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ABSTRACT. In this series of lectures I will introduce the mean curvature flow of a compact hy-
persurface in the Euclidean space with particular attention to the cases of curves and surfaces.
The basic properties and the main analytic and geometric techniques used in the analysis of
this flow will be discussed, for instance maximum and comparison principles. Moreover, I
will present the fundamental Huisken’s monotonicity formula and the Harnack inequality by
Hamilton, which are the key tools in the study of the singularity formation. Up to now, the
classification of possible asymptotic shape of a singularity is almost complete for some classes
of evolving hypersurfaces. For others it seems difficult and quite far off. Time allowing, in the
last lectures I will try to outline an up–to–date scenario of the “state of the art”.

Introduction

Let ϕ0 : M → Rn+1 be a smooth immersion of an n–dimensional smooth manifold in
the Euclidean space. The evolution of M0 = ϕ0(M) by mean curvature is a smooth one–
parameter family of immersions ϕ : M × [0, T )→ Rn+1 satisfying{

∂
∂tϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)

where H(p, t) and ν(p, t) are respectively the mean curvature and the unit normal of the
hypersurface Mt = ϕt(M) at the point p ∈M , where ϕt = ϕ( · , t).

It can be checked that H(p, t)ν(p, t) = ∆g(t)ϕ(p, t), where ∆g(t) is the Laplace–Beltrami
operator on M associated to the metric g(t), induced by the immersion ϕt. Then, the mean
curvature flow may be regarded as a sort of geometric heat equation, in particular it can be
shown that it is a parabolic problem and has a unique solution for small time. In addition,
the solutions satisfy comparison principles and derivatives estimates similar to the case of
parabolic partial differential equations in the Euclidean space.
On the other hand, the mean curvature flow is not really equivalent to a heat equation, since
the Laplace–Beltrami operator evolves with the hypersurface itself. In particular, in contrast
to the classical heat equation, this flow is described by a nonlinear (quasilinear) evolution
system of partial differential equations and the solutions exist in general only in a finite time
interval.

Mean curvature flow occurs in the description of the evolution of the interfaces in sev-
eral multiphase physical models (see e.g. [17, 19]). One can indeed date the “genesis” of
the subject to the paper of Mullins [17]. The main reason for this is the property that it is
the gradient–like flow of the Area functional and therefore it arises naturally in problems
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where a surface energy is relevant. From a physical point of view, it would be interesting
also to consider the “hyperbolic” motion by mean curvature, that is, the evolution problem
∂2t ϕ = Hν, but very few results are present in the literature at the moment. Algorithms
based on the mean curvature flow has been also developed extensively in the field of au-
tomatic treatment of digital data, in particular of images. This because of the “regularizing
effect” due to its parabolic nature.
Another interesting feature of this flow is its connection with certain reaction–diffusion equa-
tions, for instance

∂u

∂t
= ∆u− 1

ε
W ′(u) ,

where W (u) = (u2 − 1)2 (double–well potential). One can study the singular limits of the
solutions of this parabolic equation when ε tends to zero. Under suitable hypotheses, it can
be shown that the solutions uε with common initial data converge as ε → 0 to functions
which assume only the values ±1 in regions separated by boundaries evolving by mean
curvature (see [2, 19]).

Further motivation for the study of the mean curvature flow comes from geometric ap-
plications, in analogy with the Ricci flow of metrics on abstract Riemannian manifolds. One
can use this flow as a tool to obtain classification results for hypersurfaces satisfying certain
curvature conditions, to derive isoperimetric inequalities or to produce minimal surfaces. As
in Hamilton’s program for the Ricci flow, a fundamental step in order to apply these tech-
niques is the definition of a flow with surgeries or of a generalized (weak) notion of flow,
allowing the “passage” through the singularities in a controlled way. There has been much
work in this direction by means of techniques based on varifolds, level sets, viscosity solu-
tions (see [1, 3, 4, 8, 15]), till the recent results of Huisken and Sinestrari [14] that provide a
surgery procedure well suited for topological conclusions.

There are striking analogies between the Ricci flow and the mean curvature flow. Indeed,
many results hold in a similar way for both flows and several ideas have been successfully
exported from one context to the other. However, at the moment no formal way of trans-
forming one of them into the other is known.

In these lectures, I will present exclusively the “classical” parametric setting, without
discussing the contributions, sometimes quite relevant, coming from other approaches, in
particular, the geometric measure theory setting (see [4, 15]) and the level sets formulation
(see [5, 8, 18, 20, 22, 23]).
All the manifolds, quantities and other objects we will consider are smooth, unless otherwise
stated. The main tool for the analysis will be a priori estimates (pointwise and integral),
very often based on a smart use of the maximum principle in the same spirit of the work of
Hamilton for the Ricci flow.

Further Literature

We definitely suggest to the reader the wonderful survey of White [21] for a general
overview of the field.

An excellent introduction to the mean curvature flow is provided in the monograph by
Ecker [7], where many basic results and examples are collected. The second part of the book
gives a fairly elementary approach to the difficult field of the regularity theory for weak
solutions and, in the author’s opinion, it is the natural “next step” for the interested reader.
Other nice general references are [6, 12, 16, 24].
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Two papers which contain a survey of results on the formation of singularities for mean
curvature flow (and also discuss several other geometric flows) are the ones by Huisken [11]
and by Huisken and Polden [13]. It is also surely recommendable to read Sections 2 and 3 of
Hamilton’s fundamental paper [10]. Such paper deals with the Ricci flow, but many of the
ideas there exposed apply to the mean curvature flow as well.

Two works of central importance on weak solutions are the pioneering monograph by
Brakke [4] and the memoir by Ilmanen [15]; they are of more difficult reading for a beginner.

Another introductory exposition of the mean curvature flow, including topics not treated
in the present notes such as the connection with reaction–diffusion equations, is the one by
Ambrosio [2]. The monograph by Giga [9] is also very pleasant to read and it gives a detailed
account of the level sets approach to geometric evolutions.
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