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Abstract

This paper studies the problem on the steady supersonic flow at the constant speed past an

almost straight wedge with a piecewise smooth boundary. It is well known that if each vertex

angle of the straight wedge is less than an extreme angle determined by the shock polar, the

shock wave is attached to the tip of the wedge and constant states on both side of the shock are

supersonic. This paper is devoted to generalizing this result. Under the hypotheses that each

vertex angle is less than the extreme angle and the total variation of tangent angle along each

edge is sufficiently small, a sequence of approximate solutions constructed by a modified

Glimm scheme is proved to be convergent to a global weak solution of the steady problem. A

sequence of the corresponding approximate leading shock fronts issuing from the tip is shown

to be convergent to the leading shock front of the obtained solution. The regularity of the

leading shock front is established and the asymptotic behaviour of the obtained solution at

infinity is also studied.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The problem of steady supersonic flow past a wedge has been studied extensively
by many authors (for references, see [2–5,8,11,14–16,21,23,27] and references
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therein). In [5,11,14,15,23], the local solution around the vertex has been
constructed. The global solution has been constructed in [3–5,8,27] when the wedge
has straight edges, or when the curved wedge has small vertex angles and each edge is
the perturbation of a straight one. Here by a vertex angle, we mean a lower vertex
angle, or an upper vertex angle which is the angle between the velocity of the
oncoming flow and the tangent line of the lower edge or upper edge at the vertex,
respectively.
In this paper we are concerned with the problem of planar steady supersonic

potential flow past a two-dimensional wedge which has a piecewise smooth
boundary with each vertex angle less than the extreme angle. For simplicity, we
will study here the problem for a half-wedge, that is, we will consider the
problem

ðruÞx þ ðrvÞy ¼ 0 in O;

vx � uy ¼ 0 in O;

ðu; vÞ �~nn ¼ 0 on G;

ðu; vÞjxo0 ¼ UN;

8>>>><
>>>>:

ð1:1Þ

under the following assumptions:

(A1) The function r ¼ rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ is given by the following Bernoulli relation:

g� 1

gþ 1
ðu2 þ v2Þ þ 2

gþ 1
c2ðrÞ ¼ c2�; ð1:2Þ

where ðu; vÞ is the velocity of flow and r is the density; p ¼ Arg�1 and ðcðrÞÞ2 ¼
p0ðrÞ ¼ gArg�1; A40 is a constant and g41 is adiabatic exponent; c�40; is the
constant critical speed given in [2].

(A2) There exists a piecewise C1 function bAC½0;þNÞ with b0
þABVð½0;þNÞÞ;

b0ð0þÞ ¼ 0 and bð0Þ ¼ 0; such that

O ¼ fðx; yÞjyobðxÞ; x40g; G ¼ fðx; yÞjy ¼ bðxÞ; x40g;

where

b0þðxÞ ¼ b0ðxþÞ ¼ lim
y-x
y4x

bðyÞ � bðxÞ
y � x

and

~nn ¼ ~nnðx; bðxÞÞ ¼ ð�b0ðxþÞ; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0ðxþÞÞ2 þ 1

q
is the outer normal vector to G at the continuity points of b0 (see Fig. 1).
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(A3) The velocity of the oncoming flow is a constant vector UN ¼ ðuN; vNÞ which
satisfies

qN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
N

þ v2
N

q
4c�; ð1:3Þ

uN40; vN40 ð1:4Þ

and

0oarctan
vN

uN

ooext; ð1:5Þ

where

oext ¼ sup arctan
v

u
� arctan

vN

uN

����
����; ðu; vÞASðUNÞ; c2�ou2 þ v2oq2

N

� 	
;

and SðUNÞ is the shock polar associated with UN as given in [12].

A simple case of problem (1.1) is the case that bðxÞ � 0: It has been shown in [8,12]
that if b � 0 and if assumptions (A1) and (A3) hold, then problem (1.1) admits an
entropy solution that consists of the constant state UN and a constant state U0; with
U0 ¼ ðu0; 0Þ and

u04c040 ð1:6Þ

in subdomains of O separated by a straight shock line issuing from the vertex. In
other words, the state ahead of the shock front is UN while the state behind the
shock front is U0 (see Fig. 2), and there holds the entropy condition as follows:

r04r
N
: ð1:7Þ

Moreover by Bernoulli relation, (1.7) has the equivalent form as follows:

u2
N

þ v2
N
4u20: ð1:8Þ

Fig. 1. Supersonic flow past a curved wedge.
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Here c0 and cN are sonic speed given by Bernoulli relation in (A1), corresponding to
U0 and UN; respectively.
In this paper, we will generalize the above result, that is, under assumptions

(A1)–(A3) and the hypothesis that the total variation of b0
þ is sufficiently small, we

will find a global solution U satisfying the following properties:

(s-i) U is a weak solution to problem (1.1), that is, U solves the problem in the
following sense as in [12,21]:Z

O
ruf1x þ rvf1y ¼

Z 0

�N

r
N

uNf1ð0; yÞ dy; ð1:9Þ

Z
O

vf2x � uf2y ¼ 0 ð1:10Þ

for 8f1ACN

c ðR2Þ;f2ACN

c ðOÞ; where U ¼ ðu; vÞ; and r
N

¼ rðUNÞ is given by

the Bernoulli relation;
(s-ii) There is a shock front of U ; y ¼ wðxÞ; issuing from the vertex point, such that

U jyowðxÞ ¼ UN and such that U jwðxÞoyobðxÞ is close to the state U0; moreover,

qN4qðUÞjwðxÞoyobðxÞ: Here and throughout the paper the constant state U0

denotes the state given above.

Meanwhile, we will show that the asymptotic behaviour of the obtained solution at
x ¼ þN is determined only by the limit, limx-þNb0ðx þ 0Þ; and the velocity of the
oncoming flow, UN (see Theorems 5.1 and 5.2).
In Ref. [27], we have got a global weak solution when each vertex angle and

the total curvature of each edge of the wedge are sufficiently small. In that case, the
vertex angle and the total variation of the tangent angle along each edge of the wedge
are so small that the shock wave issuing from the tip and the waves produced by
the flow moving along each edge are weak (see Lemma 3.3 or [27]) and only the
estimates on the interactions between the weak waves and the estimates on weak
interactions at the boundary are needed to prove the decreasing of the Glimm

Fig. 2. The case b � 0:
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functional. When the vertex angles are less than the extreme angle oext but do not
satisfy the requirement as given in [27], the shocks issuing from tip of the wedge will
be relatively strong and may fail to satisfy the requirement of small strength in
Glimm’s theorem on waves interactions. Additional estimates are needed to deal
with the interactions between these strong shocks and other weak waves. In this
paper, we are concerned with the general case that 0oarctan vN

uN
ooext; which

includes the case of a large vertex angle. Here by a large vertex angle, we mean a
vertex angle which is less than oext but does not satisfy the requirement of smallness
in [27]. We will establish some estimates to deal with the interactions between the
strong shock wave issuing from tip and the weak waves produced by the flow moving
along the boundary when the total variation of tangent angles along each edge of the
wedge is very small. Moreover, to show that the strong shock wave issuing from the
tip will not disappear, we will regard the shock front y ¼ wðxÞ as a free boundary and
will have to establish the estimates on reflection coefficients, (3.13) and (3.26), which
lead to the contraction inequality (4.1) (or equivalently (4.13)) when the total
variation of tangent angles along each edge of the wedge is very small. This
contraction inequality, which is analogous to the finiteness condition in [24] and the
condition of contraction in [22], implies that the strengths of weak waves will
diminish after multi-reflections against the leading shock front y ¼ wðxÞ and the fixed
boundary, therefore the strong shock wave attached to the tip will be stable and will
not disappear here. The Glimm scheme is modified to construct the approximate
solutions and to trace the leading shock front y ¼ wðxÞ:

Remark 1.1. The form of the system of steady irrotational flow is invariant under
the same rotation of coordinate systems for both ðu; vÞ and ðx; yÞ: Moreover, the
Rankine–Hugoniot relation and entropy condition are invariant under the same
rotation of coordinate system, thus the corresponding boundary problems are
equivalent in the sense of distribution as (1.9) and (1.10). Then for the case that
b0ð0Þa0; due to the fact U0==b0ð0Þ; we can choose a suitable coordinate system such
that b0ð0Þ ¼ 0 and U0 ¼ ðu0; 0Þ; u040 hold in the new coordinate system.

The remaining part of the paper is organized as follows. In Section 2 we study shock
polar and epicycloid and distinguish a family of relatively strong shocks, which are
small perturbations of the shock fUN;U0g; from the relatively weak waves, and we
call them strong shocks. These wave curves give the solutions to Riemann problems
and the strong shocks will be used to trace the dominant shock front y ¼ wðxÞ: In
Section 3, we establish by the results above the estimates on the boundary
interactions of weak waves and the estimates on the boundary interactions of strong
shock waves. Also, we study the interactions between the weak waves and the strong
shocks. Sharp estimates (3.13) and (3.26) on the coefficients of reflecting waves
are established there. In Section 4 we first approximate the boundary by piecewise
line segments and construct the approximate solution in approximate domain. Then
we define a modified Glimm functional, which is analogous to that used in [27]
(see also [22,24]) and includes the terms needed to take into account the reflections
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on the strong shock front issuing from the tip and the reflections on a fixed
boundary, and we apply the estimates obtained in Section 3 to prove the desired
decreasing of the modified Glimm functional in each approximate domain.
Therefore, the approximate solutions can be globally defined and some estimates
on the approximate solutions and the approximate strong shock fronts are obtained.
The contraction inequality (4.1) (or equivalently (4.13)), which is the consequence of
(3.13) and (3.26) when the total variation of tangent angles along each edge of the
wedge is very small, plays a crucial role in the proof of the decreasing of the modified
Glimm functional. In Section 5 the convergence of the approximate solutions and
the convergence of the approximate strong shock fronts are shown, and the limits are
proved to be a solution of problem (1.1) and its shock front. The asymptotic
behaviour of the obtained solution at x ¼ þN is also studied. The main results,
Theorems 5.1 and 5.2, are stated there.

2. Riemann problem

2.1. Riemann problem involving only weak waves

First, we recall some basic facts that will be used in the sequel. As usual case we
regard the x-direction as the time-like direction. Then the system in (1.1) is genuinely

nonlinear and strictly hyperbolic in the supersonic subregion D; where D ¼
fðu; vÞju4c�; u2 þ v2oq2�g and q� ¼

ffiffiffiffiffiffi
gþ1
g�1

q
c�: Moreover, we can choose a neighbour-

hood of ðu0; 0Þ; V0; with V0Cfðu; vÞju4c�; u2 þ v2ou2
N

þ v2
N
g; such that the system

possesses two distinct characteristics

l1 ¼
uv � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 � c2

p

u2 � c2

and

l2 ¼
uv þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 � c2

p

u2 � c2

in V0; with l1o0ol2 in V0; and two right eigenvectors

rjðu; vÞ ¼ ej

�lj

1

 !

ð j ¼ 1; 2Þ in V0: Here U0 ¼ ðu0; 0Þ is the constant state given in Section 1, and
ejðu; vÞ ð j ¼ 1; 2Þ are smooth functions in V0 which satisfy

rj � rlj ¼ 1: ð2:1Þ

Moreover, we have
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Lemma 2.1. (i) @
@u
ðruÞo0; 8ðu; vÞAD; therefore C : D/CðDÞ is a smooth diffeo-

morphism where Cðu; vÞ ¼ ðru; vÞ; (ii) e1ðu0; 0Þ ¼ e2ðu0; 0Þ40; therefore

ejðu; vÞ40 ð j ¼ 1; 2Þ ð2:2Þ

for any state ðu; vÞ near ðu0; 0Þ:

Proof. The proof of (i) has been given in [27]. We only have to prove (ii). Indeed,
differentiating the Bernoulli relation in assumption (A1) with respect to u and v; we
can get

ðc2Þujðu;vÞ¼ðu0;0Þ ¼ �ðg� 1Þu0;

ðc2Þvjðu;vÞ¼ðu0;0Þ ¼ 0;

then

ljujU¼U0
¼ pj

ðg� 1Þu0
2c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � c20

q þ ðgþ 1Þu0c0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu20 � c20Þ

3
q

8><
>:

9>=
>;

and

ljvjU¼U0
¼ u0

u20 � c20
40:

Here j ¼ 1; 2 and p1 ¼ 1 while p2 ¼ �1: Thus it follows that

rUl1 � ð�l1; 1ÞjU¼U0
¼ rUl2 � ð�l2; 1ÞjU¼U0

40:

This yields the result (ii). &

Thus, by Lemma 2.1 and by shrinking V0; we can assume in the sequel that
ejðu; vÞ40 ð j ¼ 1; 2Þ for any ðu; vÞAV0:

In the rest of this section, we consider the problem

WðUÞx þ HðUÞy ¼ 0;

U jx¼a ¼
Ur y4b;

Ul yob;

(
8>><
>>: ð2:3Þ

where WðUÞ ¼ ðru
v
Þ and HðUÞ ¼ ðrv

�u
Þ: Here for any b; the state Ur defined in fy4bg

is regarded as the right state, and the state Ul defined in fyobg is regarded as the
left state.
Let us recall some basic facts on the wave curves related to problem (2.3). It has

been shown in [8,12] that for any constant state ð
%
u;
%
vÞ lying in the supersonic region,
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the states which can be connected with the state ð
%
u;
%
vÞ by a simple wave form a curve

called epicycloid, while the states which can be connected with the state ð
%
u;
%
vÞ by a

shock form a curve called shock polar. And we denote by Rð
%
u;
%
vÞ the epicycloid and

denote by Sð
%
u;
%
vÞ the shock polar. Let Rjð

%
u;
%
vÞ and Sjð

%
u;
%
vÞ be the part of the

epicycloid and the shock polar in the supersonic region corresponding to the lj-

characteristic field, respectively. Denote

Rþ
2 ð

%
u;
%
vÞ ¼ fðu; vÞAR2ð

%
u;
%
vÞjqp

%
qg;

S�
2 ð

%
u;
%
vÞ ¼ fðu; vÞAS2ð

%
u;
%
vÞjqX

%
qg;

Rþ
1 ð

%
u;
%
vÞ ¼ fðu; vÞAR1ð

%
u;
%
vÞjqX

%
qg;

S�
1 ð

%
u;
%
vÞ ¼ fðu; vÞAS1ð

%
u;
%
vÞjqp

%
qg

and

Tjð
%
u;
%
vÞ ¼ Rþ

j ð
%
u;
%
vÞ,S�

j ð
%
u;
%
vÞ; j ¼ 1; 2:

Here q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and

%
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%
u2 þ

%
v2

p
(see Fig. 3).

Let Ur and Ul be two constant states near the constant state U0 ¼ ðu0; 0Þ: Then
according to [8,12], the Tjð

%
u;
%
vÞð j ¼ 1; 2Þ can give the physically admissible solu-

tion to problem (2.3). We call the waves given by Tj the elementary waves, or j-wave

in the sequel. It has been shown in [27] that the following holds.

Lemma 2.2. There exists a d140 such that the following hold for all points ð
%
u;
%
vÞ

belonging to the neighbourhood of ðu0; 0Þ; Od1ðU0Þ; with Od1ðU0ÞCV0:

Rþ
j ð

%
u;
%
vÞ-Od1ðU0Þ ¼ fðu; vÞARjð

%
u;
%
vÞjljðu; vÞXljð

%
u;
%
vÞ:g-Od1ðU0Þ;

Fig. 3. Wave curve for the case:
%
u ¼ u0;

%
v ¼ 0:

Y. Zhang / J. Differential Equations 192 (2003) 1–468



S�
j ð

%
u;
%
vÞ-Od1ðU0Þ ¼ fðu; vÞASjð

%
u;
%
vÞjljðu; vÞpljð

%
u;
%
vÞg-Od1ðU0Þ

ð j ¼ 1; 2Þ; where the equality for Rþ
j (or S�

j ) holds if and only if u ¼
%
u; v ¼

%
v:

Then following Lax [13], by this lemma we can parameterize the curve TjðUlÞ for
any state Ul near the state U0: As in [13] (see also [27]), let Tjðul ; vlÞ be parameterized
by ej/Fjðej;UlÞ in a neighbourhood of U0; Od2ðU0Þ; with FAC2 and

Fjjej¼0 ¼ Ul ;

@Fj

@ej

����
ej¼0

¼ rjðUlÞ:

Moreover, ej40 along Rþ
j ðUlÞ-Od2ðU0Þ while ejo0 along S�

j ðUlÞ-Od2ðU0Þ ð j ¼
1; 2Þ: Here, d240 is a positive constant independent of e and U ; and d2pd1 with
Od2ðU0ÞCV0:
Denote

Fðe2; e1;UlÞ ¼ F2ðe2;F1ðe1;UlÞÞ; ð2:4Þ

then we have

Lemma 2.3. There is a d02Að0; d2Þ such that for any pair of states Ur;UlAOd02
ðU0Þ;

problem (2.3) admits a unique admissible solution consisting of two elementary waves.

In addition, it owns the representation: Ur ¼ Fðb; a;UlÞ with

Fja¼b¼0 ¼ Ul ;

@F
@a

����
a¼b¼0

¼ r1ðUlÞ

and

@F
@b

����
a¼b¼0

¼ r2ðUlÞ:

For simplicity if Ur; UlAOd02
ðU0Þ; we shall use the notation fUl ;Urg ¼ ða; bÞ to

denote that Ur ¼ Fðb; a;UlÞ throughout the paper, and call the parameters a and b
the magnitude of weak 1-wave and the magnitude of weak 2-wave, respectively.

It is obvious that a40 along Rþ
1 and b40 along Rþ

2 while ao0 along S�
1 and bo0

along S�
2 :
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2.2. Riemann problem involving a strong 1-shock

In this subsection we consider the Riemann problem (2.3) in the case that Ul ¼
UN and Ur is a constant state near U0:
For any UAS�

1 ðUNÞ; we also use fUN;Ug ¼ ðs; 0Þ to denote the shock that

connects UN and U with the speed s (see Fig. 4). Furthermore, if
UAOd2ðU0Þ-S�

1 ðUNÞ we call shock fUN;Ug a strong 1-shock throughout the

paper.
First, we have the following properties of unperturbed strong 1-shock fUN;U0g:

Lemma 2.4. Let fUN;U0g ¼ ðs0; 0Þ; then

(1) s0o0 and uN4u04c�; uN4cN;
(2) l1ðU0Þos0ol1ðUNÞ:

Proof. First we will prove the first statement (1). To do this, we write the Rankine–
Hugoniot relation as

r
N
ðuNs0 � vNÞ ¼ r0u0s0; ð2:5Þ

vNs0 þ uN ¼ u0: ð2:6Þ

Assume, to reach a contradiction, that s0X0: Then by entropy condition (1.7) and
(2.5), it follows that

uNs0 � vN4u0s0;

therefore uN4u0; which yields the contradiction to (2.6). Then it follows that s0o0;
therefore, from (2.6) and (1.6) we have

uN4u04c�:

Fig. 4. Shock polar.
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In addition, from Bernoulli relation it follows that

uN4c�4cN:

Thus, the first statement (1) is proved.
To prove second statement (2), let

b0 ¼ arctan s0;

a0 ¼ arctan
c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 � c20

q ;

aN ¼ arctan
cNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
N

þ v2
N

� c2
N

p ;

oN ¼ arctan
vN

uN

:

Then b0Að�p=2; 0Þ and aN; a0;oNAð0; p=2Þ:
As in [12], let s0 ¼ tan b0 in (2.5) and (2.6), then we have

sin2 b0 ¼
1� ðq2

N
=u20Þ

1� ðr20=r2NÞ:

Let

mðqÞ ¼ 1� ðq2=u20Þ
1� ðr20=r2Þ

;

where r is a function of q2 ¼ u2 þ v2 given by Bernoulli equation. Then sin2 b0 ¼
mðqNÞ:
By differentiating the Bernoulli relation we have

rq ¼ �ðqr=c2Þ

and

ðc2Þq ¼ �ðg� 1Þq:

Therefore

dm

dq
¼ 2qIðqÞ

u20r
2c2f1� ðr20=r2Þg

2
;

where IðqÞ ¼ ðr20 � r2Þc2 þ ðu20 � q2Þr20:
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In addition, from the Bernoulli relation it follows that 0oror0 for any
qAfq4u0g: This yields

dI

dq

����
q4u0

¼ ðgþ 1Þqðr2 � r20Þo0:

Thus IðqÞoIðu0Þ ¼ 0 for any q4u0; which implies

dm

dq

����
q4u0

o0:

Then

sin2 b0 ¼ mðqNÞo lim
q-u0

mðqÞ:

Applying the L’Hospital rule to the limit in this inequality, we have

sin2 b0o lim
q-u0

mðqÞ ¼ c20
u20

¼ sin2 a0;

which yields that s04l1ðU0Þ:
Finally we will prove that s0ol1ðUNÞ: By rotation we choose a new coordinate

systems Ox0y0 with the direction of UN as the direction of new x-axis, ~OOx0 : Then in
the new coordinate system Ox0y0; we have UN ¼ ðqN; 0Þ and U0 ¼ ðu0

0; v00Þ with

u0
040 and v00o0: In addition, there hold ðu0

0Þ
2 þ ðv00Þ

2 ¼ u20 and u2
N

þ v2
N

¼ q2
N
:

From Remark 1.1 we know that S�
1 ðUNÞ is also invariant under the rotation of the

coordinate systems. Then in the new coordinate systems Ox0y0; we can get the
following in the same way as above by studying S�

1 ðUNÞ:

sin2 ðoN � b0Þ4sin2 aN;

and we can prove that the shock speed is equal to tanðb0 � oNÞ with

tanðb0 � oNÞo0:

Therefore these yield that

0oaNooN � b0o
p
2
:

Hence �p=2ob0ooN � aNop=2; and this implies that s0ol1ðUNÞ: The proof is
complete. &

Lemma 2.4 implies that the shock fUN;U0g satisfies Lax shock condition if we
regard x-direction as time direction. Next, we will prove that it is also a Majda stable
1-shock. To do this, we need the following estimates.
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Lemma 2.5.

0o
jl1ðU0Þ � s0j
jl2ðU0Þ � s0j

o1: ð2:7Þ

Proof. Since

l1ðU0Þ ¼ � c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � c20

q o0

and

l2ðU0Þ ¼
c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 � c20

q 40;

the result follows from Lemma 2.4. &

Lemma 2.6. Let

a1

a2

 !
¼ ½rU WðU0Þ��1ðWðU0Þ � WðUNÞÞ: ð2:8Þ

Then a1o0; a2o0:

Proof. Differentiating the Bernoulli relation with respect to u and v; respectively,
and taking u ¼ u0; v ¼ 0; we have

rujU¼U0
¼ �r0u0

c20
;

rvjU¼U0
¼ 0:

Therefore

rU WðU0Þ ¼
r0ð1�

u2
0

c2
0

Þ 0

0 1

0
@

1
A: ð2:9Þ

Moreover, from the Rankine–Hugoniot relation (2.5), we can get

ðWðU0Þ � WðUNÞÞ ¼
�r

N
vN

s0

�vN

 !
: ð2:10Þ

Then by the supersonic inequality (1.6), Assumption (A3) and Lemma 2.4, we can
deduce the result from (2.9) and (2.10). &
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Lemma 2.7. Let ~tt ¼ a1
a2

� �
be the vector given by (2.8). Then

detðr2ðU0Þ;~tt Þa0 ð2:11Þ

and

jdetðr1ðU0Þ;~tt Þj
jdetðr2ðU0Þ;~tt Þj

o1: ð2:12Þ

Proof. By direct calculation and by Lemma 2.6 we have

detðr2ðU0Þ;~tt Þ ¼ e2ðU0Þ
�c0a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � c20

q � a1

0
B@

1
CA40 ð2:13Þ

and

detðr1ðU0Þ;~tt Þ ¼ e1ðU0Þ
c0a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � c20

q � a1

0
B@

1
CA: ð2:14Þ

Then by Lemma 2.6 we can deduce the result from (2.13) and (2.14). &

According to Majda [19,20] and Schochet [24], we say 1-shock fUN;
%
Ug ¼ ðs; 0Þ is

a Majda stable 1-shock if it satisfies Lax entropy condition and satisfies the following
conditions:

1. s is not an eigenvalue of either of ðrU WðUÞÞ�1rU HðUÞjU¼
%
U or U¼UN

;

2. detð
%
r2ð

%
UÞ;Wð

%
UÞ � WðUNÞÞa0: Here

%
r2ðUÞ ¼ rU WðUÞr2ðUÞ:

Then Lemma 2.4 and (2.11) imply that the unperturbed strong shock fUN;U0g is a
Majda stable shock. Therefore as in [7,24] we can parameterize this shock polar near
the state U0 as follows.

Proposition 2.1. There exists a d0340; with d03od2; such that the shock polar

S�
1 ðUNÞ-Od03

ðU0Þ can be parameterized by the shock speed as s/GðsÞ with GAC2

near s0 and Gðs0Þ ¼ U0: Moreover fUN;GðsÞg is a Majda stable 1-shock with

detðrU WðGðsÞÞÞa0:

Proof. It suffices to find the solution, U ¼ GðsÞ; to the following:

sðWðUÞ � WðUNÞÞ ¼ HðUÞ � HðUNÞ: ð2:15Þ
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Since

rUfsðWðUÞ � WðUNÞÞ � ðHðUÞ � HðUNÞÞgjs¼s0;U¼U0

¼ s0rU WðU0Þ � rU HðU0Þ;

and since Lemma 2.4 and (2.9) imply

detðs0rU WðU0Þ � rU HðU0ÞÞa0;

by the implicit function theorem we can find a unique C2-function U ¼ GðsÞ solving
(2.15) near s ¼ s0 and U ¼ U0: Moreover, from Lemma 2.4, (2.9) and (2.11) in
Lemma 2.7, it follows that fUN;GðsÞg is a Majda stable shock for any s close to s0:
This completes the proof. &

Lemma 2.8. Let Um ¼ GðsÞAOd03
ðU0Þ; then

ð½rU WðUmÞ��1rU HðUmÞ � sIÞGsðsÞ

¼ ½rU WðUmÞ��1ðWðUmÞ � WðUNÞÞ: ð2:16Þ

Moreover, let Gsðs0Þ ¼ b1
b2

� �
; then

b1 ¼
�s0a1 þ ðl1ðU0ÞÞ2a2

s20 � ðl1ðU0ÞÞ2
40; ð2:17Þ

b2 ¼
a1 � s0a2

s20 � ðl1ðU0ÞÞ2
40: ð2:18Þ

Proof. We can get (2.16) by differentiating the following Rankine–Hugoniot
Relation with respect to s:

sðWðGðsÞÞ � WðUNÞÞ ¼ HðGðsÞÞ � HðUNÞ:

Let s ¼ s0; therefore Um ¼ U0 in (2.16). As in the proof of Lemma 2.6, we have

rU HðU0Þ ¼
0 r0
�1 0

 !
:

Then by (2.9), Lemmas 2.4 and 2.6, we can get (2.17) and (2.18). The proof is
complete. &

To conclude the above discussions we give the solution to the Riemann problem
involving a strong 1-shock.
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Proposition 2.2. Let Ul ¼ UN in (2.3). There exists a d3; with d3Að0; d2Þ; such that if

UrAOd3ðU0Þ then problem (2.3) admits a unique admissible solution consisting of two

waves, of which one is a weak 2-wave with magnitude b; and the other is a Majda stable

strong 1-shock with shock speed s; which is a small perturbation of the shock

fUN;U0g: In addition, it owns the representation: Ur ¼ Fðb; 0;GðsÞÞ:

Proof. It suffices to solve the following equation for any Ur near the state U0;

Fðb; 0;GðsÞÞ ¼ Ur: ð2:19Þ

Since

@Fðb; 0;GðsÞÞ
@ðb; sÞ

����
b¼0;s¼s0

¼ ðr2ðU0Þ;Gsðs0ÞÞ;

by Lemmas 2.1 and 2.8 we have

det
@Fðb; 0;GðsÞÞ

@ðb; sÞ

� 	����
b¼0;s¼s0

¼ �e2ðU0Þðb1 þ l2ðU0Þb2Þo0:

Therefore, by implicit function theorem we can get the desired result. &

As in Section 2.1 we will also use the notation fUN;Urg ¼ ðs; bÞ to denote that
Ur ¼ Fðb; 0;GðsÞÞ or to denote the solution to problem (2.3) with Ul ¼ UN

throughout the paper.

3. Estimates on the interactions and reflections

3.1. Estimates on the weak interactions and reflections

In this subsection we shall establish the sharp estimates on the interactions and
reflections of weak waves. First, by the standard results (see [9,13] or [17]) we have
the interaction estimates of weak waves in the interior as follows:

Lemma 3.1. Suppose that Ul ;Um;Ur are three states close to U0 with fUl ;Urg ¼
ða1; a2Þ; fUl ;Umg ¼ ðb1; b2Þ and fUm;URg ¼ ðg1; g2Þ; then

aj ¼ bj þ gj þ Oð1ÞD0ðb; gÞ ð3:1Þ

ð j ¼ 1; 2Þ: Here D0ða; bÞ ¼
P

jaijjbjj; where the sum is over all pairs for which

the i-wave from a and j-wave from b are approaching; Oð1Þ depends only on the

system and U0:

By direct computation we have
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Lemma 3.2. Suppose that fAC2ðR2Þ; then

f ðx; yÞ � f ðx; 0Þ � f ð0; yÞ þ f ð0; 0Þ ¼
Z 1

0

Z 1

0

fxyðtx; syÞ dt ds

� �
xy ð3:2Þ

for any x; yAR1:

Let Ckðak; bkÞðk ¼ 1; 2; 3Þ be points in R2 with akþ14ak40ðk ¼ 1; 2Þ and denote

o1 ¼ arctan
b2 � b1

a2 � a1
;

o2 ¼ arctan
b3 � b2

a3 � a2
;

o ¼o2 � o1;

Ok ¼ ðx; yÞjakpxpakþ1; yo
bkþ1 � bk

akþ1 � ak

ðx � akÞ þ bk

� 	
;

G0
k ¼ ðx; yÞjakoxoakþ1; y ¼ bkþ1 � bk

akþ1 � ak

ðx � akÞ þ bk

� 	
;

and denote ~nnk the outer normal vector to G0
k; i.e.

~nnk ¼ ð�bkþ1 þ bk; akþ1 � akÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bkþ1 þ bkÞ2 þ ðakþ1 � akÞ2

q
(see Fig. 5).
Set

Dða; bÞ ¼
0 if aX0 and bX0;

jaj jbj otherwise

(

Fig. 5. Initial boundary value problem.
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and, without confusion, in the sequel denote Oð1Þ the quantity of which the bound
depends only the system and the states U0 and UN: Then consider the following
mixed problem:

WðUÞx þ HðUÞy ¼ 0 in O2;

U jx¼a2
¼

%
U;

U �~nn2 ¼ 0 on G0
2:

8><
>: ð3:3Þ

Lemma 3.3. There exist di40 ði ¼ 4; 5Þ and d0440 such that if jUr � U0jod4;
jo1jod5 and jo2jod5 with Ur �~nn1 ¼ 0; then there exists a unique bAð�d04; d

0
4Þ and a

constant state U2; with fUr;U2g ¼ ðb; 0Þ; such that the mixed problem (3.3) in O2 with

the initial data
%
U ¼ Ur admits an admissible solution U consisting of a weak 1-wave of

which the magnitude is b and satisfying that U ¼ U2 in a neighbourhood of G0
2:

Moreover, there holds

b ¼ K 0
0oþ Oð1Þjoj2 ð3:4Þ

with K 0
040; where the bounds of K 0

0 and Oð1Þ depend only on the system and the

state U0:

Proof. As in [27], it suffices to find the function b ¼ bðoþ o1;UrÞ which solves the
following equation:

Fð0; b;UrÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞ ¼ 0: ð3:5Þ

Since Fð0; 0;U0Þ � ð0; 1Þ ¼ 0 and since Lemma 2.1 implies

@

@b
ðFð0; b;UrÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞÞ ¼ r1ðU0Þ � ð0; 1Þ40 ð3:6Þ

for b ¼ o ¼ o1 ¼ 0 and Ur ¼ U0; by the implicit function theorem we can get a C2-
function of ðoþ o1;UrÞ; b ¼ bðoþ o1;UrÞ; which solves (3.5) uniquely in some
neighbourhood of b ¼ o ¼ o1 ¼ 0 and Ur ¼ U0:
Moreover, since Ur �~nn1 ¼ 0 implies bðo1;UrÞ ¼ 0; we can have (3.4) and the

inequality, K 040; by Taylor formula and (3.6). Therefore the proof is complete. &

Lemma 3.3 deals only with the case that the paralleling flow moves past a straight
corner or a straight wedge with a small turning angle. To take into account the
reflection of weak waves at boundary, we need the following:

Lemma 3.4. The following equation

Fð0; e;UlÞ �~nn2 ¼ Fðg2; g1;UlÞ �~nn2 ð3:7Þ
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admits a unique C2-solution of ðg2; g1;o2;UlÞ; e ¼ eðg1; g2;o2;UlÞ; in a neighbourhood

of e ¼ g1 ¼ g2 ¼ o2 ¼ 0 and Ul ¼ U0: Moreover, there holds

e ¼ g1 þ K 0
1g2 þ Oð1Þð jg1j jg2j þ jg2j2Þ ð3:8Þ

with

0pK 0
1 ¼ K 0

1ðo2;UlÞ ¼ 1þ Oð1Þð jo2j þ jUl � U0jÞ; ð3:9Þ

where the bounds of Oð1Þ depend only on the system and U0:

Proof. Since ~nn2 ¼ ð�sino2; coso2Þ; it suffices to find the solution e to

Fð0; e;UlÞ � ð�sino2; coso2Þ ¼ Fðg2; g1;UlÞ � ð�sino2; coso2Þ: ð3:10Þ

Since

@

@e
ðFð0; e;UlÞ � ð�sino2; coso2ÞÞje¼0;Ul¼U0;o2¼0 ¼ e1ðU0Þð�l1; 1Þ � ð0; 1Þ40;

we can find a C2-function of ðg2; g1;o2;UlÞ; e ¼ eðg1; g2;o2;UlÞ; which solves
Eq. (3.10) uniquely in some neighbourhood of e ¼ g1 ¼ g2 ¼ o2 ¼ 0 and Ul ¼ U0:
Moreover,

eðg1; 0;o2;UlÞ ¼ g1:

Let

I1 ¼ eðg1; g2;o2;UlÞ � eðg1; 0;o2;UlÞ � eð0; g2;o2;UlÞ þ eð0; 0;o2;UlÞ;

I2 ¼ eðg1; 0;o2;UlÞ;

I3 ¼ eð0; g2;o2;UlÞ;

I4 ¼ eð0; 0;o2;UlÞ;

then e ¼ I1 þ I2 þ I3 � I4:
By Lemma 3.2,

I1 ¼ Oð1Þjg1j jg2j;

and the uniqueness of the solution e implies that I2 ¼ g1 and I4 ¼ 0: Moreover, from
the Taylor formula, it follows that

I3 ¼ K 0
1g2 þ Oð1Þjg2j2;
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where

K 0
1 ¼

@e
@g2

����
g1¼g2¼0

:

Then combining the estimates for I1; I2; I3 and I4; we can get estimate (3.8).
Therefore to finish the proof, it suffices to obtain the estimates on K 0

1:
@
@g2

(3.10) and let g2 ¼ g1 ¼ 0; then we have

@e
@g2

����
g1¼g2¼0

r1ðUlÞ �~nn2 ¼ r2ðUlÞ �~nn2 ;

therefore

@e
@g2

����
g1¼g2¼0

¼ r2ðUlÞ �~nn2
r1ðUlÞ �~nn2

: ð3:11Þ

Let o2 ¼ 0 and Ul ¼ U0 in (3.11), then K 0
1ð0;U0Þ ¼ 1: This yields the estimates on

K 0
1: The proof is complete. &

From the results above, we can deduce the following:

Proposition 3.1. There exist di40 ði ¼ 6; 7Þ and d0640; with d6Að0; d2Þ; such that if

Ul ;Um;UrAOd6ðU0Þ and o1;o2Að�d7; d7Þ with fUl ;Umg ¼ ð0; aÞ; fUm;Urg ¼ ðg; 0Þ
and Ur �~nn1 ¼ 0; then there exists a unique eAð�d06; d

0
6Þ and a constant state U2; with

fUl ;U2g ¼ ðe; 0Þ; such that the mixed problem (3.3) in O2 with the initial data

U jx¼a2
¼ Ul admits an admissible solution U consisting of a weak 1-wave of which the

magnitude is e and satisfying that U ¼ U2 in a neighbourhood of G0
2 (see Fig. 6).

Moreover, there holds

e ¼ gþ K1aþ K0oþ Oð1Þfjaj jgj þ jaj joj þ Dðg;oÞ þ jaj2 þ joj2g ð3:12Þ

Fig. 6. Boundary interaction involving only weak waves.
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with K040 and

0pK1 ¼ K1ðo2;UlÞ ¼ 1þ Oð1Þð jo2j þ jUl � U0jÞ: ð3:13Þ

Here the bounds of K0;K1 and Oð1Þ depend only on the system and U0:

Proof. As in [27], it suffices to find the solution ðe; bÞ ¼ ðe; bÞða; g;oþ o1;UlÞ to the
following equations:

Fð0; e;UlÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞ

¼ Fð0; b;Fð0; g;Fða; 0;UlÞÞÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞ ¼ 0: ð3:14Þ

Since Ur �~nn1 ¼ 0; by Lemma 3.3 we can find a unique C2-function of ðoþ o1;UrÞ;
b ¼ bðoþ o1;UrÞ; which solves the following equation:

Fð0; b;UrÞ �~nn2 ¼ 0 ð3:15Þ

in some neighbourhood of b ¼ o1 ¼ o ¼ g ¼ 0 and Ur ¼ U0: Moreover, estimate
(3.4) holds with K 040: Therefore, we have to solve (3.14) by finding the solution e to
the following for any b0; a; g;o and o1; Ul :

Fð0; e;UlÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞ

¼ Fð0; b0;Fð0; g;Fða; 0;UlÞÞÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞ: ð3:16Þ

Indeed by Lemma 3.1 we have the following equality:

Fð0;b0;Fð0; g;Fða; 0;UlÞÞÞ ¼ Fðg02; g01;UlÞ ð3:17Þ

in some neighbourhood of g0k ¼ a ¼ b0 ¼ g ¼ 0 ðk ¼ 1; 2Þ and Ul ¼ U0 with

g01 ¼ gþ b0 þ Oð1Þfjaj jgj þ Dðg; b0Þ þ jb0j jajg;

g02 ¼ aþ Oð1Þfjaj jgj þ Dðg; b0Þ þ jb0j jajg:

Then Eq. (3.16) is reduced to the following equation:

Fð0; e;UlÞ � ð�sino2; coso2Þ ¼ Fðg02; g01;UlÞ � ð�sino2; coso2Þ: ð3:18Þ

Applying Lemma 3.4 to (3.18), we can find a C2-function of ðg02; g0;o2;UlÞ; e ¼
eðg01; g02;o2;UlÞ solving Eq. (3.18) uniquely in some neighbourhood of o2 ¼ g01 ¼
g02 ¼ e ¼ 0 and Ul ¼ U0: Moreover, estimates (3.8) and (3.9) hold near g01 ¼ g02 ¼ 0:

Let b0 ¼ b: Then by the solutions to (3.15) and (3.18) and by the Eq. (3.17), we can
find an e that solves (3.14) in some neighbourhood of e ¼ b ¼ o1 ¼ o ¼ g ¼ 0 and
Ul ¼ Um ¼ Ur ¼ U0; and we can get the desired estimates (3.12) and (3.13). The
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uniqueness of the solution e follows from the fact that

@

@e
Fð0; e;UlÞ � ð�sinðoþ o1Þ; cosðoþ o1ÞÞa0 ð3:19Þ

for e ¼ o ¼ o1 ¼ 0 and Ul ¼ U0:

Moreover, noticing that
d

ds
Fiðs;

%
UÞjs¼0 ¼ riðU0Þa~00 ði ¼ 1; 2Þ for

%
U ¼ U0; which

implies jFiðs;UÞ � U jX1
2
jriðUoÞj jsj for U lying in some neighbourhood of U0; we

can choose the suitable neighbourhood, Od6ðU0Þ: Thus the proof is complete. &

3.2. Estimate on the boundary perturbation of the strong shock

Let ~nnk ðk ¼ 1; 2Þ and o;o1;o2 be given as in Section 3.1, and let Od2ðU0Þ be the
neighbourhood of U0 given in Section 2.1.

Proposition 3.2. There exist d840 and d0840; with GðOd8ðs0ÞÞCOd2ðU0Þ and

d8ojs0j; such that if o1;o2Að�d08; d
0
8Þ; then for each k ¼ 1; 2; the following

equation

GðsÞ �~nnk ¼ 0 ð3:20Þ

admits a unique solution skAOd8ðs0Þ: Moreover, fUN;GðskÞg is a Majda stable 1-

shock, and there hold

s2 ¼ s1 þ K 00
0oþ Oð1Þjoj2 ð3:21Þ

and

sj ¼ s0 þ K 000
0joj þ Oð1Þjojj2; j ¼ 1; 2; ð3:22Þ

with K 00
040 and K 000

0j40 ð j ¼ 1; 2Þ: Here the bound of Oð1Þ and K 00
0 ; K 000

0j ð j ¼ 1; 2Þ
depend only on the system; s0 is the speed of the unperturbed shock in the case bðxÞ � 0:

Proof. It suffices to find the solution s ¼ sðhÞ to the following equation:

GðsÞ � ð�sin h; cos hÞ ¼ 0: ð3:23Þ

Since Lemma 2.8 implies

@

@s
ðGðsÞ � ð�sin h; cos hÞÞ

����
s¼s0;h¼0

¼ bk40;

we can find a unique C2 function of h; s ¼ sðhÞ; with sð0Þ ¼ s0; which solves the
(3.23) in some neighbourhood of s ¼ s0; h ¼ 0:
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Then sðokÞ ¼ sk ðk ¼ 1; 2Þ; and by the Taylor formula we have the desired
estimates (3.21) and (3.22). This completes the proof. &

3.3. Estimates on the interaction between the strong shock and weak waves

Consider Riemann problem (2.3) given in Section 2 with Ul ¼ UN and
UrAOd2ðU0Þ: Here Od2ðU0Þ is the neighbourhood of U0 given in Section 2.1.

Proposition 3.3. There exist d940; d1040 and d0940; d00940; with d9Að0; d2Þ and

s0 þmaxðd009 ; d10Þo0; such that if Um;UrAOd9ðU0Þ and sAðs0 � d10; s0 þ d10Þ with

fGðsÞ;Umg ¼ ð0; aÞ and fUm;Urg ¼ ðb1; b2Þ; then there exists a unique ðs0; gÞAðs0 �
d009 ;s0 þ d009Þ � ð�d09; d

0
9Þ such that Riemann problem (2.3) with Ul ¼ UN admits an

admissible solution consisting of a Majda stable strong 1-shock with the speed s0; and a

weak 2-wave of which the magnitude is g; i.e. fUN;Urg ¼ ðs0; gÞ: Moreover, there hold

g ¼ K2b1 þ b2 þ aþ Oð1Þfjb1j jb2j þ jb1j2 þ jaj jb1j þ Dða; b2Þg ð3:24Þ

and

s0 ¼ sþ K3b1 þ Oð1Þfjb1j jb2j þ jb1j2 þ jaj jb1j þ Dða; b2Þg ð3:25Þ

with K2 ¼ K2ðsÞAC1ðs0 � d10; s0 þ d10Þ and

sup
js�s0jod10

jK2ðsÞjo1; ð3:26Þ

where the bounds of K3 and Oð1Þ depend only on the system and U0:

Proof. As in the proof of Proposition 3.1, it suffices to find the solution ðs0; gÞ ¼
ðs0ðb2; b1; aÞ; gðb2; b1; aÞÞ to the following equation:

Fðb2; b1;Fða; 0;GðsÞÞ ¼ Fðg; 0;Gðs0ÞÞ: ð3:27Þ

Indeed by Lemma 3.1, there exist b01 and b02 such that

Fðb2; b1;Fða; 0;GðsÞÞÞ ¼ Fðb02; b
0
1;GðsÞÞ ð3:28Þ

with b0j ¼ bj þ d2jaþ Oð1Þfjaj jb1j þ Dða; b2Þg where d2j is the Kronecker symbol.

Thus Eq. (3.27) can be reduced to the following equation:

Fðb02; b
0
1;GðsÞÞ ¼ Fðg; 0;Gðs0ÞÞ: ð3:29Þ
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Since Lemma 2.8 implies

det
@Fðg; 0;Gðs0ÞÞ

@ðg; s0Þ

� �����
g¼0;s0¼s0

¼ detðr2ðU0Þ;Gsðs0ÞÞ

¼ � e2ðU0Þfb2l2ðU0Þ þ b1go0; ð3:30Þ

by the implicit function theorem we can find the C2-functions of ðb02; b
0
1; sÞ; g ¼

gðb02; b01; sÞ and s0 ¼ s0ðb02; b01; sÞ; which solve Eq. (3.29) uniquely in some

neighbourhood of b01 ¼ b02 ¼ g ¼ 0 and s0 ¼ s ¼ s0:
Therefore by the solutions to (3.29) and (3.28) we can get the solution ðs0; gÞ to

(3.27) in a neighbourhood of b1 ¼ b2 ¼ a ¼ g ¼ 0 and s0 ¼ s ¼ s0: Also the
uniqueness of the solution ðs0; gÞ follows from (3.30).
Let

I1 ¼ gðb02; b
0
1; sÞ � gðb02; 0;sÞ � gð0; b01; sÞ þ gð0; 0; sÞ

and let

I2 ¼ gðb02; 0; sÞ;

I3 ¼ gð0; b01; sÞ;

I4 ¼ gð0; 0; sÞ:

Then g ¼ I1 þ I2 þ I3 � I4: In the same way as in the proof of Lemma 3.4, we obtain

I1 ¼ Oð1Þjb01j jb
0
2j;

I3 ¼ gð0; 0; sÞ þ @g
@b01

����
b01¼b02¼0

b01 þ Oð1Þjb01j
2:

In addition, from the uniqueness it follows that I4 ¼ gð0; 0; sÞ ¼ 0 and

I2 ¼ b02; s0ðb02; 0; sÞ ¼ s:

Then combining the estimates for I1; I2; I3 and I4; we can obtain estimate (3.24).

To prove inequality (3.26) for K2 ¼ @g
@b01

jb01¼b02¼0; we differentiate the following

equation:

Fðb02; b
0
1;GðsÞÞ ¼ Fðg; 0;Gðs0ÞÞ;
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with respect to b01 and take b01 ¼ b02 ¼ 0 and s ¼ s0; then

r1ðU0Þ ¼ r2ðU0Þ
@g
@b01

����
b01¼b02¼0

þGs0 ðs0Þ
@s0

@b01

����
b01¼b02¼0

: ð3:31Þ

Multiplying (3.31) by the matrix ð½rU WðU0Þ��1rU HðU0Þ � s0IÞ; then by Lemma
2.8 we can deduce that

ðl1ðU0Þ � s0Þr1ðU0Þ ¼ ðl2ðU0Þ � s0ÞK2ðs0Þr2ðU0Þþ
@s0

@b1

����
b01¼b02¼0

~tt; ð3:32Þ

where~tt ¼ ½rU WðU0Þ��1ðWðU0Þ � WðUNÞÞ is given by Lemmas 2.6 and 2.7. Hence
by Lemmas 2.5, 2.7 and (3.32), we have

jK2ðs0Þj ¼
ðl1ðU0Þ � sÞ detðr1ðU0Þ;~tt Þ
ðl2ðU0Þ � s0Þ detðr2ðU0Þ;~tt Þ

����
����o1;

which yields inequality (3.26).
The estimate on s0 can be obtained in the same way as above. To do this, let

s0 ¼ D1 þ D2 þ D3 � D4 where

D1 ¼ s0ðb02; b
0
1; sÞ � s0ðb02; 0; sÞ � s0ð0; b01; sÞ þ s0ð0; 0; sÞ;

D2 ¼ s0ðb02; 0; sÞ;

D3 ¼ s0ð0; b01; sÞ;

D4 ¼ s0ð0; 0; sÞ:

Then D1 ¼ Oð1Þjb02j jb01j: In addition, from the uniqueness of ðs0; gÞ it follows that

D2 ¼ D4 ¼ s;

and by the Taylor formula we have

D3 ¼ s0ð0; 0; sÞ þ K3b
0
1 þ Oð1Þjb01j

2:

Therefore, estimate (3.25) on s0 follows from the above estimates on D1; D2; D3;
and D4:

Moreover, noticing that d
ds
Fiðs;

%
UÞjs¼0 ¼ riðU0Þa~00 ði ¼ 1; 2Þ for

%
U ¼ U0; we can

choose the suitable neighbourhood Od9ðU0Þ by the continuity argument. Thus the

proof is complete. &
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4. Approximate solution

In this section we shall use a modified Glimm scheme as in [27] to obtain the
approximate solution in the approximate domain ODx which will be defined.
Meanwhile we will establish some estimates on the approximate solutions.

4.1. Some notations

Based on the results in the above sections, we can choose positive constants

dð1Þ; dð2Þ and d0ð2Þ; with dð1Þominðd02; d3; d4; d6; d9Þ; d0ð2Þominðd8; d10; js0j=8Þ
and

dð2Þomin d5; d7; d
0
8;min

V0

1

8
j arctan l1;2j

� �
; arctan

vN

uN

; oext � arctan
vN

uN

� 	
;

such that B ¼ fUADj jU � U0jodð1Þg; B1 ¼ foj jojodð2Þg and B2 ¼ fsj js�
s0jod0ð2Þg with GðB2ÞCB; in which there hold Lemma 3.1 and the following:

sup
B�B1�B2

jK1j sup
B�B1�B2

jK2jo1: ð4:1Þ

Here K1 ¼ K1ðo;UÞ and K2 ¼ K2ðsÞ are coefficients given in Propositions 3.1 and

3.3; di and d0i ð1pip10Þ are the constants given in the lemmas and propositions in

Sections 2 and 3.
To define the difference scheme, first suppose that

sup
xX0

jb0ðxþÞjo1
8
min min

V0

jl1;2j;min
sAB2

jsj
� 	

: ð4:2Þ

For any Dx40; let yk ¼ bðkDxÞ and let Ak ¼ ðkDx; ykÞ; 0pkoN: Then

sup
k40

jyk � yk�1j
Dx

� 	
o
1

4
min min

V0

jl1;2j;min
sAB2

jsj
� 	

:

Denote

oðAkÞ ¼ arctan
ykþ1 � yk

Dx
� arctan

yk � yk�1
Dx

; kX1;

oðA0Þ ¼ arctan
y1 � y0

Dx
;

Gk ¼ fðx; yÞjkDxoxoðk þ 1ÞDx; y ¼ bðx; k;DxÞg;

where

bðx; k;DxÞ ¼ yk þ
ykþ1 � yk

Dx
ðx � kDxÞ;
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and denote ~nnk the outer normal vector to Gk; that is,

~nnk ¼ ðyk � ykþ1;DxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðykþ1 � ykÞ2 þ ðDxÞ2

q :

Define

ODx;k ¼ fðx; yÞjkDxpxoðk þ 1ÞDx; yobðx; k;DxÞg

and define the approximate domain as follows:

ODx ¼
[
kX0

ODx;k

(see Fig. 7).
Let Dy40 satisfy

Dy � mDx

Dx
¼ 4ðjs0j þ supfjl1;2ðzÞj; zABgÞ;

where m ¼ supk40fjyk�yk�1j
Dx

g: Then choose a set of mesh points

fPk;njPk;n ¼ ðkDx; ak;nÞ; kX0;�NonoþNg

in R2 where

ak;n ¼ ð2n þ 1þ ykÞDy þ yk

and yk is randomly and independently chosen in ð�1; 1Þ: We connect the mesh point
Pk;n by two line segments to the two mesh points, Pk�1;n�1 and Pk�1;n if ykp0; or
connect the mesh point Pk;n by two line segments to the two mesh points Pk�1;n and
Pk�1;nþ1 if yk40: Then for any integers kX1 and nAZ; an interaction diamond Lk;n

with the center at ðkDx; 2nDy þ ykÞ is defined to be the domain bounded by four lines

Fig. 7. Approximate domain.
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segments with vertices Nðykþ1; nÞ; Pk;n�1; Sðyk; nÞ and Pk;n (see Fig. 8), where

Nðykþ1; nÞ ¼
Pkþ1;n if ykþ1p0;

Pkþ1;n�1 if ykþ140

(

and

Sðyk; nÞ ¼
Pk�1;n�1; if ykp0;

Pk�1;n; if yk40:

(

We call the domain bounded by segments P0;n�1Nðy1; nÞ; Nðy1; nÞP0;n and P0;n�1P0;n

a half diamond L0;n:
We define a class of space-like and orientable curves in the strip fð j � 1ÞDxp

xpð j þ 1ÞDxg for any integer j40 as in [1,25].

Definition 4.1. A j-mesh curve J is defined to be an unbounded piecewise linear curve
lying in the strip domain fð j � 1ÞDxpxpð j þ 1ÞDxg and satisfying the following
properties:

1. J consists of line segments of the form Pk;n�1Nðykþ1; nÞ; Pk;n�1Sðyk; nÞ (see

Fig. 8);
2. the y-coordinates along J range from �N to þN:

We denote by Ik�1 the k-mesh curve lying in fðk � 1ÞDxpxpkDxg; that is, the
curve which is composed of all segments lying in fðk � 1ÞDxpxpkDxg and joining
the mesh points as above.

It is obvious that for any 0okoþN each k-mesh curve I divides the R2 into Iþ

part and I� part, the I� being the one containing the set fxo0g: As in [25] we also
partially order these mesh curves by saying that J14J2 if every point of the mesh

Fig. 8. Interaction diamond Lk;n and orientation of the segments.

Y. Zhang / J. Differential Equations 192 (2003) 1–4628



curve J1 is either on J2 or contained in Jþ
2 ; and call J an immediate successor to I if

J4I and every mesh point of J except one is on I : Here J1 (or J2; I ; J; resp.) is a j1-
mesh curve (or j2-, i-, j-mesh curve, resp.).

4.2. Glimm scheme

In addition to (4.2), suppose that

XþN

j¼0
joðAjÞjodð2Þ: ð4:3Þ

Then we define the difference scheme in ODx; that is, define the global approximate
solution UDx;y in ODx for any y ¼ ðy0; y1; y2;yÞ: This can be done by carrying out

the following steps inductively:
For k ¼ 0; UDx;y can be defined in f0pxoDxg-ODx with UDx;yjx¼0;yo0 ¼ UN by

a shock polar.
Inductively, assume that the approximate solution UDx;y has been constructed for

f0pxokDxg; then we will define the UDx;y in fkDxpxoðk þ 1ÞDxg by solving the

following problems.
Set

Uk;n ¼ UDx;yðkDx�; ak;nÞ; np� 1

and for np� 1 define

U0
k ðyÞ ¼ UDx;yðkDx�; ak;nÞ; if yA½yk þ 2nDy; yk þ 2ðn þ 1ÞDyÞ:

First to define UDx;y in rhombus Tk;0 whose vertices are ððk þ 1ÞDx; ykþ1Þ; ððk þ
1ÞDx;�Dy þ ykþ1Þ; ðkDx; ykÞ; ðkDx;�Dy þ ykÞ; we have to solve the following
mixed problem in Tk;0:

WðUkÞx þ HðUkÞy ¼ 0 in Tk;0;

Ukjx¼kDx ¼ U0
k ;

Uk �~nnkjGk
¼ 0;

8><
>: ð4:4Þ

where ~nnk is the outer normal vector to Gk: If problem (4.4) is solvable, then
define UDx;y ¼ Uk in Tk;0: To solve it we need to consider the following two cases:

Case ðiÞk: Uk;�1AB: Then by Proposition 3.1, problem (4.4) admits a unique

admissible solution Uk consisting of one weak 1-wave, that is, there exist a
unique ek;0;1 and a constant state Uk;0 such that

fUk;�1;Uk;0g ¼ ðek;0;1; 0Þ; ð4:5Þ

Uk;0 �~nnk ¼ 0 ð4:6Þ
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and

Uk ¼ Uk;0 in some neighborhood of Gk: ð4:7Þ

Case ðiiÞk: Uk;�1 ¼ UN: Then problem (4.4) can be solved by the shock polar or

Proposition 3.2, that is, there exist a unique sðkÞ and a constant state Uk;0 near the

state U0 such that

fUk;�1;Uk;0g ¼ ðsðkÞ; 0Þ ð4:8Þ

and (4.6), (4.7) hold.
Secondly, to define UDx;y in each rhombus Tk;n ðnp� 1Þ whose vertices are

ðkDx; ð2n � 1ÞDy þ ykÞ; ðkDx; ð2n þ 1ÞDy þ ykÞ; ððk þ 1ÞDx; ð2n � 1ÞDy þ ykþ1Þ
and ððk þ 1ÞDx; ð2n þ 1ÞDy þ ykþ1Þ; we have to solve the following Riemann
problem in each Tk;n ðnp� 1Þ:

WðUkÞx þ HðUkÞy ¼ 0 in Tk;n;

Ukjx¼kDx ¼ U0
k :

(
ð4:9Þ

If problem (4.9) is solvable, then define UDx;y ¼ Uk in Tk;nðnp� 1Þ: To solve

problem (4.9), we just need to consider the following three cases:
Case ðiiiÞk: Uk;n�1 ¼ UN and Uk;nAB: Then by Proposition 3.3, problem (4.9)

admits a unique admissible solution Uk consisting of a weak 2-wave and a Majda
stable strong 1-shock, that is, there exists a unique ðsðkÞ; ek;n;2Þ such that

fUk;n�1;Uk;ng ¼ ðsðkÞ; ek;n;2Þ; ð4:10Þ

where sðkÞ is the shock speed of the strong shock and ek;n;2 is the magnitude of the

weak 2-wave.
Case ðivÞk: Both Uk;n�1;Uk;nAB: Then by Lemma 3.1, problem (4.9) admits a

unique admissible solution Uk consisting of two weak waves, that is, there exists a
unique ðek;n;1; ek;n;2Þ such that

fUk;n�1;Uk;ng ¼ ðek;n;1; ek;n;2Þ: ð4:11Þ

Case ðvÞk: Uk;n�1 ¼ Uk;n ¼ UN: Then Uk ¼ UN:

Finally we define UkðkDx; ak;nÞ ¼ Uk;0 if nX0 for simplification. Then it is obvious

that ek;n;1 ¼ ek;n;2 ¼ 0 for nX0 and kX0:

4.3. Decreasing of Glimm functional

In this subsection we will show that under suitable conditions the approximate
solution can be well defined in ODx by the steps in Section 4.2.
First by direct computation, we deduce a lemma related to the LN-estimates, as

follows:
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Lemma 4.1. (1) If fUl ;Urg ¼ ða; bÞ; with Ur;UlAB; then

jUl � Urjps1ðjaj þ jbjÞ:

Here s1 ¼ maxfj @@aFðb; a;UÞj; j @@bFðb; a;UÞj jUAV0; jbj þ jajpd04}.
(2) For any sAB2; there holds

jGðsÞ � Gðs0Þjps2js� s0j:

Here s2 ¼ maxfjG0
sðtÞj; tAB2g:

Next, we will prove that under the suitable conditions UDx;y can be globally

defined. Inductively, we assume that UDx;y is defined in fxokDxg-ODx by the steps

in Section 4.2, and satisfies the following:

C-1(k-1) In each ODx;j ð0pjpk � 1Þ there is a Majda stable strong 1-shock of

UDx;y: S�ðsð jÞÞ; with the speed sð jÞAB2; which divides ODx;j into two

parts: Oþ
Dx;j and O�

Dx;j; where Oþ
Dx;j is the part bounded by S�ðsð jÞÞ and

Gj ¼ fy ¼ bðx; j;DxÞg:
C-2(k-1) UDx;yjOþ

Dx;j
AB; UDx;yjO�

Dx;j
¼ UN; 0pjpk � 1:

C-3(k-1) fS�ðsð jÞÞ; j ¼ 0;y; k � 1g form an approximate 1-characteristic

wDx;y: y ¼ wDx;yðxÞ; which issues from the origin.

Here and in sequel S�ðsð jÞÞ denotes the strong 1-shock or the strong 1-shock front

with the speed sð jÞ: Then we will prove that under suitable conditions UDx;y can be

defined in ODx;k and satisfies (C-1(k)), (C-2(k)) and (C-3(k)).

Indeed, by the induction hypotheses: (C-1(k-1)), (C-2(k-1)) and (C-3(k-1)), we can
first define UDx;y and the Majda stable strong 1-shock S�ðsðkÞÞ in ODx;k by the steps in

Section 4.2. Moreover, due to the construction in Section 4.2, there exists a diamond
Lk;nðkÞ such that S�ðsðk�1ÞÞ enters Lk;nðkÞ and S�ðsðkÞÞ issues from the centre of Lk;nðkÞ:

Therefore extend wDx;y to ODx;k such that wDx;y ¼ S�ðsðkÞÞ in ODx;k; and define O�
Dx;k

and Oþ
Dx;k in the same way as in (C-1(k-1)). Then it suffices to impose some suitable

conditions so that there will hold (C-2(k)) and skAB2: To this aim we will introduce
a Glimm functional.
We first present here some notations that will be used in the proof. In the sequel,

we use the Greek letters except s to denote the weak waves and denote by aj (or bj ;

etc., resp.) the jth weak wave from weak wave a (or b; etc., resp.). Moreover, without
confusion, we also use aj (or bj; etc., resp.) to denote the magnitude of aj (or bj ; etc.,

resp.).
Let J be a k-mesh curve. Then UDx;yjJ consists of a strong shock wave and various

weak waves.
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Definition 4.2.

LjðJÞ ¼
X

fjajj: aj crosses Jg; j ¼ 1; 2;

L0ðJÞ ¼
X

fjoðAÞj: AAOJg;

QjðJÞ ¼
X

fDðaj; bjÞ: both aj and bj cross J; and aj lies below bj on Jg;

j ¼ 1; 2;

Q21ðJÞ ¼
X

fja2j jb1j: both a2 and b1 cross J; and a2 lies below b1 on Jg;

where OJ is the set of corner points An lying in Jþ; that is,

OJ ¼ fAnjAnAJþ-@ODx;An ¼ ðnDx; ynÞ; nX0g;

and by aj and bj we mean a weak j-wave from a and a weak j-wave from b;
respectively.

Moreover, by the induction hypotheses: (C-1(k-1)) and (C-2(k-1)), and by (4.1)
and (4.3), we can choose positive constants Kj�40 ð j ¼ 0; 1; 2Þ and K�40 such that

the following inequalities hold for any UA %B; oAB1 and sA %B2:

Kj� � jKjj4K� ð j ¼ 1; 2Þ; ð4:12Þ

1� K1�K2�4K� ð4:13Þ

and

K0� �maxfjK0j; jK 00
0 j; jK 000

01j; jK 000
02j; jK3jg4K�; ð4:14Þ

where Kj ð j ¼ 0; 1; 2Þ and K 00
0 ; K 000

01; K 000
02; K3 are coefficients given in the proposi-

tions and lemmas in Section 3.

Let sJ be the speed of the strong shock crossing J: For any constants C140;C40
and K40; we define the following.
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Definition 4.3.

LðJÞ ¼K0�L0ðJÞ þ L1ðJÞ þ K1�L2ðJÞ;

LsðJÞ ¼ jsJ � s0j þ C1LðJÞ;

QðJÞ ¼Q2ðJÞ þ Q1ðJÞ þ Q21ðJÞ;

Q�ðJÞ ¼ jLðJÞj2;

FðJÞ ¼LðJÞ þ KfQðJÞ þ CQ�ðJÞg;

FsðJÞ ¼ jsJ � s0j þ C1FðJÞ:

Let

dð3Þ ¼ 1

1þ K1� þ K0�
minðdð1Þ=8ðs1 þ s2Þ; dð2Þ=8; d0ð2Þ=8Þ;

then we have the following:

Proposition 4.1. Suppose that the function b satisfies (4.2) and (4.3). Let I and J be two

k-mesh curves such that J is an immediate successor to I ; and suppose that

sIAB2; UDx;yjI-ðOþ
Dx;k�1,Oþ

Dx;k
ÞAB:

There exist constants d040; K40; C40 and C141; depending only on the system in

(1.1), the state UN and the state U0; such that if FsðIÞpd0 then

UDx;yjJ-ðOþ
Dx;k�1,Oþ

Dx;k
ÞAB; sJAB2 ð4:15Þ

and

FsðIÞXFsðJÞ: ð4:16Þ

Proof. Let L be the diamond between I and J: The proof of the proposition is
divided into four cases:

Case 1: L covers a part of @ODx and L covers no part of wDx;y: Then OI and OJ

differ by the vertex point Ak; that is, OJ ¼ OI \fAkg with Ak ¼ ðkDx; ykÞ: Moreover,

sI ¼ sJ :
Denote o ¼ oðAkÞ: Let I ¼ I0,I 0 and J ¼ I0,J 0 such that @L ¼ I 0,J 0: Let e1 be

the weak 1-wave crossing J 0; and let g1 and a2 be the weak 1-wave and the weak 2-
wave crossing I 0; respectively, with a2 lying below g1 on I (see Fig. 9). Here and
throughout the proof, if a rarefaction wave crossing I is split into parts that cross I0
and I 0 then these parts are considered to be two different rarefaction waves as in
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[6,24]. And let g1 ¼ 0 (or a2 ¼ 0; resp.) if there is no 1-weak wave (or no weak 2-
wave, resp.) entering L:
Define

LjðI0Þ ¼
X

fjbjj; bjAI0;ð jÞg;

DðI0;ð jÞ; gÞ ¼
X

fDðbj; gÞ; bjAI0;ð jÞg;

DðI0;ð jÞ;oÞ ¼
X

fDðbj;oÞ; bjAI0;ð jÞg

where by bjAI0;ð jÞ we mean that a weak j-wave bj with magnitude bj crosses I0:

Now we can carry out the proof. By Proposition 3.1, we have

e1 ¼ g1 þ K1a2 þ K0oþ Oð1ÞQ0ðLÞ; ð4:17Þ

where

Q0ðLÞ ¼ jg1j ja2j þ Dðg1;oÞ þ ja2j joj þ ja2j2 þ joj2:

Therefore

LðJÞpLðIÞ � ðK0� � K0Þjoj � ðK1� � K1Þja2j þ Oð1ÞQ0ðLÞ; ð4:18Þ

Fig. 9. Case 1.

Y. Zhang / J. Differential Equations 192 (2003) 1–4634



which gives

jLðJÞj2p jLðIÞj2 � 2fðK0� � K0Þjoj þ ðK1� � K1Þja2jgfL1ðI0Þ þ K1�L2ðI0Þg

� fðK0� þ K0Þjoj þ 2jg1j þ ðK1� þ K1Þja2jg

� fðK0� � K0Þjoj þ ðK1� � K1Þja2jg

þ Oð1ÞLðIÞQ0ðLÞ: ð4:19Þ

Then by (4.12), (4.14) and (4.19), we have

Q�ðIÞ � Q�ðJÞX 2K�fjoj þ ja2jgfL1ðI0Þ þ K1�L2ðI0Þg þ Oð1ÞLðIÞQ0ðLÞ

þ K�minðK�; 2Þfjoj þ ja2jgfjoj þ ja2j þ jg1jg: ð4:20Þ

On the other hand, from (4.17) we can deduce that

QðJÞpQðIÞ � Dða2; I0;ð2ÞÞ þ K1ja2j jL2ðI0Þj þ K1Dða2; I0;ð1ÞÞ

þ K0Dðo; I0;ð1ÞÞ þ K0joj jL2ðI0Þj

� jg1j ja2j þ Oð1ÞLðI0ÞQ0ðLÞ: ð4:21Þ

Then by (4.20) and (4.21), we can find constants C� and d0ð1Þ depending only on

Kj� ð j ¼ 0; 1; 2Þ and Oð1Þ such that if CXC� and LðIÞpd0ð1Þ then

K�
2

fjg1j þ joj þ ja2jgfjoj þ ja2jgpQðIÞ þ CQ�ðIÞ � ðQðJÞ þ CQ�ðJÞÞ: ð4:22Þ

Thus by (4.18) and (4.22) we can find constants C�
141 and K 040 depending only on

K� and Oð1Þ such that (4.16) holds for any C1XC�
1 and KXK 0:

Let d0 ¼ minðd0ð1Þ; dð3Þ=ðK0� þ K1� þ 1ÞÞ: If FsðIÞpd0; then

LðIÞp 1

C1
d0pd0:

Therefore we have

FsðIÞXFsðJÞ:

Moreover, we have

jsJ � s0j þ LðJÞp 1þ 1

C1

� �
FsðJÞp2d0;

which yields (4.15) by Lemma 4.1.
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Case 2: L covers a part of @ODx; and S�ðsðk�1ÞÞ issues from Ak�1 and enters L:
Then from the construction it follows that OI ¼ OJ,fAkg and S�ðsðkÞÞ issues from
Ak and crosses J: Moreover, there is no weak wave crossing I or J:
Denote o ¼ oðAkÞ as in Case 1. Then

FðIÞ � FðJÞXK0�joj þ KCK2
0�joj

2:

Let d0 be given as in Case 1, and let K ;C;C1 be any constants with C1X1 and

KCK2
0�Xbounds of jOð1Þj; where Oð1Þ is given by Proposition 3.2.

If FsðIÞpd0; then by direct computation we can obtain (4.15) and (4.16).
Case 3 (Weak–strong interaction): L lies in the interior of ODx and the strong

shock S�ðsðk�1ÞÞ enters L: Then S�ðsðkÞÞ issues from the center of L; and sI ¼
sðk�1Þ; sJ ¼ sðkÞ:
Let I ¼ I0,I 0 and J ¼ I0,J 0 such that @L ¼ I 0,J 0: Let g1 and a2 be the weak

1-wave and the weak 2-wave, respectively, crossing I 0 with a2 lying below g1 on I ;

and let e2 be the weak 2-wave crossing J 0 (see Fig. 10). In this case, denote Q0ðLÞ ¼
jg1j2 þ ja2j jg1j; and by Proposition 3.3 we have

e2 ¼ a2 þ K2g1 þ Oð1ÞQ0ðLÞ;

sðkÞ ¼ sðk�1Þ þ K3g1 þ Oð1ÞQ0ðLÞ:

Therefore

LðJÞpLðIÞ � ð1� jK2jK1�Þjg1j þ Oð1ÞQ0ðLÞ; ð4:23Þ

Fig. 10. Case 3.
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which gives

jLðJÞj2p jLðIÞj2 � 2ð1� jK2jK1�Þjg1jfK0�L0ðIÞ þ L1ðI0Þ þ K1�L2ðI0Þg

� ð1� jK2jK1�Þjg1jfð1þ jK2jK1�Þjg1j þ 2K1�ja2jg þ Oð1ÞLðIÞQ0ðLÞ:

Then by (4.12) and the contraction inequality (4.13) we can deduce that

Q�ðIÞ � Q�ðJÞX2K�jg1jLðI0Þ þ K�jg1jfjg1j þ K1�ja2jg þ Oð1ÞLðIÞQ0ðLÞ:

Thus in the same way as in the proof of Case 1, we can choose positive constants d0;
C�; C�

1 and K 0 such that if FsðIÞpd0 then there hold (4.15) and (4.16) for any

C4C�; C14C�
1 and K4K 0:

Case 4 (Weak–weak interaction): L lies in the interior of ODx and covers no part of
wDx;y: Then no strong shock enters L: Carrying out the same step as in the standard

case (see [9,25]), we can choose for any constant C40 a suitable constant d00ð1Þ40

such that if LðIÞod00ð1Þ; then

QðIÞ þ CQ�ðIÞ � QðJÞ � CQ�ðJÞX1
4
QðLÞ:

Here QðLÞ denotes the quadratic term of interactions in L as in [9,17,25]. Thus we
can choose K large enough such that (4.15) and (4.16) hold.

Then from the discussion of the above four cases, we can choose d0; C; C1 and K

such that the proposition holds. This completes the proof. &

From Proposition 4.1 we can deduce the following for any kX1:

Theorem 4.1. Suppose that the function b satisfies (4.2) and (4.3), and let d0; K ; C and

C1 be the constants given in Proposition 4.1. If the induction hypotheses (C-1(k-1)), (C-

2(k-1)) and (C-3(k-1)) hold, and if FsðIk�1Þpd0; then

UDx;yjOþ
Dx;k

AB; UDx;yjO�
Dx;k

¼ UN; skAB2 ð4:24Þ

and

FsðIk�1ÞXFsðIkÞ: ð4:25Þ

Lemma 4.2. Suppose that assumption (A2) holds. Then for any 0px1ox2; there exists

an x0A½x1; x2� such that
bðx2Þ�bðx1Þ

x2�x1
A½b0

�ðx0Þ; b0
þðx0Þ� if b0

�ðx0Þpb0
þðx0Þ; or

bðx2Þ�bðx1Þ
x2�x1

A½b0
þðx0Þ; b0

�ðx0Þ� if b0
�ðx0ÞXb0

þðx0Þ: Here b0
�ðxÞ and b0

þðxÞ denote the left

derivate and the right derivate of b at the point x; respectively.
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Proof. Let

gðxÞ ¼ bðxÞ � bðx2Þ � bðx1Þ
x2 � x1

ðx � x1Þ � bðx1Þ;

and choose an x0Aðx1; x2Þ such that gðx0Þ is the maximum or minimum of gðxÞ in
½x1; x2�; then it follows the desired result. &

For any function g and any interval ECR1; denote by TVfg;Eg the total variation
of g on E and denote gðxþÞ ¼ limy-x

y4x
gðyÞ and gðx�Þ ¼ limy-x

yox
gðyÞ: As b0ð0þÞ ¼ 0;

by Lemma 4.2 we have

XN
j¼0

joðAjÞjpTVfb0
þ; ½0;NÞg:

Thus we can choose a d�40; depending only on dð2Þ; minV0
jl1;2j and minsAB2

jsj;
such that if TVfb0

þ; ½0;NÞgod�; then (4.2) and (4.3) hold. Moreover, by Lemma 4.2

and Theorem 4.1, we can deduce the following:

Theorem 4.2. There exists a d00Að0; d�Þ such that if

TVfb0
þ; ½0;þNÞgod00;

then, for all yA
QþN

k¼0 ð�1; 1Þ and every Dx40; the modified Glimm Scheme in Section

4.2 defines an approximate solution UDx;y and its approximate strong 1-shock front

wDx;y in ODx; which satisfy (C-1(k-1)), (C-2(k-1)), (C-3(k-1)) and (4.25) for any kX1: In

addition,

TVfUDx;yðkDx�; �Þ; ð�N; yk�go4C2d
0
0

for any kX0 and

jwDx;yðx þ hÞ � wDx;yðxÞjpðjs0j þ C3Þjhj þ 2Dx

for any xX0 and h40; where the constants C2 and C3 depend only on Kj� ð j ¼
0; 1; 2Þ; K�; C; C1; K and the bound of Oð1Þ:

4.4. Estimates on the approximate shock front

For any kX1 and any interaction diamond LCfðk � 1ÞDxpxpðk þ 1ÞDxg; we
use the same notations as given in the proof of Proposition 4.1 to define the
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following:

Q0
Dx;yðLÞ ¼

jg1j ja2j þ Dðg1;oÞ þ ja2j joj þ ja2j2 þ joj2; case 1;

joj2; case 2;

jg1j
2 þ ja2j jg1j; case 3;

QðLÞ; case 4;

0; other cases

8>>>>>>><
>>>>>>>:

and

EDx;yðLÞ ¼

joj þ ja2j; case 1;

joj; case 2;

jg1j; case 3;

0; case 4 or other cases:

8>>><
>>>:

Then Q0
Dx;yðLÞ is the interaction potential in the L and EDx;yðLÞ is the sum of the

strengths of waves that interact with the boundary or the strong shock. In the same
way as in proving Theorem 4.1, we can get the following (see also [17]):

Theorem 4.3. Let UDx;y be an approximate solution given by Theorem 4.2. There exists

a constant M40 independent of UDx;y; y and Dx such thatX
L

Q0
Dx;yðLÞpM; ð4:26Þ

X
L

EDx;yðLÞpM: ð4:27Þ

Here each summation is over all the diamonds.

Define

sDx;yðxÞ ¼ sðkÞ; if xA½kDx; ðk þ 1ÞDxÞ:

Then from Proposition 3.3 and Theorem 4.3, we can deduce the following:

Lemma 4.3. There exists a constant M1 independent of Dx; y and UDx;y such that

TVfsDx;y; ½0;þNÞg ¼
XþN

k¼0
jsðkþ1Þ � sðkÞjpM1: ð4:28Þ

Denote Gb ¼
SþN

k¼0 Lk;0; Gs ¼
SþN

k¼0 Lk;nðkÞ; where Lk;0 ðkX0Þ and Lk;nðkÞ ðkX0Þ are
the diamonds whose centres lie on the boundary @ODx and the shock front wDx;y;
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respectively. Let LDx;yðGbÞ (or LDx;yðGsÞ; resp.) be the summation of the strengths of

the weak waves leaving Gb (or leaving Gs; resp.) and let

Q0
Dx;yðRÞ ¼

X
LCR

Q0
Dx;yðLÞ;

EDx;yðRÞ ¼
X
LCR

EDx;yðLÞ;

where R ¼ Gb or Gs: Then by the results in Section 3, we have the following:

Lemma 4.4. There exists a constant M3 independent of UDx;y; D; y such that

LDx;yðGsÞpM3ðEDx;yðGsÞ þ Q0
Dx;yðGsÞÞ; ð4:29Þ

LDx;yðGbÞpM3ðEDx;yðGbÞ þ Q0
Dx;yðGbÞÞ: ð4:30Þ

5. Global weak solution

5.1. Convergence of the approximate solution

According to the above discussion we can extend UDx;y by the constant Uk;0

continuously across the boundary to whole strip fkDxoxoðk þ 1ÞDxg for every
kX0:
Let the line fx ¼ ag; with a40; intersect @ODx ¼ ,fAk�1Ak; kX1g at the point

ða; pDx;
a Þ: In the same way as in [27], by Theorem 4.2 we can prove the following:

Lemma 5.1. The following inequalityZ 0

�N

jUDx;yðx þ h; y þ pDx
xþhÞ � UDx;yðx; y þ pDx

x Þj dypM1jhj ð5:1Þ

holds for any h40 and xX0; where the constant M1 is independent of Dx; y and h:

Set

Jðy;Dx;fÞ ¼
XþN

k¼1

Z 0

�N

fðkDx; y þ ykÞ � ½UDx;y�jx¼kDx dy ð5:2Þ

with f ¼ ðf1;f2ÞACN

c ðR2;R2Þ and

½UDx;y�jx¼kDx ¼ UDx;yðkDxþ; yÞ � UDx;yðkDx�; yÞ:

Then carrying out the same step as in [25], we have the following:
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Lemma 5.2. There are a null set NC
QþN

k¼0ð�1; 1Þ and a subsequence of fDxg denoted

by fD0
jg

N

j¼1; which has the limit 0, such that

Jðy;D0
j ;fÞ D0

j-0
!!! 0

for any yAð
QþN

k¼0ð�1; 1ÞÞ\N and f1;f2ACN

c ðR2Þ:

To establish the main result, we need to estimate the jumps of the approximate
shock front.
Let

dk ¼
sðk�1ÞDx � ðyk � yk�1Þ þ Dy

Dy
:

Then by the choice of Dx and fykg; and by Lemma 2.4, we have dkAð0; 1Þ:
Moreover, dk depends only on fyl ; 0plpk � 1g: Thus define

IkðDx; yÞ ¼ 1ð�1;dkÞðykÞ � ðdk � 1ÞDy þ 1ðdk ;1ÞðykÞ � ðdk þ 1ÞDy;

Iðx;Dx; yÞ ¼
X½x=Dx�

k¼1
IkðDx; yÞ;

where 1A denotes the character function of the set A and ½x=Dx� denotes the maximal
integer that does not exceed x=Dx: Then IkðDx; yÞ is the jump of the function y ¼
wDx;yðxÞ at x ¼ kDx; and is a measurable function of ðy; xÞ; which depends only on

UDx;yjf0pxokDxg and fyl ; 0plpkg:

Lemma 5.3. (1) For any xX0; Dx40 and yA
QþN

k¼0ð�1; 1Þ;

wDx;yðxÞ ¼ Iðx;Dx; yÞ þ
Z x

0

sDx;yðsÞ ds:

(2) There exist a null set N1 and a subsequence of fD0
jg denoted by fD00

j g
N

j¼0; which

has the limit 0; such that there holds the following:

Z þN

0

e�xjIðx;D00
j ; yÞj

2
dx D00

j -0
!!! 0

for any yA
QþN

k¼0 ð�1; 1Þ\N1: Here fD0
jg is given by Lemma 5.2.

Proof. Part (1) follows by the direct computation. It suffices to prove part (2).
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As in [25], let

dy ¼
YN
j¼0

ðdyj=2Þ:

Then for any k4j; we have

Z
IkIj dy ¼

Z Yk�1
i¼1

dyi Ij

Z
Ik dyk

� �
¼ 0:

Therefore, we can deduce the following:

Z
jIðx;Dx; yÞj2dy ¼

X½x=Dx�

k¼1

Z
jIkðDx; yÞj2 dy

p 4
Dy

Dx

����
����2xDx:

Then by choosing a subsequence of fD0
jg; fD00

j g such that
PþN

j¼0 D00
j oþN; we can

get (2). This completes the proof. &

Then by Lemmas 5.1–5.3, 4.3 and Theorem 4.2, we can get the following:

Theorem 5.1. Suppose assumptions (A1)–(A3) hold, then there exists a d40 such that

if TVfb0
þ; ½0;NÞgod then for each yAð

QþN

k¼0ð�1; 1ÞÞ\ðN,N1Þ; there exist a sequence

of mesh sizes, fDkgk with Dk-0 as k-þN; and a pair of functions

UyALNðO;BÞ; wyALipð½0;þNÞÞ with wyð0Þ ¼ 0; such that

(i) fUDk ;yðx; �Þg is convergent in L1ð�N; bðxÞÞ to Uyðx; �Þ for every x40; and Uy is a

global weak solution of problem (1.1) in O; with

TV fUyðx; �Þ; ð�N; bðxÞ�goM2

for every xA½0;þNÞ; where M2 is a constant depending only on the system, the

function b and TVfb0
þ; ½0;þNÞg;

(ii) fwDk ;yg is convergent uniformly to wy in any bounded x-interval;

(iii) fsDk ;yg is convergent in L1
locð½0;þNÞÞ and almost everywhere to

syABVð½0;NÞ;B2Þ and wyðxÞ ¼
R x

0 syðtÞ dt:

In addition, if y is equidistributed, then wyðxÞobðxÞ for any x40; with

UyjON
¼ UN;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2y þ v2y

q
jO0

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
N

þ v2
N

q
:

Moreover, Rankine–Hugoniot relation holds almost everywhere along the set fy ¼
wyðxÞg: Here ON ¼ fðx; yÞjyowyðxÞg and O0 ¼ fðx; yÞjwyðxÞoyobðxÞg:
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The proof of (i), (ii) and the proof of the convergence of fsDk ;yg in (iii) can be

carried out in the same way as in the standard case (see [9,10,27]). The equality in

(iii), wyðxÞ ¼
R x

0 syðtÞ dt; can be deduced from Lemma 5.3 and the result on

convergence of fwDk ;yg and fsDk ;yg: Moreover, by the construction of the solution

and by the results in [26], we can prove the remaining part of Theorem 5.1.
Therefore, the proof is complete.

5.2. Asymptotic behaviour of the strong shock

Let yA
Q

N

k¼0 ð�1; 1Þ\ðN1,NÞ be given in Theorem 5.1 and be equidistributed,

and let Uy and wy be the solution and its shock front given in Theorem 5.1,
respectively. By Theorem 5.1 and the results in [10,18], it follows that the solution Uy

contains at most countable shock fronts and countable points of waves interactions.
Moreover, we can modify the solution Uy such that Uy is continuous outside the
shock curves and the points of waves interactions. Then,

Lemma 5.4.

TVfUyðx; �Þ; ðwyðxÞ; bðxÞÞg
x-þN
!!!!! 0: ð5:3Þ

Proof. Let fDlg be the sequence given in Theorem 5.1. Let Q0
l;yðLÞ ¼ Q0

Dl ;yðLÞ and let
El;yðLÞ ¼ EDl ;yðLÞ: As in [10], we denote by dQ0

l;y and dEl;y the measures assigning

the quantities Q0
l;yðLÞ and El;yðLÞ to the centre of L respectively.

Since Theorem 4.3 implies the compactness of fdQ0
l;yg and fdEl;yg; we can select

subsequences of fdQ0
l;yg; fdEl;yg and fDlg; which we still use the same notations to

denote, so that Dl-0 and so that the limits

dQ0
l;y-dQ0

y

and

dEl;y-dEy

exist in the W � topology for measures. Moreover, Q0
yðOÞoN and EyðOÞoN:

Therefore, for any e40 we can choose a xe40 independent of fUDl ;yg such that for

any l40; X
kX½xe=Dx�

Q0
l;yðLk;nÞoe; ð5:4Þ

X
kX½xe=Dx�

El;yðLk;nÞoe: ð5:5Þ
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Moreover, let X 1
e ¼ ðxe; y1e Þ (or X 2

e ¼ ðxe; y2e ÞÞ be the point lying in the wDl ;y (or @ODk

reps.), then we can find x0
e4xe independent of fDxg and fUDl ;yg such that the

approximate 2-characteristic issuing from X 1
e intersects @ODl

at some point in

fxox0
eg and the approximate 1-characteristic issuing from X 2

e intersects wDl ;y at some

point in fxox0
eg: Then by the approximate conservation laws and Lemma 4.4 we

can deduce the following:

TVfUDl ;yðx�; �Þ; ðwDl ;yðxÞ; bðxÞÞgoOð1Þe

for x4x0
e ; where the bound of Oð1Þ is independent of e; x; UDl ;y and Dl :

Thus, passing to the limit as Dl-0; by Theorem 5.1 and regularity of Uy we
deduce the following:

TVfUyðx; �Þ; ðwyðxÞ; bðxÞÞgpOð1Þe

for x4x0
e ; which completes the proof. &

Denote by fy ¼ blðxÞg the boundary of ODl
: Let

sN ¼ lim
x-þN

syðxÞ

and

b0
N

¼ lim
x-þN

b0ðxÞ:

From Theorem 5.1 and (A2) we know that these equalities are well defined.
Furthermore, from the choice of the neighbourhoods, we have

arctan b0
N
A arctan

vN

uN

� oext; arctan
vN

uN

� �
:

Theorem 5.2. There exists a constant state UþAS�
1 ðUNÞ such that

lim
x-þN

supfjUyðx; yÞ � Uþj jwyðxÞoyobðxÞg ¼ 0: ð5:6Þ

Moreover, the pair ðUþ; sNÞ is the solution to the following equations:

GðsÞ ¼ U ; ð5:7Þ

GðsÞ � ð�b0
N
; 1Þ ¼ 0; ð5:8Þ

where the function G is given in Proposition 2.1.
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Proof. Let Ul;y ¼ UDl ;y; sl;y ¼ sDl ;y and wl;y ¼ wDl ;y: Then according to the construc-

tion of the approximate solutions, for every x40 we have

jGðsl;yðx�ÞÞ � ð�b0
lðx�Þ; 1Þj þ sup

wl;yðxÞoyoblðxÞ
jGðsl;yðx�ÞÞ � Ul;yðx�; yÞj

pOð1ÞTVfUDl ;yðx�; �Þ; ðwDl ;yðxÞ; blðxÞÞg;

where the bound of Oð1Þ is independent of fDlgl ; y; x and fUl;ygl : Then, passing to
the limit as Dl-0; by Theorem 5.1 and regularity of Uy we can get the following:

jGðsyðx�ÞÞ � ð�b0ðx�Þ; 1Þj þ sup
wyðxÞoyobðxÞ

jGðsyðx�ÞÞ � Uyðx�; yÞj

pOð1ÞTVfUyðx�; �Þ; ðwyðxÞ; bðxÞÞg ð5:9Þ

for every x40:
Moreover, by Theorem 5.1 we have GðsyÞABVð½0;NÞ;BÞ: Let

Uþ ¼ lim
x-þN

GðsyðxÞÞ;

then the result follows by Lemma 5.4 and (5.9). &
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