Besicovitch's magic method and problems of minimal resistance

Alexander Plakhov
University of Aveiro, Portugal

We consider piecewise smooth functions $u: \bar{\Omega} \rightarrow \mathbb{R}$ defined on the closure of a bounded domain $\Omega \subset \mathbb{R}^{2}$ satisfying the conditions $u(x)<0$ for $x \in \Omega$ and $u(x)=0$ for $x \in \partial \Omega$ (in other words, the graph of u forms a "dimple" on the plane).

We also consider a flow of particles that fall on the graph of u vertically down and reflect from it in the perfectly elastic manner. It is assumed that u satisfies the so-called "single impact condition" (SIC): each particle reflected at a non-singular point of the graph, further moves freely above the graph until it leaves the dimple. This condition can be stated analytically as follows: for any regular point $x \in \Omega$ and any $t>0$ such that $x-t \nabla u(x) \in \bar{\Omega}$,

$$
\begin{equation*}
\frac{u(x-t \nabla u(x))-u(x)}{t} \leq \frac{1}{2}\left(1-|\nabla u(x)|^{2}\right) . \tag{1}
\end{equation*}
$$

The force of resistance of the dimple to the flow (more precisely, the vertical projection of this force) equals $2 \rho|\Omega| R(u ; \Omega)$, where ρ is the flow density, $|\Omega|$ is the area of Ω, and

$$
\begin{equation*}
R(u ; \Omega)=\frac{1}{|\Omega|} \int_{\Omega} \frac{d x}{1+|\nabla u(x)|^{2}} \tag{2}
\end{equation*}
$$

This formula is true provided that the SIC (1) is fulfilled.
The problem is: minimize the value of "specific resistance" $R(u ; \Omega)$. It has two versions which are eventually equivalent:
(a) $\inf _{u, \Omega} R(u ; \Omega)$ и
(b) $\inf _{u} R(u ; \Omega)$ for a given Ω.

Obviously, sup $R(u ; \Omega)=1$ and $\inf R(u ; \Omega) \geq 1 / 2$. The main question is to find if $\inf R(u ; \Omega)>1 / 2$ or $\inf R(u ; \Omega)=1 / 2$. I will prove that the latter is true. This result is somewhat counterintuitive: one needs to provide a sequence of functions with the slope of the graph being "almost" 45° in the most part of the region Ω. That is, most part of reflected particles move "almost" horizontally and do not meet obstacles on the way.

A part of the construction is borrowed from Besicovitch's solution of the Kakeya problem: what is the minimum area of a plane region in which a unit line segment can be rotated continuously through 360°.

