ∈ [0, T ), then, locally around any point in space and time, there exists a family of
reparametrizations (smoothly time dependent) of the maps ϕt which satisfies system (1.3.1).
If the hypersurface M is compact, one can actually find uniquely a family of global reparametrizations
of the maps ϕt as above for every t ≥ 0, leaving the initial immersion ϕ0 unmodified and satisfying sys-
tem (1.3.1).
Conversely, if a smooth family of moving hypersurfaces ϕ : M×[0, T ) → R

n+1 can be globally reparametrized
for t ≥ 0 in order that it moves by mean curvature, then the map ϕ has to satisfy the system above for
some (uniquely determined) time dependent vector field X with X(p, t) ∈ dϕt(TpM), for every p ∈ M
and every time t ∈ [0, T ).

Proof. First we assume that M is compact, we will produce a smooth global parametrization of
the evolving sets in order to check Definition 1.3.1.
By the tangency hypothesis, the time dependent vector field on M given by

Y (q, t) = −dϕ∗

t (q)(X(q, t))

is globally well defined and smooth.
Let Ψ : M × [0, T ) → M be a smooth family of diffeomorphisms of M with Ψ(p, 0) = p for every
p ∈ M and

∂

∂t
Ψ(p, t) = Y (Ψ(p, t), t) , (1.3.2)

for every time t ∈ [0, T ).
This family exists, is unique and smooth, by the existence and uniqueness theorem for ODE’s on
the compact manifold M .
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Considering the reparametrizations ϕ̃(p, t) = ϕ(Ψ(p, t), t), one has

∂ϕ̃

∂t
(p, t) =

∂ϕ

∂t
(Ψ(p, t), t) + dϕt(Ψ(p, t))

(∂Ψ
∂t

(p, t)
)

=H(Ψ(p, t), t)ν(Ψ(p, t), t) +X(Ψ(p, t), t) + dϕt(Ψ(p, t))(Y (Ψ(p, t), t))

=H(Ψ(p, t), t)ν(Ψ(p, t), t) +X(Ψ(p, t), t)

− dϕt(Ψ(p, t))(dϕ∗

t (Ψ(p, t))(X(Ψ(p, t), t)))

=H(Ψ(p, t), t)ν(Ψ(p, t), t)

= H̃(p, t)ν̃(p, t) .

Hence, ϕ̃ satisfies system (1.3.1) and ϕ̃0 = ϕ0.
Conversely, this computation also shows that if ϕ̃(p, t) = ϕ(Ψ(p, t), t) satisfies system (1.3.1), the
family of diffeomorphisms Ψ : M × [0, T ) → M must solve equation (1.3.2), hence, it is unique if
we assume Ψ( · , 0) = IdM in order that the map ϕ0 is unmodified.
In the noncompact case, we have to work locally in space and time, solving the above system of
ODE’s in some positive interval of time in an open subset Ω ⊂ M with compact closure, then
obtaining a solution of system (1.3.1) in a possibly smaller open subset of Ω and some interval of
time.

Assume now that the reparametrized map ϕ̃(p, t) = ϕ(Ψ(p, t), t) is a mean curvature flow.
Differentiating, we get

∂ϕ̃

∂t
(p, t) =

∂ϕ

∂t
(Ψ(p, t), t) + dϕt(Ψ(p, t))

(∂Ψ
∂t

(p, t)
)

=H̃(p, t)ν̃(p, t)

=H(Ψ(p, t), t)ν(Ψ(p, t), t)

that is,
∂ϕ

∂t
(q, t) = H(q, t)ν(q, t)− dϕt(q)

(∂Ψ
∂t

(Ψ−1
t (q), t)

)
,

for every q ∈ M and t ∈ [0, T ). Then, the last statement of the proposition follows by setting

X(q, t) = −dϕt(q)
(

∂Ψ
∂t (Ψ

−1
t (q), t)

)
.

Corollary 1.3.5. If a smooth family of hypersurfaces ϕt = ϕ( · , t) satisfies 〈∂tϕ | ν〉 = H, then it can be
everywhere locally reparametrized to a mean curvature flow. If M is compact, this can be done uniquely
by global reparametrizations, without modifying ϕ0.

Remark 1.3.6. A short way to state the previous proposition and corollary is to say that the tan-
gential component of the velocity of the points of the hypersurface, does not affect the global
“shape” during the motion.
This is particularly meaningful in the case that system (1.3.1) has a unique solution, for instance
when M is compact, as we will see in Theorem 1.5.1 in the next section.

By this invariance property one is led to speak of mean curvature flow of hypersurfaces con-
sidering them as subsets of Rn+1 and forgetting their parametrizations. This is clear in the case
of embedded hypersurfaces, where the identification of (M, g(t)) with the images of the embed-
dings ϕt(M) is immediate, but it also works for nonembedded hypersurfaces as every immersion
is locally an embedding.
We give then a more geometric, alternative definition of the mean curvature flow. In the sequel
it will be clear by the context which one we are using.

Definition 1.3.7. We still say that a family of smooth immersions ϕt : M → R
n+1, for t ∈ [0, T ),

is a mean curvature flow if locally at every point, in space and time, there exists a family of
reparametrizations which satisfies system (1.3.1).
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Proposition 1.3.4 expresses the substantial equivalence between this definition (Eulerian point
of view) and Definition 1.3.1 (Lagrangian point of view).

Exercise 1.3.8 (Motion of Graphs). Show that if the smooth hypersurfaces ϕt : M → R
n+1, mov-

ing by mean curvature, are locally graphs on some open subset Ω of the hyperplane 〈e1, . . . , en〉 ⊂
R

n+1, that is, we have a smooth function f : Ω× [0, T ) → R, such that

ϕ(p, t) = (x1(p), . . . , xn(p), f(x1(p), . . . , xn(p), t)) ,

there holds

∂tf = ∆f − Hessf(∇f,∇f)

1 + |∇f |2 =
√
1 + |∇f |2 div

(
∇f√

1 + |∇f |2

)
.

On the other hand, if we have a function f satisfying the above parabolic equation then its graph
is a hypersurface moving by mean curvature (according to Definition 1.3.7).

Exercise 1.3.9 (Motion of Level Sets). Assume that for every time t ∈ [0, T ) the image ϕt(M) of
the smooth, embedded hypersurfaces ϕt : M → R

n+1, moving by mean curvature, is the zero set
of ft = f( · , t), where f : Rn+1 × [0, T ) → R is a smooth function and zero is a regular value of
ft for every t ∈ [0, T ). Then at all the points x ∈ R

n+1 and times t ∈ [0, T ) such that f(x, t) = 0
there holds

∂tf = ∆f − Hessf(∇f,∇f)

|∇f |2 = |∇f | div
( ∇f

|∇f |

)
.

Conversely, if we have a smooth function f satisfying the above parabolic equation, every regular
level set of f( · , t) is a hypersurface moving by mean curvature (according to Definition 1.3.7).

Exercise 1.3.10 (Distance Functions). Compute the evolution equation satisfied by the signed
distance function dMt

: Rn+1 × [0, T ) → R at the points x ∈ Mt = ϕt(M), if the compact and
embedded, smooth hypersurfaces ϕt : M → R

n+1 move by mean curvature.
The signed distance function is the function which coincides with the distance in the region “out-
side” a hypersurface and with minus the distance in the “inside” region (show that it is smooth
in a tubular neighborhood of the hypersurface).

Exercise 1.3.11 (Brakke’s Definition [21]). Show that a smooth family of compact and embedded
hypersurfaces ϕt : M → R

n+1 satisfies

d

dt

∫

ϕt(M)

f dHn ≤
∫

ϕt(M)

(
H〈∇f | ν〉 −H2f

)
dHn ,

for every positive function f : Rn+1 → R, if and only if the hypersurfaces are moving by mean
curvature flow (according to Definition 1.3.7).
In the formula Hn is the n–dimensional Hausdorff measure in R

n+1.

1.4 Examples

Spheres and cylinders are the easiest and actually some of the few nontrivial explicitly com-
putable examples of mean curvature flows (minimal surfaces are trivial examples as they are not
moving at all, satisfying H = 0).

Let us consider a sphere of radius R which, by the translation invariance of the flow, we can
assume to be centered at the origin of Rn+1. A right guess is that at every time the hypersurface
remains a sphere and the mean curvature flow simply changes its radius R(t), this is actually
true by the uniqueness theorem in the next section. As the mean curvature is everywhere equal
to n/R and since we chose the inner pointing unit normal, the evolution equation for the radius
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of the sphere is simply R′(t) = −n/R(t) with R(0) = R. Indeed, if we set M = S
n and ϕ(p, t) =

R(t)ϕ0(p), being ϕ0 the standard immersion of Sn in R
n+1, we have

R′(t)ϕ0(p) =
∂

∂t
ϕ(p, t) = H(p, t)ν(p, t) = −nϕ0(p)/R(t) ,

which is an ODE that can be easily integrated to get R(t) =
√
R2 − 2nt.

At time Tmax = R2/(2n) the sphere shrinks to a point so the flow becomes singular, this is
the maximal time of existence. We can then write the evolution of the radius also as R(t) =√
2n(Tmax − t).

During the flow the norm of the second fundamental form evolves as

|A(t)| = √
n/R(t) =

1√
2(Tmax − t)

.

Other examples are given by the cylinders S
m(R) × R

n−m. In general, we can see that if
ϕ : M × [0, T ) → R

m+1 is a mean curvature flow of an m–dimensional hypersurface M of Rm+1,
then the map ϕ̃ : (M×R

n−m)× [0, T ) → R
m+1×R

n−m = R
n+1, defined by ϕ̃(p, s, t) = (ϕ(p, t), s),

is a mean curvature flow of the immersion of the product manifold M × R
n−m in R

n+1.
Then, by the above discussion, these cylinders evolve homothetically as S

m(R(t)) × R
n−m, with

R(t) =
√
R2 − 2mt and collapse to the subspace {0}×R

n−m at time Tmax = R2/(2m). Again, the
norm of the second fundamental form satisfies |A(t)| = 1√

2(Tmax−t)
.

As these cylinder are noncompact, it must be remarked here that it is needed here a uniqueness
theorem also for noncompact hypersurfaces to conclude that their evolution is actually only the
one described above. In this case it actually holds, see Remark 1.5.4.

Spheres and cylinders are special examples of homothetically shrinking flows, that is, hypersur-
faces that simply move by contraction during the evolution by mean curvature.


