

Dipartimento di Matematica Seminario di Equazioni Differenziali

Martedi' 15 Gennaio 2013, h 14:30 Aula D' Antoni

Manel Sanchón - Universitat de Barcelona Regularity of the extremal solution of $-\Delta u = \lambda f(u)$

We will consider the reaction diffusion equation $-\Delta u = \lambda f(u)$ with zero Dirichlet boundary condition, where $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain, λ is a positive parameter, and the reaction term $f \in C^1(\mathbb{R})$ is an increasing function satisfying f(0) > 0 and $f(t)/t \to +\infty$ as $t \to +\infty$. Under these assumptions it is well known that there exists an extremal parameter $\lambda^* \in (0, +\infty)$ such that this problem admits a classical (minimal) solution u_{λ} for $\lambda \in (0, \lambda^*)$ and admits no weak solution for $\lambda > \lambda^*$. The increasing limit $u^* := \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is known to be a weak solution for $\lambda = \lambda^*$ and it is called the extremal solution. The regularity of u^* has been an active topic of research in the last decade. However for general reaction terms f and general domains Ω the known results are far to be optimal.

In this talk I will introduce some of the results available in the literature concerning the regularity of the extremal solution and I will concentrate my attention in some L^q and $W^{1,q}$ estimates obtained recently in [1] and [2].

References

- X. Cabré and M. Sanchón, Geometric-type Sobolev inequalities and applications to the regularity of minimizers, J. Funct. Anal. 264 (2013), 303-325.
- [2] M. Sanchón, W^{1,q} estimates for the extremal solution of reaction-diffusion problems, Preprint arXiv:1209.1526 (2012). To appear in Nonlinear Anal.