
CHAPTER 1

Definition and Short Time Existence

1.1. Notations and Preliminaries

In this section we introduce some basic notations and facts about Riemannian manifolds and
their submanifolds, a good reference is [50].

In all the book the convention of summing over the repeated indices will be adopted.

The main objects we will consider are n–dimensional, complete hypersurfaces immersed in
Rn+1, that is, pairs (M,ϕ) whereM is an n–dimensional, smooth manifold with empty boundary
and ϕ : M → Rn+1 is a smooth immersion (the rank of the differential dϕ is equal to n everywhere
on M ).

The manifoldM gets in a natural way a metric tensor g turning it into a Riemannian manifold
(M, g) by pulling back the standard scalar product of Rn+1 with the immersion map ϕ.

Taking local coordinates around p ∈ M , we have local bases of TpM and T ∗pM , respectively

given by vectors
{

∂
∂xi

}
and 1–forms {dxj}.

We will denote the vectors on M by X = Xi, which means X = Xi ∂
∂xi

, the 1–forms by
ω = ωj , that is, ω = ωjdxj and a general mixed tensor by T = T i1...ikj1...jl

, where the indices refer to
the local basis.

Sometimes we will consider tensors along M viewing it as a submanifold of Rn+1 via the
map ϕ, in such case we will use the Greek indices to denote the components of the tensors in
the canonical basis {eα} of Rn+1, for instance, given a vector field X along M , not necessarily
tangent, we will have X = Xαeα.

The metric g of M extended to tensors is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl
,

where gij is the matrix of the coefficients of g in local coordinates and gij is its inverse matrix.
Clearly, the norm of a tensor is then

|T | =
√
g(T, T ) .

The scalar product of Rn+1 will be denoted by 〈· | ·〉. As the metric g is obtained by pulling it
back via ϕ, we have

gij = g

(
∂

∂xi
,
∂

∂xj

)
= (dϕ∗〈· | ·〉)

(
∂

∂xi
,
∂

∂xj

)
=

〈
∂ϕ

∂xi

∣∣∣∣ ∂ϕ∂xj
〉
.

The canonical measure induced by the metric g is given in a coordinate chart by µ =
√
GLn

where G = det(gij) and Ln is the standard Lebesgue measure on Rn.
The induced covariant derivative on (M, g) of a vector field X and of a 1–form ω are respec-

tively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,

where the Christoffel symbols Γijk are expressed by the formula,

Γijk =
1

2
gil
(
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
.

9



10 1. DEFINITION AND SHORT TIME EXISTENCE

The covariant derivative ∇T of a general tensor T = T i1...ikj1...jl
will be denoted by ∇sT i1...ikj1...jl

=

(∇T )i1...iksj1...jl
(we recall that such extension of the covariant derivative is uniquely defined on the

full tensor algebra by imposing the Leibniz rule and the commutativity with any metric contrac-
tion).
∇mT will stand for the m–th iterated covariant derivative of T .

The gradient∇f of a function and the divergence divX of a vector field at a point p ∈M are
defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM
and

divX = tr∇X = ∇iXi =
∂

∂xi
Xi + ΓiikX

k .

The (rough) Laplacian ∆T of a tensor T is given by

∆T = gij∇i∇jT .
If X is a smooth vector field with compact support on M , as ∂M = ∅ the following divergence
theorem holds ∫

M

divX dµ = 0 ,

which clearly implies, in particular, ∫
M

∆f dµ = 0

for every smooth function f : M → R with compact support.
Since ϕ is locally an embedding in Rn+1, at every point p ∈ M we can define up to a sign a

unit normal vector ν(p). Locally, we can always choose ν in order that it is smooth.
If the hypersurface M is compact and embedded, that is, the map ϕ is one–to-one, the inside of M
is easily defined and we will consider ν to be the inner pointing unit normal vector at every point
of M . In this case the vector field ν : M → Rn+1 is globally smooth.

The second fundamental form A = hij of M is the symmetric 2–form defined as follows,

hij =

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
and the mean curvature H is the trace of A, that is H = gijhij . Despite its name, H is the sum of the
eigenvalues of the second fundamental form, not their average mean (some few authors actually
define H/n as the mean curvature).

REMARK 1.1.1. Notice that since the unit normal ν is defined up to a sign, the same is true
for A and H. Instead, the vector valued second fundamental form hijν, which is a 2–form with values
in Rn+1, and the mean curvature vector Hν are uniquely defined.
With our choice of ν as the inner pointing unit normal, the sphere Sn ⊂ Rn+1 has a positive
definite second fundamental form and positive mean curvature and the same holds for every
strictly convex hypersurface of Rn+1.

We advise the reader that in all the book, by a little abuse of terminology, we will say that a hypersurface
is convex when its second fundamental form is nonnegative definite, strictly convex when it is positive
definite. If the hypersurface is embedded, convexity in such sense is equivalent to the usual definition that
the hypersurface bounds a convex subset of the Euclidean space.

The linear map Wp : TpM → TpM given by Wp(v) = hij(p)v
j ∂
∂xi

is called the Weingarten
operator and its eigenvalues λ1 ≤ · · · ≤ λn the principal curvatures at the point p ∈M . It is easy to
see that H = λ1 + · · ·+ λn and |A|2 = λ2

1 + · · ·+ λ2
n.

EXERCISE 1.1.2. Show that if the hypersurface M ⊂ Rn+1 is locally the graph of a function
f : Rn → R, that is, ϕ(x) = (x, f(x)), we have

gij = δij + fifj , ν = − (∇f,−1)√
1 + |∇f |2
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hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f,∇f)

(
√

1 + |∇f |2)3
= div

(
∇f√

1 + |∇f |2

)
where fi = ∂if and Hessf is the Hessian of the function f .

EXERCISE 1.1.3. Show that if the hypersurface M ⊂ Rn+1 is locally the zero set of a smooth
function f : Rn+1 → R, with∇f 6= 0 on such level set, we have

H =
∆f

|∇f |
− Hessf(∇f,∇f)

|∇f |3
= div

(
∇f
|∇f |

)
.

The following Gauss–Weingarten relations will be fundamental,

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ hijν ,

∂ν

∂xj
= −hjlgls

∂ϕ

∂xs
. (1.1.1)

Actually, they express the fact that ∇M = ∇Rn+1 − Aν. We recall that considering M locally as a
regular submanifold of Rn+1, we have∇MX Y = (∇Rn+1

X Ỹ )M where the sign M denotes the projec-
tion on the tangent space to M and Ỹ is a local extension of the field Y in a local neighborhood
Ω ⊂ Rn+1 of ϕ(M).
Notice that, by these relations, it follows

∆ϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk

)
= gijhijν = Hν . (1.1.2)

By straightforward computations, we can see that the Riemann tensor, the Ricci tensor and
the scalar curvature can be expressed by means of the second fundamental form as follows,

Rijkl = g
(
∇2
ji

∂

∂xk
−∇2

ij

∂

∂xk
,
∂

∂xl

)
= hikhjl − hilhjk ,

Ricij = gklRikjl = Hhij − hilglkhkj ,

R = gijRicij = gijgklRikjl = H2 − |A|2 .

Hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇i∇jXs −∇j∇iXs = Rijklg
ksX l = (hikhjl − hilhjk) gksX l ,

∇i∇jωk −∇j∇iωk = Rijklg
lsωs = (hikhjl − hilhjk) glsωs .

The symmetry properties of the covariant derivative of A are given by the following Codazzi
equations,

∇ihjk = ∇jhik = ∇khij (1.1.3)
which imply the following Simons’ identity (see [109]),

∆hij = ∇i∇jH + Hhilg
lshsj − |A|2hij . (1.1.4)

We will write T ∗ S, following Hamilton [56], to denote a tensor formed by a sum of terms
each one of them obtained by the product of a real constant with the contraction on some indices
of the pair T , S with the metric gij and/or its inverse gij .
A very useful property of such ∗–product is that

|T ∗ S| ≤ C |T | |S|
where the constant C depends only on the algebraic “structure” of T ∗ S.

Sometimes we will need the n–dimensional Hausdorff measure in Rn+1, we will denote it by
Hn.

We advise the reader that in all the computations the constants could vary between different formulas
and from a line to another.
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1.2. First Variation of the Area Functional

Given an immersion ϕ : M → Rn+1 of a smooth hypersurface in Rn+1, we consider the Area
functional

Area(ϕ) =

∫
M

dµ

where µ is the canonical measure associated to the metric g induced by the immersion.
In this section we are going to analyze the first variation of such functional which is nothing

else than the volume of the hypersurface.
We consider a smooth one parameter family of immersions ϕt : M → Rn+1, with t ∈ (−ε, ε)

and ϕ0 = ϕ, such that, outside of a compact set K ⊂ M , we have ϕt(p) = ϕ(p) for every t ∈
(−ε, ε).
Defining the field X = ∂ϕt

∂t

∣∣∣
t=0

along M (as a submanifold of Rn+1) we see that X is zero outside

K, we call such field the infinitesimal generator of the variation ϕt.
We compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ϕt
∂xi

∣∣∣∣ ∂ϕt∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣ ∂ϕ∂xj
〉

+

〈
∂X

∂xj

∣∣∣∣ ∂ϕ∂xi
〉

=
∂

∂xi

〈
X

∣∣∣∣ ∂ϕ∂xj
〉

+
∂

∂xj

〈
X

∣∣∣∣ ∂ϕ∂xi
〉
− 2

〈
X

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
=

∂

∂xi

〈
XM

∣∣∣∣ ∂ϕ∂xj
〉

+
∂

∂xj

〈
XM

∣∣∣∣ ∂ϕ∂xi
〉
− 2Γkij

〈
XM

∣∣∣∣ ∂ϕ∂xk
〉
− 2hij〈X | ν〉 ,

where XM is the tangent component of the field X and we used the Gauss–Weingarten rela-
tions (1.1.1) in the last step.
Letting ω be the 1–form defined by ω(Y ) = g(dϕ∗(XM ), Y ), this formula can be rewritten as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj
− 2Γkijωk − 2hij〈X | ν〉 = ∇iωj +∇jωi − 2hij〈X | ν〉 .

Hence, using the formula ∂t detA(t) = detA(t)Trace[A−1(t)∂tA(t)], we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij) g

ij ∂
∂tgij

∣∣
t=0

2

=

√
det(gij) g

ij
(
∇iωj +∇jωi − 2hij〈X | ν〉

)
2

=
√

det(gij)
(
div dϕ∗(XM )−H〈X | ν〉

)
.

If the Area of the immersion ϕ is finite, the same holds for all the maps ϕt, as they are compact
deformations of ϕ. Assuming that the compact K is contained in a single coordinate chart, we
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have

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

=
∂

∂t

∫
K

dµt

∣∣∣∣
t=0

=
∂

∂t

∫
K

√
det(gij) dLn

∣∣∣∣
t=0

=

∫
K

∂

∂t

√
det(gij)

∣∣∣∣
t=0

dLn

=

∫
K

(
div dϕ∗(XM )−H〈X | ν〉

)√
det(gij) dLn

=

∫
M

(
div dϕ∗(XM )−H〈X | ν〉

)
dµ

= −
∫
M

H〈X | ν〉 dµ

where we used the fact that X is zero outside K and in the last step we applied the divergence
theorem. Notice that all the integrals are well defined because we are actually integrating only
on the compact set K.
In the case that K is contained in several charts, the same conclusion follows from a standard
argument using a partition of unity.

PROPOSITION 1.2.1. The first variation of the Area functional depends only on the normal compo-
nent of the infinitesimal generator X = ∂ϕt

∂t

∣∣∣
t=0

of the variation ϕt, precisely

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

= −
∫
M

H〈X | ν〉 dµ .

Clearly, such dependence is linear.

Given any immersion ϕ : M → Rn+1 and any vector field X with compact support along M ,
we can always construct a variation with infinitesimal generator X as ϕt(p) = ϕ(p) + tX(p). It is
easy to see that for |t| small the map ϕt is still a smooth immersion.
Hence, as the hypersurfaces which are critical points of the Area functional must satisfy∫

M

H〈X | ν〉 dµ = 0

for every field X with compact support, they must have H = 0 everywhere, that is, zero mean
curvature (and conversely). This is the well known definition of the so called minimal surfaces.

As the quantity −Hν can be interpreted as the gradient of the Area functional (be careful
here, the measure µ is varying with the immersion, we are not computing the gradient with
respect to some fixed L2–structure on the space of immersions of M in Rn+1), we can consider
the motion of a hypersurface by minus this gradient, that is, the mean curvature flow. So, one looks
for hypersurfaces moving with velocity Hν at every point. This means choosing, among all the
velocity functions with fixed L2(µ)–norm equal to

(∫
M

H2 dµ
)1/2, the one such that the Area of

hypersurface decreases most rapidly.
This idea is quite natural and arises often in studying the dynamics of models of physical sit-

uations where the energy is given by the “Area” of the interfaces between the phases of a system.
Moreover, as the Area functional is the simplest (in terms of derivatives of the parametrization)
geometric functional, that is, invariant by isometries of Rn+1 and diffeomorphisms ofM , the mo-
tion by mean curvature is the simplest variational geometric flow for immersed hypersurfaces.
Other geometric functionals (for instance, depending on the next simpler geometric invariant,
the curvature) generally produce a first variation of order higher than two in the derivatives of
the parametrization and a relative higher order PDE’s system.
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One can consider second order flows where the velocity of the motion is related to different func-
tions of the curvature, like the Gauss flow of surfaces, for instance, where the velocity is given
by Gν (G is the Gauss curvature of M , that is, G = det A) or more complicated flows, but these
evolutions are usually not variational, they do not arise as “gradients” (in the above sense) of
geometric functionals (see Section 1.6).

1.3. The Mean Curvature Flow

DEFINITION 1.3.1. Let ϕ0 : M → Rn+1 be a smooth immersion of an n–dimensional man-
ifold. The mean curvature flow of ϕ0 is a family of smooth immersions ϕt : M → Rn+1 for
t ∈ [0, T ) such that setting ϕ(p, t) = ϕt(p) the map ϕ : M × [0, T )→ Rn+1 is a smooth solution of
the following system of PDE’s {

∂
∂tϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(1.3.1)

where H(p, t) and ν(p, t) are respectively the mean curvature and the unit normal of the hyper-
surface ϕt at the point p ∈M .

REMARK 1.3.2. Notice that even if the unit normal vector is defined up to a sign, the field
H(p, t)ν(p, t) is independent of such choice.

Using equation (1.1.2), this system can be rewritten in the appealing form
∂ϕ

∂t
= ∆ϕ

but, despite its formal analogy with the heat equation, actually, it is a second order, quasilinear and
degenerate, parabolic system, as the Laplacian is the one associated to the evolving hypersurfaces
at time t,

∆ϕ(p, t) = ∆g(p,t)ϕ(p, t) = gij(p, t)∇g(p,t)i ∇g(p,t)j ϕ(p, t)

and its coefficients as second order partial differential operator depend on the first derivatives of
ϕ. Moreover, this operator is degenerate, as its symbol (the symbol of the linearized operator)
admits zero eigenvalues due to the invariance of the Laplacian by diffeomorphisms, see [49] for
details.

Like the Area functional, the flow is obviously invariant by rotations and translations, or
more generally under any isometry of Rn+1. Moreover, if ϕ(p, t) is a mean curvature flow and
Ψ : M → M is a diffeomorphism, then the reparametrization ϕ̃(p, t) = ϕ(Ψ(p), t) is still a mean
curvature flow. This last property can be reread as “the flow is invariant under reparametriza-
tion”, suggesting that the important objects in the flow are actually the subsets Mt = ϕ(M, t) of
Rn+1.

The problem also satisfies the following parabolic invariance under rescaling (consequence
of the property Area(λϕ) = λnArea(ϕ), for any n–dimensional immersion), if ϕ(p, t) is a mean
curvature flow of ϕ0 and λ > 0, then ϕ̃(p, t) = λϕ(p, λ−2t) is a mean curvature flow of the initial
hypersurface λϕ0.

During the flow the Area of the hypersurfaces (which is the natural energy of the problem) is
nonincreasing, indeed, by the same computation for the first variation of such functional in the
previous section, we have

∂

∂t
Area(ϕt) =

∂

∂t

∫
M

dµt = −
∫
M

H2 dµt .

This clearly implies the estimate ∫ Tmax

0

∫
M

H2 dµt ≤ Area(ϕ0)

in the maximal time interval [0, Tmax) of smooth existence of the flow.

EXERCISE 1.3.3. By means of this last inequality, try to get an estimate from above for the
maximal time of smooth existence Tmax for closed curves in R2 and compact surfaces in R3.
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PROPOSITION 1.3.4 (Geometric Invariance under Tangential Perturbations). If a smooth family
of immersions ϕ : M × [0, T )→ Rn+1 satisfies the system of PDE’s{

∂
∂tϕ(p, t) = H(p, t)ν(p, t) +X(p, t)

ϕ(p, 0) = ϕ0(p)

whereX is a time dependent smooth vector field alongM such thatX(p, t) belongs to dϕt(TpM) for every
p ∈M and every time t ∈ [0, T ), then, locally around any point in space and time, there exists a family of
reparametrizations (smoothly time dependent) of the maps ϕt which satisfies system (1.3.1).
If the hypersurface M is compact, one can actually find uniquely a family of global reparametrizations
of the maps ϕt as above for every t ≥ 0, leaving the initial immersion ϕ0 unmodified and satisfying sys-
tem (1.3.1).
Conversely, if a smooth family of moving hypersurfacesϕ : M×[0, T )→ Rn+1 can be globally reparametrized
for t ≥ 0 in order that it moves by mean curvature, then the map ϕ has to satisfy the system above for some
time dependent vector field X with X(p, t) ∈ dϕt(TpM), for every p ∈M and every time t ∈ [0, T ).

PROOF. First we assume that M is compact, we will produce a smooth global parametriza-
tion of the evolving sets in order to check Definition 1.3.1.
By the tangency hypothesis, the time dependent vector field on M given by

Y (q, t) = −dϕ∗t (q)(X(q, t))

is globally well defined and smooth.
Let Ψ : M × [0, T )→M be a smooth family of diffeomorphisms of M with Ψ(p, 0) = p for every
p ∈M and

∂

∂t
Ψ(p, t) = Y (Ψ(p, t), t) , (1.3.2)

for every time t ∈ [0, T ).
This family exists, is unique and smooth, by the existence and uniqueness theorem for ODE’s on
the compact manifold M .
Considering the reparametrizations ϕ̃(p, t) = ϕ(Ψ(p, t), t), one has

∂ϕ̃

∂t
(p, t) =

∂ϕ

∂t
(Ψ(p, t), t) + dϕt(Ψ(p, t))

(∂Ψ

∂t
(p, t)

)
= H(Ψ(p, t), t)ν(Ψ(p, t), t) +X(Ψ(p, t), t) + dϕt(Ψ(p, t))(Y (Ψ(p, t), t))

= H(Ψ(p, t), t)ν(Ψ(p, t), t) +X(Ψ(p, t), t)

− dϕt(Ψ(p, t))(dϕ∗t (Ψ(p, t))(X(Ψ(p, t), t)))

= H(Ψ(p, t), t)ν(Ψ(p, t), t)

= H̃(p, t)ν̃(p, t) .

Hence, ϕ̃ satisfies system (1.3.1) and ϕ̃0 = ϕ0.
Conversely, this computation also shows that if ϕ̃(p, t) = ϕ(Ψ(p, t), t) satisfies system (1.3.1), the
family of diffeomorphisms Ψ : M × [0, T )→M must solve equation (1.3.2), hence, it is unique if
we assume Ψ( · , 0) = IdM in order that the map ϕ0 is unmodified.
In the noncompact case, we have to work locally in space and time, solving the above system of
ODE’s in some positive interval of time in an open subset Ω ⊂ M with compact closure, then
obtaining a solution of system (1.3.1) in a possibly smaller open subset of Ω and some interval of
time.

Assume now that the reparametrized map ϕ̃(p, t) = ϕ(Ψ(p, t), t) is a mean curvature flow.
Differentiating, we get

∂ϕ̃

∂t
(p, t) =

∂ϕ

∂t
(Ψ(p, t), t) + dϕt(Ψ(p, t))

(∂Ψ

∂t
(p, t)

)
= H̃(p, t)ν̃(p, t)

= H(Ψ(p, t), t)ν(Ψ(p, t), t)
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that is,
∂ϕ

∂t
(q, t) = H(q, t)ν(q, t)− dϕt(q)

(∂Ψ

∂t
(Ψ−1

t (q), t)
)
,

for every q ∈ M and t ∈ [0, T ). Then, the last statement of the proposition follows by setting
X(q, t) = −dϕt(q)

(
∂Ψ
∂t (Ψ−1

t (q), t)
)

. �

COROLLARY 1.3.5. If a smooth family of hypersurfaces ϕt = ϕ( · , t) satisfies 〈∂tϕ | ν〉 = H, then
it can be everywhere locally reparametrized to a mean curvature flow. If M is compact, this can be done
uniquely by global reparametrizations, without modifying ϕ0.

REMARK 1.3.6. A short way to state the previous proposition and corollary is to say that the
tangential component of the velocity of the points of the hypersurface, does not affect the global
“shape” during the motion.
This is particularly meaningful in the case that system (1.3.1) has a unique solution, for instance
when M is compact, as we will see in Theorem 1.5.1 in the next section.

By this invariance property one is led to speak of mean curvature flow of hypersurfaces
considering them as subsets of Rn+1 and forgetting their parametrizations. This is clear in the
case of embedded hypersurfaces, where the identification of (M, g(t)) with the images of the
embeddings ϕt(M) is immediate, but it also works for nonembedded hypersurfaces as every
immersion is locally an embedding.
We give then a more geometric, alternative definition of the mean curvature flow. In the sequel
of the book it will be clear by the context which one we are using.

DEFINITION 1.3.7. We still say that a family of smooth immersions ϕt : M → Rn+1, for
t ∈ [0, T ), is a mean curvature flow if locally at every point, in space and time, there exists a
family of reparametrizations which satisfies system (1.3.1).

Proposition 1.3.4 expresses the substantial equivalence between this definition (Eulerian point
of view) and Definition 1.3.1 (Lagrangian point of view).

EXERCISE 1.3.8 (Motion of Graphs). Show that if the smooth hypersurfaces ϕt : M →
Rn+1, moving by mean curvature, are locally graphs on some open subset Ω of the hyperplane
〈e1, . . . , en〉 ⊂ Rn+1, that is, we have a smooth function f : Ω × [0, T ) → R, such that ϕ(p, t) =
(x1(p), . . . , xn(p), f(x1(p), . . . , xn(p), t)), there holds

∂tf = ∆f − Hessf(∇f,∇f)

1 + |∇f |2
=
√

1 + |∇f |2 div

(
∇f√

1 + |∇f |2

)
.

On the other hand, if we have a function f satisfying the above parabolic equation then its graph
is a hypersurface moving by mean curvature (according to Definition 1.3.7).

EXERCISE 1.3.9 (Motion of Level Sets). Assume that for every time t ∈ [0, T ) the image ϕt(M)
of the smooth, embedded hypersurfaces ϕt : M → Rn+1, moving by mean curvature, is the zero
set of ft = f( · , t), where f : Rn+1 × [0, T ) → R is a smooth function and zero is a regular value
of ft for every t ∈ [0, T ). Then at all the points x ∈ Rn+1 and times t ∈ [0, T ) such that f(x, t) = 0
there holds

∂tf = ∆f − Hessf(∇f,∇f)

|∇f |2
= |∇f |div

(
∇f
|∇f |

)
.

Conversely, if we have a smooth function f satisfying the above parabolic equation, every regular
level set of f( · , t) is a hypersurface moving by mean curvature (according to Definition 1.3.7).

EXERCISE 1.3.10 (Distance Functions). Compute the evolution equation satisfied by the signed
distance function dMt

: Rn+1 × [0, T ) → R at the points x ∈ Mt = ϕt(M), if the compact and
embedded, smooth hypersurfaces ϕt : M → Rn+1 move by mean curvature.
The signed distance function is the function which coincides with the distance in the region “out-
side” a hypersurface and with minus the distance in the “inside” region (show that it is smooth
in a tubular neighborhood of the hypersurface).
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EXERCISE 1.3.11 (Brakke’s Definition [21]). Show that a smooth family of compact and em-
bedded hypersurfaces ϕt : M → Rn+1 satisfies

d

dt

∫
ϕt(M)

f dHn ≤
∫
ϕt(M)

(
H〈∇f | ν〉 −H2f

)
dHn ,

for every positive function f : Rn+1 → R, if and only if the hypersurfaces are moving by mean
curvature flow (according to Definition 1.3.7).
In the formulaHn is the n–dimensional Hausdorff measure in Rn+1.

1.4. Examples

Spheres and cylinders are the easiest and actually some of the few nontrivial explicitly com-
putable examples of mean curvature flows (minimal surfaces are trivial examples as they are not
moving at all, satisfying H = 0).

Let us consider a sphere of radius R which, by the translation invariance of the flow, we can
assume to be centered at the origin of Rn+1. A right guess is that at every time the hypersurface
remains a sphere and the mean curvature flow simply changes its radius R(t), this is actually
true by the uniqueness theorem in the next section. As the mean curvature is everywhere equal
to n/R and since we chose the inner pointing unit normal, the evolution equation for the radius
of the sphere is simply R′(t) = −n/R(t) with R(0) = R. Indeed, if we set M = Sn and ϕ(p, t) =
R(t)ϕ0(p), being ϕ0 the standard immersion of Sn in Rn+1, we have

R′(t)ϕ0(p) =
∂

∂t
ϕ(p, t) = H(p, t)ν(p, t) = −nϕ0(p)/R(t) ,

which is an ODE that can be easily integrated to get R(t) =
√
R2 − 2nt.

At time Tmax = R2/(2n) the sphere shrinks to a point so the flow becomes singular, this is
the maximal time of existence. We can then write the evolution of the radius also as R(t) =√

2n(Tmax − t).
During the flow the norm of the second fundamental form evolves as

|A(t)| =
√
n/R(t) =

1√
2(Tmax − t)

.

Other examples are given by the cylinders Sm(R) × Rn−m. In general, we can see that if
ϕ : M × [0, T )→ Rm+1 is a mean curvature flow of an m–dimensional hypersurface M of Rm+1,
then the map ϕ̃ : (M×Rn−m)× [0, T )→ Rm+1×Rn−m = Rn+1, defined by ϕ̃(p, s, t) = (ϕ(p, t), s),
is a mean curvature flow of the immersion of the product manifold M × Rn−m in Rn+1.
Then, by the above discussion, these cylinders evolve homothetically as Sm(R(t)) × Rn−m, with
R(t) =

√
R2 − 2mt and collapse to the subspace {0}×Rn−m at time Tmax = R2/(2m). Again, the

norm of the second fundamental form satisfies |A(t)| = 1√
2(Tmax−t)

.

As these cylinder are noncompact, it must be remarked here that it is needed here a uniqueness
theorem also for noncompact hypersurfaces to conclude that their evolution is actually only the
one described above. In this case it actually holds, see Remark 1.5.4.

Spheres and cylinders are special examples of homothetically shrinking flows, that is, hyper-
surfaces that simply move by contraction during the evolution by mean curvature.

PROPOSITION 1.4.1. If an initial hypersurface ϕ0 : M → Rn+1 satisfies

H(p) + λ〈ϕ0(p)− x0 | ν0(p)〉 = 0

at every point p ∈ M for some constant λ > 0 and x0 ∈ Rn+1, then it generates a homothetically
shrinking mean curvature flow (according to Definition 1.3.7) around the point x0 ∈ Rn+1.
Conversely, if ϕ : M × [0, T ) → Rn+1 is a homothetically shrinking mean curvature flow (according to
Definition 1.3.7) around some point x0 ∈ Rn+1 in a maximal time interval, then either H is identically
zero or

H(p, t) +
〈ϕ(p, t)− x0 | ν(p, t)〉

2(T − t)
= 0 ,

for every point p ∈M and time t ∈ [0, T ).
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PROOF. If the condition is satisfied, we consider the homothetically shrinking flow

ϕ(p, t) = x0 +
√

1− 2λt(ϕ0(p)− x0)

and we see that

〈∂tϕ(p, t) | ν(p, t)〉 = −λ〈ϕ0(p)− x0 | ν(p, t)〉√
1− 2λt

=
H(p, 0)√
1− 2λt

= H(p, t) ,

as ν(p, t) = ν0(p). Hence, by Corollary 1.3.5, this is a mean curvature flow of the initial hypersur-
face ϕ0, according to Definition 1.3.7.

Conversely, if the homothetically shrinking evolution ϕ(p, t) = x0+f(t)(ϕ0(p)−x0) is a mean
curvature flow, for some positive smooth function f : [0, T ) → R with f(0) = 1, limt→T f(t) = 0
and f ′(t) ≤ 0, by Corollary 1.3.5 we have 〈∂tϕ | ν〉 = H, hence

H(p, 0) = f(t)H(p, t)

= f(t)〈∂tϕ(p, t) | ν(p, t)〉
= f(t)f ′(t)〈ϕ0(p)− x0 | ν(p, t)〉
= f ′(t)〈ϕ(p, t)− x0 | ν(p, t)〉 .

If H 6= 0 at some point, as ν(p, t) = ν0(p) we have that f(t)f ′(t) is equal to some constant C
for every t ∈ [0, T ), combining the first and the third line of the above formula. Hence, f(t) =√

2Ct+ 1 as f(0) = 1 and since limt→T f(t) = 0, we conclude f(t) =
√

1− t/T . The thesis then
follows from the first and last line of the formula. �

We underline that again |A(t)| ∼ 1√
2(Tmax−t)

.

Up to a rigid motion and rescaling, solving the above structural equation is equivalent to solving
H + 〈ϕ0 | ν0〉 = 0.
In the special case of curves in R2, supposing γ parametrized by its arclength s, the unit tangent
vector is given by τ = γs and the unit normal by ν = Rγs, where R : R2 → R2 is the counter-
clockwise rotation of π/2. Then, such equation becomes

γss = k = −〈γ | ν〉 = −〈γ |Rγs〉 ,

hence one can find the homothetically shrinking curves by integrating this ODE.
The only embedded solutions are the circle S1 and the lines through the origin of R2 (see Ap-
pendix E), but there are also several other nonembedded closed curves found by Abresch and
Langer [1] that classified all the possible solutions, see also the work of Epstein and Weinstein [41].

Finding homothetically shrinking hypersurfaces when the dimension is higher than one is
difficult (see the discussion in [81]). It is known that besides the “standard” examples given by
the hyperplanes through the origin, the spheres and the cylinders, there exists a homothetically
shrinking, embedded torus in R3, found by Angenent [17] (it seems that Grayson was the first to
suggest its existence, see [68]). Moreover, there is numerical evidence that higher genus surfaces
in R3 could also exist, see Chopp [25] and Angenent, Chopp and Ilmanen [18] (see also [81]).
Finally, a tentative strategy to produce new examples is being carried on in some recent papers
by Nguyen [98, 97, 99]).

One can also look for homothetically expanding hypersurfaces (around the origin of Rn+1),
which are characterized by the same equation H + λ〈ϕ0 | ν0〉 = 0 but with a negative constant λ.
These cannot be compact, as one can see easily by looking at their point of maximum distance
from the origin of Rn+1.
As an example, every angle less than π in R2 contains a convex, unbounded, homothetically
expanding curve under the curvature flow, asymptotic to the edges of the angle (see also the
discussion in [21, Appendix C]). A classification of graph solutions of the above equation with at
most linear growth can be found in [117].

Another notable family of hypersurfaces moving by mean curvature are the ones generating
translating flows, these are hypersurfaces that during the motion do not change their shape but
simply move in a fixed direction with constant velocity.
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PROPOSITION 1.4.2. If an initial hypersurface ϕ0 : M → Rn+1 satisfies H(p) = 〈v | ν0(p)〉 at every
point p ∈ M for some constant vector v ∈ Rn+1, then it generates a translating mean curvature flow
(according to Definition 1.3.7) with constant velocity v.
Conversely, if ϕ : M× [0, T )→ Rn+1 is a translating mean curvature flow (according to Definition 1.3.7)
then there exists a vector v ∈ Rn+1 (which is the velocity of the motion) such that H(p, t) = 〈v | ν(p, t)〉
for every point p ∈M and t ∈ [0, T ).

PROOF. If the condition is satisfied, we consider the translating flow ϕ(p, t) = ϕ0(p) + tv and
we see that

〈∂tϕ(p, t) | ν(p, t)〉 = 〈v | ν(p, t)〉 = 〈v | ν0(p)〉 = H(p, 0) = H(p, t) ,

as ν(p, t) = ν0(p). Hence, by Corollary 1.3.5, this is a mean curvature flow of the initial hypersur-
face ϕ0, according to Definition 1.3.7.

Conversely, if the translating flow ϕ(p, t) = ϕ0(p) + w(t) is a mean curvature flow, for some
smooth, time dependent vector w : [0, T ) → Rn+1 with w(0) = 0, by Corollary 1.3.5 we have
〈∂tϕ | ν〉 = H, hence

〈∂tϕ(p, t) | ν(p, t)〉 = 〈w′(t) | ν(p, t)〉 = H(p, t) = H(p, 0) .

Suppose that varying p in M , the image of the unit normal is a subset of Rn+1 whose span is
the whole Rn+1, then, as ν(p, t) = ν0(p), if we differentiate in time the equality 〈w′(t) | ν0(p)〉 =
H(p, 0), we get 〈w′′(t) | ν0(p)〉 = 0 which implies that w′′(t) = 0 for every t and w′(t) constant.
Then, letting w′ = v, we have the thesis.

In the case that the span of the image of the unit normal is not the whole Rn+1, all the tangent
spaces TpM to ϕ0 have a common nontrivial vector subspace L ⊂ Rn+1. Decomposing w(t) =
l(t) + z(t) with l(t) ∈ L and z(t) ∈ L⊥ we have l(0) = z(0) = 0 and z′′(t) = 0 by the above
argument, as l′(t), l′′(t) ∈ L and z′(t), z′′(t) ∈ L⊥. Hence, z′(t) is constant and

H(p, t) = 〈w′(t) | ν(p, t)〉 = 〈z′(t) | ν(p, t)〉 = 〈v | ν(p, t)〉
where we set v = z′.
By Proposition 1.3.4 (see also Remark 1.3.6) the translating flow ϕ̃(p, t) = ϕ0(p) + tv coincides (as
sets) with the flow ϕ as ∂tϕ̃ = v, ∂tϕ = w′(t) = l′(t) + v and l′(t) ∈ L ⊂ TpM for every p ∈M and
t ∈ [0, T ). �

In the special case of curves in R2, if γ is parametrized by its arclength s and the unit normal
is ν = Rγs as before, the above equation becomes

γss = k = 〈v | ν〉 = 〈v |Rγs〉 ,
where R : R2 → R2 is the counterclockwise rotation of π/2. By integrating such ODE, one can
see that the only possible translating curve is given (up to homotheties and rigid motions) by the
graph of the function x = − log cos y in the interval (−π/2, π/2), which was called the grim reaper
by Grayson [52].

e1

y = π/2

y = −π/2

-

FIGURE 1. The grim reaper moving with constant velocity e1.

In higher dimension, for every fixed vector v ∈ Rn+1 there is a unique rotationally symmetric,
strictly convex hypersurface (which is actually an entire graph) moving by translation under the
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mean curvature flow. Indeed, looking for a convex graph over a domain in Rn (identified with
the hyperplane {xn+1 = 0} ⊂ Rn+1), translating in the en+1 direction with unit speed, one has to
find a convex function f : Ω→ R such that

∆f − Hessf(∇f,∇f)

1 + |∇f |2
= 1

and f(0) = ∇f(0) = 0, where Hessf is the Hessian of f .
Imposing rotational symmetry around the origin f(x) = f(ρ) with ρ = |x|, this problem becomes
the following ODE

fρρ +
(n− 1)fρ

ρ
−
fρρf

2
ρ

1 + f2
ρ

= 1 ,

that is,

fρρ = (1 + f2
ρ )

(
1− (n− 1)fρ

ρ

)
(1.4.1)

with limρ→0 f(ρ) = limρ→0 f
′(ρ) = 0 for a convex function f : R+ → R.

When n = 1 the solution of this ODE gives the grim reaper, when n > 1 there is only one solution,
defined on all R+ and growing quadratically at infinity. This solution provides the only rotation-
ally symmetric, convex, translating hypersurface moving by mean curvature, up to homotheties
and rigid motions.

EXERCISE 1.4.3. Show the claimed properties of the solution of such ODE.

In the paper by Wang [122] it is proved that in dimension two every convex and translating
flow must be rotationally symmetric and that in every dimension larger than two there exist
examples which are not rotationally symmetric and also non entire solutions of the above PDE
(actually, convex solutions defined in strips of Rn). See also [124, page 536] and [55].
Recently, Nguyen [98, 100] exhibited some new nonconvex, embedded examples of translating
hypersurfaces, with a trident–like shape at “large scales”.

Finally, there are also rotating (or rotating and dilating/contracting) flows, see [77, 82] and [27,
Section 2.2], like the unbounded spiral in the plane called the Yin–Yang curve that rotates during
its motion by curvature, depicted in the paper [3] by Altschuler.

We have seen that the homothetically shrinking hypersurfaces cannot ”live” forever, at some
maximal time Tmax > 0 the map ϕ becomes singular. This is a common fact to any compact initial
hypersurface, as we will see in the next chapter in Corollary 2.2.5.
There are two possible reasons why this happens: the first is analytic, the function ϕ could stop
being smooth, usually because some derivatives of ϕ are not bounded as t → Tmax, the second
reason is geometric, when the map ϕ stops being an immersion, that is, dϕt becomes singular (not
one–to–one) at some point of M and time t = Tmax. We will see that in both cases the curvature
of the evolving hypersurface has to become unbounded, that is, if the second fundamental form
A stays uniformly bounded till Tmax then this latter cannot be the maximal time of existence of a
smooth flow (Proposition 2.4.6).

In all the above self–similar examples, either the flow is smoothly defined for every positive
time or at some finite time the hypersurface instantly completely vanishes. This is quite a special
behavior, indeed, in general the singularities develop only in some regions of the evolving hy-
persurface. An example of a more generic and ”concrete” singularity is a nonembedded cardioid
curve in the plane with a small loop: at some time the small loop has shrunk while the rest of the
curve has remained smooth and a cusp has developed (see [14, 15, 16]).
In this example the initial curve was not embedded (we will see in the sequel why this was nec-
essary), another example, this time embedded, of what can happen at the singular time is the
dumbbell surface [53], or standard neckpinch.
Consider a long thin cylinder (the neck) in R3 smoothly connecting symmetrically two large
spheres at its ends (it is possible to construct an example of such a surface also with H > 0),
then, during the flow one can guess that the cylinder, which has a large positive mean curvature,
shrinks faster than the two big spheres at its ends which share instead a small curvature, having
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a large radius. Then, the cylinder collapses at some time and the hypersurface tends to the sym-
metric union of two “water drops” joined at the vertices of their cusps.
The existence of surfaces with this behavior under the mean curvature flow was first proved
rigorously by Grayson [53]. Another similar example was worked out by Huisken in [68]. The
following simple argument can be found in [17]: consider the Angenent’s homothetically shrink-
ing torus, mentioned above, surrounding the “cylindrical” part of a symmetric dumbbell surface
and a couple of spheres “inside” the two side balls, in a way that neither the torus nor the two
spheres touch the dumbbell. We will see in Theorem 2.2.1 that then the four surfaces cannot touch
each other during all their flows, as they have no intersections at the initial time. If the dumb-
bell is chosen in such a way that the torus (which is shrinking homothetically to a point) has an
extinction time T smaller than the one of the two “inside” spheres, the dumbbell must develop
some kind of singularity before T since it is “squeezed” by the torus, but it cannot vanish as it
has still to “contain” the two spheres.

Our last example is the standard torus in R3 obtained by rotating around the z axis a very
small circle with a center far enough from such axis (if the circle is small enough with respect
to its distance from the z axis, this torus has H > 0). During the evolution by mean curvature,
the circle tends to shrink before the whole torus has time to collapse, hence, by the rotational
symmetry which is maintained during the flow, one expects that at the maximal time the torus
develops a circle of singularities around the z axis (this will be discussed in detail in Section 4.6).
This suggests that in general the limit shape of an evolving hypersurface at a singular time can
be quite wild (some results on the “size” of the singular sets have been obtained by White [123]).

These last examples motivated the large research in literature about suitable weak solutions
of the mean curvature flow, in order to define a generalized evolution even after a singular time.
In a physical model, indeed, the interface could continue the evolution even after such time,
possibly in a nonsmooth way. In the dumbbell situation above, for instance, we intuitively expect
that the surface splits in two parts, each of them moving independently after the splitting. Also
for topological applications, in the same spirit of Hamilton’s program for the Ricci flow, it is
important to be able to continue the flow after any singular time until the hypersurface (or all the
parts in which it separates) converges to some known limit.
Weak solutions of the mean curvature flow have been introduced by many authors in different
ways; among the others, we recall the definition by Brakke [21], based on geometric measure
theory and the ones by Chen, Giga, Goto [24] and Evans, Spruck [43] based on the level sets
formulation and the theory of viscosity solutions.

1.5. Short Time Existence of the Flow

THEOREM 1.5.1. For any initial, smooth and compact hypersurface of Rn+1 given by an immersion
ϕ0 : M → Rn+1, there exists a unique, smooth solution of system (1.3.1) in some positive time interval.
Moreover, the solution continuously depends on the initial immersion ϕ0 in C∞.

REMARK 1.5.2. In literature this result was proved in several ways:
• Gage and Hamilton used the Nash–Moser inverse function theorem, actually a very

strong tool for the existence of solutions of parabolic systems of PDE’s (we recall that
we are dealing with a degenerate quasilinear system), see [49]. To the author’s knowledge,
this is the first published proof of smooth existence for short time, moreover it works in
general for the motion by mean curvature of a compact submanifold of any codimension
immersed in a Riemannian manifold.

• Evans and Spruck in [43, 44] showed the existence of a smooth solution of the PDE
satisfied by the distance function from an embedded hypersurface moving by mean
curvature (see also [90]).

• Huisken and Polden in [73] (or in the Ph.D. Thesis of Polden [104]) reduced the degen-
erate parabolic system to a nondegenerate parabolic equation, representing the evolving
hypersurfaces as graphs over the initial one in a tubular neighborhood of this latter (this
line is mentioned also in [17] and [39]).
This is the proof that we are going to show below and which is the most natural one
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in the “classical” approach to mean curvature flow. Moreover it is quite elastic to be
adapted to a very general class of flows of hypersurfaces and to be generalized to any
codimension and any Riemannian ambient space (see [40]).

Another possibility is to use some version of the so called DeTurck’s trick (see [34]), coupling
the mean curvature flow with another flow, in order to eliminate the diffeomorphism invariance
of the problem (see [129] and [23]).

Moreover, there are also many existence proofs of generalized evolutions by mean curvature
(after introducing weak definitions of hypersurfaces) of nonregular or possibly “wild” subsets of
Rn+1, some even allow these latter to be merely closed sets in the Euclidean space. It should be
said that, considering nonsmooth subsets in these generalized definitions of the flow, the unique-
ness fails in several situations.
We mention some of these approaches:

• The use of theory of viscosity solutions to study the PDE satisfied by the function f in
the formulation of the motion via level sets mentioned in Exercise 1.3.9, exploited by
Evans and Spruck in [43, 44] and Chen, Giga and Goto in [24].

• The study by Soner [112] of the evolution equation satisfied by the signed distance func-
tion from an embedded hypersurface moving by mean curvature (see Exercise 1.3.10) by
means of barrier comparison arguments and Perron’s method.

• The varifold approach of Brakke using geometric measure theory, see [21] (a hint of
Brakke’s weak definition of mean curvature flow is given in Exercise 1.3.11).

• Almgren, Taylor and Wang discretization–minimization procedure in [2].
• Ilmanen’s approximation in [78, 79].

REMARK 1.5.3. One can show that the mean curvature flow shares a kind of the usual regular-
izing property of parabolic equations, for instance, any C2 initial hypersurface becomes analytic
at every positive time, in the sense that it is not the map ϕt which becomes analytic, but the image
hypersurface ϕt(M) ⊂ Rn+1, that is, it admits an analytic reparametrization.
Moreover, with the right definition, one can let evolve a hypersurface with corners or other sin-
gularities and these latter immediately vanish, see for instance [14, 16] and [39, 121].

PROOF. We follow Huisken and Polden in [73].
Let ϕ0 : M → Rn+1 be a smooth immersion of a compact n–dimensional manifold. For the
moment we assume that this hypersurface is embedded, hence the inner pointing unit normal
vector field ν0 is globally defined and smooth.
We look for a smooth solution ϕ : M × [0, T )→ Rn+1 of the parabolic problem{

∂
∂tϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)

for some T > 0.
Since we are interested in a solution for short time, we can forget about the immersion condition
(dϕt nonsingular) as it will follow automatically by the smoothness of the solution and by the
fact that ϕ0 is a compact immersion, when t is close to zero.
Keeping in mind Proposition 1.3.4 and Corollary 1.3.5, if we find a smooth solution of the problem{〈

∂
∂tϕ(p, t) | ν(p, t)

〉
= H(p, t)

ϕ(p, 0) = ϕ0(p)
(1.5.1)

then we are done.
We consider the regular tubular neighborhood Ω = {x ∈ Rn+1 | d(x, ϕ0(M)) < ε}, which exists
for ε > 0 small enough. By regular we mean that the map Ψ : M × (−ε, ε) → Ω defined as
Ψ(p, s) = ϕ0(p) + sν0(p) is a diffeomorphism.
Any small deformation of ϕ0(M) inside Ω can be represented as the graph of a “height” function
f over ϕ0(M) and conversely, to any small function f : M → R we can associate the hypersurface
Mf ⊂ Ω given by ϕ(p) = ϕ0(p) + f(p)ν0(p). We want to compute now the equation for a smooth
function f , time dependent, in order that ϕ satisfies system (1.5.1).
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Obviously, as f( · , 0) gives the hypersurface ϕ0, we have f(p, 0) = 0 for every p ∈M .
First we compute the metric and the normal of the perturbed hypersurfaces, we set fi = ∂if then,

gij(p, t) =

〈
∂ϕ(p, t)

∂xi

∣∣∣∣ ∂ϕ(p, t)

∂xj

〉
=

〈
∂ϕ0

∂xi
+ fiν0 − fhki (0)

∂ϕ0

∂xk

∣∣∣∣ ∂ϕ0

∂xj
+ fjν0 − fhlj(0)

∂ϕ0

∂xl

〉
=

〈
∂ϕ0

∂xi
− fhki (0)

∂ϕ0

∂xk

∣∣∣∣ ∂ϕ0

∂xj
− fhlj(0)

∂ϕ0

∂xl

〉
+ fifj

= gij(p, 0)− 2f(p, t)hij(p, 0) + f2(p, t)hikg
klhlj(p, 0) + fi(p, t)fj(p, t)

where we used Gauss–Weingarten equations (1.1.1).
The vectors

∂ϕ(p, t)

∂xi
=
∂ϕ0

∂xi
+ fi(p, t)ν0(p)− f(p, t)hki (p, 0)

∂ϕ0

∂xk

generate the tangent space, hence the normal ν(p, t) is given by

ν(p, t) =
ν0(p)−

〈
ν0(p)

∣∣∣∂ϕ(p,t)
∂xi

〉
gij(p, t)∂ϕ(p,t)

∂xj∣∣∣ν0(p)−
〈
ν0(p)

∣∣∣∂ϕ(p,t)
∂xi

〉
gij(p, t)∂ϕ(p,t)

∂xj

∣∣∣
=

ν0(p)− fi(p, t)gij(p, t)∂ϕ(p,t)
∂xj∣∣∣ν0(p)− fi(p, t)gij(p, t)∂ϕ(p,t)
∂xj

∣∣∣ .
Notice that the normal, the metric and thus its inverse depend only on first space derivatives
of the function f . Moreover, as f(p, 0) = ∇f(p, 0) = 0, everything is smooth and since M is
compact, when t is small the denominator of the above expression for the normal is uniformly
bounded below away from zero (actually it is close to one).
Then, we find out the second fundamental form,

hij(p, t) =
〈
ν(p, t)

∣∣∣ fij(p, t)ν0 +
∂2ϕ0

∂xi∂xj
− fi(p, t)hkj (0)

∂ϕ0

∂xk

− fj(p, t)hli(0)
∂ϕ0

∂xl
+ f(p, t)

∂2ν0

∂xi∂xj

〉
= 〈ν(p, t) | fij(p, t)ν0〉+ Pij(p, f(p, t),∇f(p, t))

where Pij is a smooth form when f and∇f are small, hence for t small.
Computing in normal coordinates around p ∈M with respect to the metric g(t), the mean curva-
ture is then given by

H(p, t) = gij(p, t)hij(p, t)

= 〈ν(p, t) | ν0(p)〉fij(p, t)gij(p, t) + Pij(p, f(p, t),∇f(p, t))gij(p, t)

= 〈ν(p, t) | ν0(p)〉∆g(t)f + P (p, f(p, t),∇f(p, t)) ,

where P is a smooth function, assuming that f and∇f are small.
We are finally ready to write down the condition 〈∂tϕ | ν〉 = H in terms of the function f ,

∂f(p, t)

∂t
〈ν0(p) | ν(p, t)〉 = 〈∂tϕ(p, t) | ν(p, t)〉

= H(p, t)

= 〈ν(p, t) | ν0(p)〉∆g(t)f + P (p, f(p, t),∇f(p, t)) ,
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thus, if we divide both sides by 〈ν(p, t) | ν0(p)〉, which we can assume to be nonzero for a small
positive time, we get

∂f(p, t)

∂t
= ∆g(t)f +

P (p, f(p, t),∇f(p, t))

〈ν(p, t) | ν0(p)〉
= ∆g(t)f +Q(p, f(p, t),∇f(p, t))

where Q(p, · , · ) is a smooth function when its arguments are small. Moreover, as the coefficients
of ∆g(t) smoothly converge to the coefficients of ∆g(0) as t→ 0, for t small the operators ∆g(t) are
uniformly strictly elliptic.
Then, if the smooth function f : M × [0, T )→ R solves the following partial differential equation
(before we had to deal with a system of PDE’s){

∂f
∂t (p, t) = ∆g(t)f +Q(p, f,∇f)

f(p, 0) = 0
(1.5.2)

then ϕ(p, t) = ϕ0(p)+f(p, t)ν0(p) is a solution of system (1.5.1) for the initial compact embedding
ϕ0, in a positive time interval.
Conversely, if we have a mean curvature flow ϕ of ϕ0, for small time the hypersurfaces ϕt are em-
bedded in the tubular neighborhood Ω of ϕ0(M), then the function f(p, t) = π(−ε,ε)[Ψ

−1(ϕ(p, t))]

is smooth and f(p, 0) = π(−ε,ε)[Ψ
−1(ϕ0(p))] = π(−ε,ε)[(p, 0)] = 0, where π(−ε,ε) is the projection

map on the second factor of M × (−ε, ε), hence, by the above computations f must solve prob-
lem (1.5.2).
This PDE is a quasilinear strictly parabolic equation, by what we said about the uniform elliptic-
ity of ∆g(t), in particular it is not degenerate (in some sense, passing to the height function f we
killed the degeneracy of systems (1.3.1) and (1.5.1)) hence, we can apply the (almost standard)
theory of quasilinear parabolic PDE’s. The proof of a general theorem about existence, unique-
ness and continuous dependence of a solution for a class of problems including (1.5.2) can be
found again in [73] (see Appendix A).
Using the unique solution f of problem (1.5.2) we consider the associated map ϕ = ϕ0 + fν0,
we possibly restrict the time interval in order that ϕt are all immersions and we apply Corol-
lary 1.3.5 to reparametrize globally the hypersurfaces in a unique way in order to get a solution
of system (1.3.1). This association is one–to–one, as long as one remains inside the regular tubular
neighborhood Ω, hence, existence, uniqueness, smoothness and dependence on the initial datum
of a solution of system (1.3.1) follows from the analogous result for quasilinear parabolic PDE’s.

If the hypersurface is not embedded, that is, it has self–intersections, since locally every im-
mersion is an embedding, we only need a little bit more care in the definition of the height func-
tion associated to a mean curvature flow (a regular global tubular neighborhood is missing), in
order to see that the correspondence between a map ϕ and its height function f is still a bijection,
then the same argument gives the conclusion also in the nonembedded case. �

REMARK 1.5.4. This theorem gives the existence and uniqueness of the mean curvature flow
in the case of a compact initial hypersurface. The noncompact case is more involved, as one needs
estimates on the initial hypersurface (like similarly, on the initial datum in order to deal with the
heat equation in all Rn) to have existence in some positive interval of time. One possibility is to
assume a uniform control on the norm of the second fundamental form of the initial hypersurface
(see [39]).
Actually, by means of interior estimates (see Appendix B) Ecker and Huisken in [39] showed that
a uniform local Lipschitz condition on a hypersurface is sufficient to guarantee short time existence.
Another remarkable consequence of their work is the fact that the entire graph of a smooth func-
tion u : Rn → R has a unique smooth global mean curvature evolution for every time, remaining
always a graph, see [38, 39] (notice that the same statement is not true for the heat equation).
Similar interior estimates, depending only on a local bound on the value of a function (not on
its gradient) whose graph is moving by mean curvature, were obtained by Colding and Mini-
cozzi [29].
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The uniqueness of the evolution by mean curvature of a noncompact initial hypersurface is
another delicate point, like for the heat equation in Rn. One possibility is to restrict the class of
“admissible” evolutions, in order to have uniqueness, to the ones with a uniform bound (local in
time) on the second fundamental form along the flow, see anyway [23] for the strongest result in
this context.

REMARK 1.5.5. The apparent loss of uniqueness of the flow if one consider the evolution
by mean curvature of a hypersurface given as a subset of Rn+1 (see Remark 1.3.6), due to the
arbitrariness in choosing the parametrization, can actually be dealt with by noticing that the sys-
tem (1.3.1) is invariant by reparametrization. Hence, even if possibly the immersions describing
the hypersurfaces at time t are different, the hypersurfaces in Rn+1 are however the same, that is,
the flow is “geometrically” unique.

1.6. Other Second Order Flows

Let S = S(λ1, . . . , λn) be a symmetric function of the principal curvatures. Given an initial
smooth immersion ϕ0 : M → Rn+1 of the n–dimensional manifold M , one can consider the more
general evolution problem {

∂
∂tϕ(p, t) = S(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(1.6.1)

where S(p, t) is a short way to denote the value of S associated to the curvatures λ1, . . . , λn of the
hypersurface ϕt at the point p ∈M . Besides the mean curvature flow, which is given by the choice
S = λ1 + · · ·+ λn, other studied cases are the Gauss curvature flow, where S = λ1λ2 · · ·λn = det A
is the Gauss curvature and the inverse mean curvature flow considering S = (λ1 +· · ·+λn)−1 = 1/H
(see [72], for instance).

For all these flows, we have the following existence result [73], which follows along the same
line of Theorem 1.5.1.

THEOREM 1.6.1. Let M be compact and assume that at every point p ∈M we have
∂S

∂λi
(λ1(p), . . . , λn(p)) > 0, i = 1, . . . , n, (1.6.2)

for an initial hypersurface ϕ0, then system (1.6.1) has a unique smooth solution in some positive time
interval.

It can be checked that condition (1.6.2) is equivalent to the parabolicity of the PDE’s system
at the initial time. In the case of the mean curvature flow such condition is satisfied for every
initial hypersurface. For other flows one possibly needs to restrict the initial hypersurfaces to
certain classes. For instance, the above result ensures the well–posedness of the Gauss curvature
flow only when all the eigenvalues λi are positive everywhere on the initial hypersurface, that is,
when it is strictly convex.


