
APPENDIX E

Abresch and Langer Classification of Homothetically Shrinking
Closed Curves

(In collaboration with Annibale Magni)

We briefly discuss here the classification of Abresch and Langer in [1] of the homothetically
shrinking closed curves in the plane, that is, satisfying the structural equation k + 〈x | ν〉 = 0.

We have seen in Proposition 3.4.1 that among the curves with k+ 〈x | ν〉 = 0 the only embed-
ded, complete and connected ones are the lines through the origin and the unit circle.
If we now do not assume the embeddedness, we have to deal either with a smooth, complete
immersion of S1 or of R possibly with self–intersections. In the first case, the curve is closed and
compact, in the second case we can see that the initial part of the analysis in the proof of Propo-
sition 3.4.1 still holds, hence, either the curve is a line through the origin of R2 or the curvature is
everywhere positive and bounded from above, which implies that the whole curve is bounded.
Then, if we only assume an estimate of the length of the curve (which holds by Lemma 3.2.7 and
boundedness if the curve is a blow up limit), by the completeness it follows that the curve is
closed.

Hence, we concentrate only on closed curves. As we said, k > 0, the equations (3.4.1) hold
and the quantity k2

θ+k2−log k2 is constant along the curve, equal to some constantE which must
be larger than one (otherwise we are dealing with the unit circle). Again, the curve is symmetric
with respect to the critical points of the curvature, which are all nondegenerate, isolated and
finite. Hence, the curvature k(θ) is oscillating between its maximum and its minimum with some
period T > 0. If we exclude the unit circle, such period must be an integer fraction (at least of a
factor 2 by the four vertex theorem, see the proof of Proposition 3.4.1) of an integer multiple (at
least 2, otherwise we are dealing with the unit circle) of 2π, that is, T = 2mπ/n with n,m ≥ 2.

Notice that there are two parameters here around, the rotation number of the closed curve and the
number of critical points of the curvature.

Suppose that kmin < kmax are these two consecutive critical values of k, it follows that they are
two distinct positive zeroes of the function E+log k2−k2 when E > 1 with 0 < kmin < 1 < kmax.
We have that the change ∆θ in the angle θ along the piece of curve delimited by two consecutive
points where the curvature assumes the values kmin and kmax, is equal to the semiperiod T/2.
Then, the analysis reduces to understanding what are the admissible T .
Such quantity ∆θ is given by the integral

I(E) =

∫ kmax

kmin

dk√
E − k2 + log k2

.

Abresch and Langer (and also Epstein and Weinstein) by studying the behavior of this inte-
gral were able to classify all the immersed closed curves in R2 satisfying the structural equation
k + 〈γ | ν〉 = 0. These form a family of curves indexed by two parameters called Abresch–Langer
curves, see [1] for a detailed description.
We now state and partially prove the main properties of the integral I(E) needed in such analy-
sis.
It should be noticed that, by the discussion about the period T , the last statement in the next
proposition implies Proposition 3.4.1.

PROPOSITION E.1.1. The function I : (1,+∞)→ R satisfies
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(1) limE→1+ I(E) = π/
√

2,
(2) limE→+∞ I(E) = π/2,
(3) I(E) is monotone nonincreasing.

As a consequence I(E) > π/2.

PROOF. Notice that the study of the quantity I(E) is equivalent to the study of the semiperiod
for the one–dimensional Hamiltonian system with Hamiltonian function given by H(kθ, k) =
(k2
θ + k2 − log k2)/2.

(1) The global minimum 1/2 of the strictly convex potential V (k) = (k2−log k2)/2 is assumed
at k = 1 and the limiting value for the period of the Hamiltonian system when E → 1+ is
equal to the period of the corresponding linearized system (see [45, Chapter 12]). The linearized
Hamiltonian isHL(k̂θ, k̂) = k̂2

θ/2+k̂2+1/2 for the new variable k̂ = k−1, which gives the equation
k̂θθ = −2k̂ for k̂. As any solution of this last ODE is clearly

√
2π–periodic, its semiperiod is equal

to π/
√

2.
(2) As 0 < kmin < 1 < kmax for E > 1, we can write

I(E) =

∫ 1

kmin

dk√
E − k2 + log k2

+

∫ kmax

1

dk√
E − k2 + log k2

= I−(E) + I+(E) .

We want to prove that limE→+∞ I−(E) = 0 and limE→+∞ I+(E) = π/2.
Introducing the variable w = k/kmin the first integral becomes

I−(E) = kmin

∫ 1/kmin

1

dw√
k2

min(1− w2) + logw2
.

Notice that, given a real number 0 < α < 1, it is always possible to find k̃(α) such that |kmin(1−
w2)| ≤ α| logw2|with w ∈ [1, 1/kmin] and kmin ≤ k̃. Fixing then such an α, we have

0 ≤ I−(E) ≤ kmin√
1− α

∫ 1/kmin

1

dw√
2 logw

≤ kmin√
1− α

(∫ n

1

dw√
2 logw

+

∫ 1/
√
kmin

n

dw√
2 logw

+

∫ 1/kmin

1/
√
kmin

dw√
2 logw

)
≤ kmin(C1 + C2/

√
kmin + okmin

(1)/kmin) ,

hence, the claim on I−(E) follows.
Regarding I+(E), we proceed in a similar way by changing again the integration variable to
w = k/kmax. In this way we obtain

lim
E→+∞

I+(E) = lim
E→+∞

∫ 1

1/kmax

dw√
1− w2 + 2 logw

k2max

= lim
E→+∞

∫ 1

0

χ[1/kmax,1]
dw√

1− w2 + 2 logw
k2max

=π/2 ,

where in the last equality we applied the dominated convergence theorem.
(3) See the original paper of Abresch and Langer [1] or the general result by Zevin and Pinsky

in [128]. �


