Title: Unlikely intersections for algebraic curves in positive characteristic.

Abstract: In the last twelve years there has been much study of what happens when an algebraic curve in n-space is intersected with two multiplicative relations

$$
x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}=1
$$

for $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$ linearly independent in \mathbf{Z}^{n}. Usually the intersection with the union of all (\times) is at most finite, at least in zero characteristic. Recently there have been a number of advances in positive characteristic, even for additive relations

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}=\beta_{1} x_{1}+\cdots+\beta_{n} x_{n}=0 \tag{+}
\end{equation*}
$$

provided some extra structure of Drinfeld type is supplied. After briefly reviewing the zero characteristic situation, I will describe recent work, some with Dale Brownawell, for (\times) and for $(+)$ with Frobenius Modules and Carlitz Modules.

