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Abstract

This paper studies the problem on the steady supersonic flow at the constant speed past an
almost straight wedge with a piecewise smooth boundary. It is well known that if each vertex
angle of the straight wedge is less than an extreme angle determined by the shock polar, the
shock wave is attached to the tip of the wedge and constant states on both side of the shock are
supersonic. This paper is devoted to generalizing this result. Under the hypotheses that each
vertex angle is less than the extreme angle and the total variation of tangent angle along each
edge is sufficiently small, a sequence of approximate solutions constructed by a modified
Glimm scheme is proved to be convergent to a global weak solution of the steady problem. A
sequence of the corresponding approximate leading shock fronts issuing from the tip is shown
to be convergent to the leading shock front of the obtained solution. The regularity of the
leading shock front is established and the asymptotic behaviour of the obtained solution at
infinity is also studied.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The problem of steady supersonic flow past a wedge has been studied extensively
by many authors (for references, see [2-5,8,11,14-16,21,23,27] and references
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therein). In [5,11,14,15,23], the local solution around the vertex has been
constructed. The global solution has been constructed in [3-5,8,27] when the wedge
has straight edges, or when the curved wedge has small vertex angles and each edge is
the perturbation of a straight one. Here by a vertex angle, we mean a lower vertex
angle, or an upper vertex angle which is the angle between the velocity of the
oncoming flow and the tangent line of the lower edge or upper edge at the vertex,
respectively.

In this paper we are concerned with the problem of planar steady supersonic
potential flow past a two-dimensional wedge which has a piecewise smooth
boundary with each vertex angle less than the extreme angle. For simplicity, we
will study here the problem for a half-wedge, that is, we will consider the
problem

(pu)x+(pv)}r:0 in Q?
Uy — Uy, =0 in Q,
(u,v) -7 =0 on I,

(u7 U>|x<0 = Uy,

(1.1)

under the following assumptions:

(A1) The function p = p(v/u? + v?) is given by the following Bernoulli relation:

y—1
Y+ 1

0+ 0) 4 2 2py=2, (1.2)

+1
where (i, v) is the velocity of flow and p is the density; p = Ap’~! and (¢(p))* =
P (p) =vA4p""', A>01is a constant and y> 1 is adiabatic exponent; ¢, >0, is the
constant critical speed given in [2].

(A2) There exists a piecewise C' function beC[0,+00) with b, e BV ([0, +0)),
b'(04) =0 and 5(0) = 0, such that

Q={(x,»)ly<b(x),x>0}, I ={(x,»)ly=0b(x), x>0},

where
P, (x) = B(x+) = lim 20 =20
S
and
(='(x+),1)

ii = ii(x,b(x)) = .
(b'(x+))" +1

is the outer normal vector to I' at the continuity points of 4" (see Fig. 1).
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Fig. 1. Supersonic flow past a curved wedge.

(A3) The velocity of the oncoming flow is a constant vector U, = (4, v ) Which

satisfies
Goo =\JU, +12 >c., (1.3)
Up >0, vy >0 (1.4)
and
0<alrctanv—°°<(ue,(t7 (1.5)
Uy
where
Dext = sup{ arctan - — arctan - % , (u,0)eS(Uy), <’ + vz<q2m},
u Uoo

and S(Uy ) is the shock polar associated with U, as given in [12].

A simple case of problem (1.1) is the case that b(x) = 0. It has been shown in [8,12]
that if » =0 and if assumptions (A1) and (A3) hold, then problem (1.1) admits an
entropy solution that consists of the constant state U,, and a constant state Uy, with
U() = (uo,O) and

ug>cp>0 (16)

in subdomains of @ separated by a straight shock line issuing from the vertex. In
other words, the state ahead of the shock front is U, while the state behind the
shock front is Uy (see Fig. 2), and there holds the entropy condition as follows:

Po> D (1.7)
Moreover by Bernoulli relation, (1.7) has the equivalent form as follows:

WA 4ot > (1.8)
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— Uy =(u0.0)
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/ shock

Fig. 2. The case b = 0.

Here ¢y and ¢, are sonic speed given by Bernoulli relation in (A1), corresponding to
Uy and U, respectively.

In this paper, we will generalize the above result, that is, under assumptions
(A1)~(A3) and the hypothesis that the total variation of ', is sufficiently small, we
will find a global solution U satisfying the following properties:

(s-1) U is a weak solution to problem (1.1), that is, U solves the problem in the
following sense as in [12,21]:

0
/qud)lx""_pvd)ly:/ Potin®i(0,7) dy, (1.9)

/Q quZx - u¢2y =0 (110)

for Ve, € C*(R?), p, e C*(Q), where U = (u,v), and p, = p(U,,) is given by
the Bernoulli relation;

(s-ii) There is a shock front of U, y = y(x), issuing from the vertex point, such that
Ul, <) = U and such that Ul -,y 1s close to the state Up; moreover,
40 >q(U)|,(x)<y<p(r)- Here and throughout the paper the constant state Up

denotes the state given above.

Meanwhile, we will show that the asymptotic behaviour of the obtained solution at
X = 400 is determined only by the limit, lim,_, , ., 5'(x 4+ 0), and the velocity of the
oncoming flow, U, (see Theorems 5.1 and 5.2).

In Ref. [27], we have got a global weak solution when each vertex angle and
the total curvature of each edge of the wedge are sufficiently small. In that case, the
vertex angle and the total variation of the tangent angle along each edge of the wedge
are so small that the shock wave issuing from the tip and the waves produced by
the flow moving along each edge are weak (see Lemma 3.3 or [27]) and only the
estimates on the interactions between the weak waves and the estimates on weak
interactions at the boundary are needed to prove the decreasing of the Glimm
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functional. When the vertex angles are less than the extreme angle we but do not
satisfy the requirement as given in [27], the shocks issuing from tip of the wedge will
be relatively strong and may fail to satisfy the requirement of small strength in
Glimm’s theorem on waves interactions. Additional estimates are needed to deal
with the interactions between these strong shocks and other weak waves. In this
paper, we are concerned with the general case that O<arctan%<wext, which

includes the case of a large vertex angle. Here by a large vertex angle, we mean a
vertex angle which is less than wey but does not satisfy the requirement of smallness
in [27]. We will establish some estimates to deal with the interactions between the
strong shock wave issuing from tip and the weak waves produced by the flow moving
along the boundary when the total variation of tangent angles along each edge of the
wedge is very small. Moreover, to show that the strong shock wave issuing from the
tip will not disappear, we will regard the shock front y = y(x) as a free boundary and
will have to establish the estimates on reflection coefficients, (3.13) and (3.26), which
lead to the contraction inequality (4.1) (or equivalently (4.13)) when the total
variation of tangent angles along each edge of the wedge is very small. This
contraction inequality, which is analogous to the finiteness condition in [24] and the
condition of contraction in [22], implies that the strengths of weak waves will
diminish after multi-reflections against the leading shock front y = y(x) and the fixed
boundary, therefore the strong shock wave attached to the tip will be stable and will
not disappear here. The Glimm scheme is modified to construct the approximate
solutions and to trace the leading shock front y = y(x).

Remark 1.1. The form of the system of steady irrotational flow is invariant under
the same rotation of coordinate systems for both (u,v) and (x,y). Moreover, the
Rankine—Hugoniot relation and entropy condition are invariant under the same
rotation of coordinate system, thus the corresponding boundary problems are
equivalent in the sense of distribution as (1.9) and (1.10). Then for the case that
b'(0) 0, due to the fact Uy//b'(0), we can choose a suitable coordinate system such
that »'(0) = 0 and Uy = (up,0),up >0 hold in the new coordinate system.

The remaining part of the paper is organized as follows. In Section 2 we study shock
polar and epicycloid and distinguish a family of relatively strong shocks, which are
small perturbations of the shock {U, Up}, from the relatively weak waves, and we
call them strong shocks. These wave curves give the solutions to Riemann problems
and the strong shocks will be used to trace the dominant shock front y = y(x). In
Section 3, we establish by the results above the estimates on the boundary
interactions of weak waves and the estimates on the boundary interactions of strong
shock waves. Also, we study the interactions between the weak waves and the strong
shocks. Sharp estimates (3.13) and (3.26) on the coefficients of reflecting waves
are established there. In Section 4 we first approximate the boundary by piecewise
line segments and construct the approximate solution in approximate domain. Then
we define a modified Glimm functional, which is analogous to that used in [27]
(see also [22,24]) and includes the terms needed to take into account the reflections
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on the strong shock front issuing from the tip and the reflections on a fixed
boundary, and we apply the estimates obtained in Section 3 to prove the desired
decreasing of the modified Glimm functional in each approximate domain.
Therefore, the approximate solutions can be globally defined and some estimates
on the approximate solutions and the approximate strong shock fronts are obtained.
The contraction inequality (4.1) (or equivalently (4.13)), which is the consequence of
(3.13) and (3.26) when the total variation of tangent angles along each edge of the
wedge is very small, plays a crucial role in the proof of the decreasing of the modified
Glimm functional. In Section 5 the convergence of the approximate solutions and
the convergence of the approximate strong shock fronts are shown, and the limits are
proved to be a solution of problem (1.1) and its shock front. The asymptotic
behaviour of the obtained solution at x = 4+ o0 is also studied. The main results,
Theorems 5.1 and 5.2, are stated there.

2. Riemann problem
2.1. Riemann problem involving only weak waves

First, we recall some basic facts that will be used in the sequel. As usual case we
regard the x-direction as the time-like direction. Then the system in (1.1) is genuinely
nonlinear and strictly hyperbolic in the supersonic subregion D, where D =

{(u, v)|u>c.,* +1*<q*} and ¢, = ,/mc*. Moreover, we can choose a neighbour-
hood of (u, 0), Vo, with Vo= {(u, v)|u>c., v’ + v> <u?, + v* }, such that the system

possesses two distinct characteristics

uv — evVu? + 02 — 2

A=
2 _ 2
and
p uv + evVu? + v — ¢
by =

u — 2

in Vy, with 4; <0</, in ¥}, and two right eigenvectors

2
ri(u, v) :ej< lj>

in Vy. Here Uy = (up,0) is the constant state given in Section 1, and

(J=12)
(j = 1,2) are smooth functions in ¥ which satisfy

ej(u, v)
K- Vi =1, (2.1)

Moreover, we have
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Lemma 2.1. (i) 2(pu)<0, V(u,v)eD, therefore ¥ : D ¥ (D) is a smooth diffeo-
morphism where ¥ (u,v) = (pu,v); (i) e;(uo,0) = e2(up, 0) >0, therefore

ej(u,v)>0 (j=1,2) (2.2)
for any state (u,v) near (uy,0).
Proof. The proof of (i) has been given in [27]. We only have to prove (ii). Indeed,
differentiating the Bernoulli relation in assumption (A1) with respect to u and v, we

can get

(Cz)u‘(u,v):(ug,O) = _(V - 1)1"07

(Cz)v | (u,0)=(u0,0) = 07

then
v — 1u + Duge
}7U|U:U0:nj (v )uo n (v )io o%
ZCO\/ZA% - 2\/(u(2) — )
and
o
;‘jU|U:Uo = H>O

Here j = 1,2 and n; = 1 while n, = —1. Thus it follows that
vU/ll ' (_/117 1)|U=U() = vU/AL2 ' (_/127 1)|U:U() >0.
This yields the result (ii). [

Thus, by Lemma 2.1 and by shrinking V), we can assume in the sequel that
ej(u,v)>0 (j=1,2) for any (u,v)e V.
In the rest of this section, we consider the problem

W(U), + H(U), =0,

U y>b, 2.3
Ul - y (2.3)
U] y<b,

where W(U) = (') and H(U) = (”). Here for any b, the state U, defined in {y>5b}
is regarded as the right state, and the state U; defined in {y<b} is regarded as the
left state.

Let us recall some basic facts on the wave curves related to problem (2.3). It has
been shown in [8,12] that for any constant state (u, v) lying in the supersonic region,



the states which can be connected with the state (u, v) by a simple wave form a curve
called epicycloid, while the states which can be connected with the state (u,v) by a
shock form a curve called shock polar. And we denote by R(u, v) the epicycloid and
denote by S(u,v) the shock polar. Let R;(u,v) and Sj(u,v) be the part of the
epicycloid and the shock polar in the supersonic region corresponding to the 4;-
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Ry RY
»- U
0] (u0,0)
ST ST

Fig. 3. Wave curve for the case: u = up,v = 0.

characteristic field, respectively. Denote

and

Ry (u,v) = {(u,v) e Ro(u, v)g< g},

S5 (u,v) = {(u,v) €S2(u, v)lg =g},
RT(HJ—)) = {(u> v)eRl(% Q)|4>£I},

Sy (u,0) = {(u,v) e Si(w, v)|g<q}

Here ¢ = vu? + v? and ¢ = \/u? + v? (see Fig. 3).

Let U, and U, be two constant states near the constant state Uy = (uy,0). Then
according to [8,12], the Tj(u,v)(j =1,2) can give the physically admissible solu-
tion to problem (2.3). We call the waves given by 7; the elementary waves, or j-wave

in the sequel. It has been shown in [27] that the following holds.

Lemma 2.2. There exists a 6,>0 such that the following hold for all points (u,v)

belonging to the neighbourhood of (uy,0), Os, (Uy), with Os,(Up) = Vy:

J

Ry (4,0) 0 05, (U) = {(u,v) € Ry(u, v)| 4, v) 2 4, v).} 0 O, (Uh),
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Sj (u,0) 0 05, (Uo) = {(u,v) € S;(u, 0) |4 (w1, v) < 2, 0) } 0 05, (W)
(j = 1,2), where the equality for Rj+ (or S;) holds if and only if u = u, v =v.
Then following Lax [13], by this lemma we can parameterize the curve 7;(U;) for

any state U; near the state Uy. As in [13] (see also [27]), let T (u;, v;) be parameterized
by &+ ®;(¢;, U;) in a neighbourhood of Uy, O;,(Up), with @€ C? and

djjl;:j:O = U/’
oD
— = ().
88] Ej:() r]( 1)

Moreover, & >0 along R (U;) nOs,(Up) while &;<0 along S, (U1) n O, (Up) (j =
1,2). Here, 0,>0 is a positive constant independent of ¢ and U, and J,<J; with
052 ( Uo) [y V().

Denote

D(er, 61, Up) = Dr(e2, Pi(e1, Up)), (2.4)

then we have

Lemma 2.3. There is a 8,€(0,0,) such that for any pair of states U,, U 0y, (Up),
problem (2.3) admits a unique admissible solution consisting of two elementary waves.
In addition, it owns the representation: U, = ®(f, o, U;) with

(Dlo«.:ﬁ:O = Ul’
0P
Bl ype r(U)
and
0P
8_ﬁ 1:/)):07 VZ(U/).

For simplicity if U,, U;€ Oy (Up), we shall use the notation {U}, U;} = (o, B) to
denote that U, = ®(f,a, U;) throughout the paper, and call the parameters o and f
the magnitude of weak 1-wave and the magnitude of weak 2-wave, respectively.
It is obvious that >0 along R} and >0 along Rj while «<0 along S; and <0
along S5 .
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2.2. Riemann problem involving a strong 1-shock

In this subsection we consider the Riemann problem (2.3) in the case that U; =
U, and U, is a constant state near Uj.

For any UeS;(Uy), we also use {U.,,U} = (5,0) to denote the shock that
connects U, and U with the speed ¢ (see Fig. 4). Furthermore, if
UeOs,(Uy)n Sy (Uy) we call shock {Uy, U} a strong 1-shock throughout the

paper.
First, we have the following properties of unperturbed strong 1-shock {U,, Up}.

Lemma 2.4. Let {U,, Uy} = (09,0), then
(1) 69<0 and uy, >up>Cyy oy >Cop;
(2) }vl(U0)<60</11(UC,3).

Proof. First we will prove the first statement (1). To do this, we write the Rankine—
Hugoniot relation as

P o (U G0 — Vo) = poio0o, (2.5)

Voo 00 + Usy = Up. (2.6)

Assume, to reach a contradiction, that oy >0. Then by entropy condition (1.7) and
(2.5), it follows that

Up 00 — Vo > Up00;

therefore u ., >ug, which yields the contradiction to (2.6). Then it follows that o( <0;
therefore, from (2.6) and (1.6) we have

Uy > Uy > Cy.

Sl(Ux)

u

W( iy, 0)

Fig. 4. Shock polar.
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In addition, from Bernoulli relation it follows that
Upy >Cyx>Cop

Thus, the first statement (1) is proved.
To prove second statement (2), let

py = arctan g,

Co
oy = arctan ——,

2 2
Uy — ¢
Coo
0o = arctan > > ==
us, +vs, — 5,

Voo
W, = arctan —.
Uy

Then fye(—n/2,0) and oy, 0, 0o €(0,7/2).
As in [12], let o9 = tan 8, in (2.5) and (2.6), then we have

1— (4% /u})

-2
sin f, = ——=2 2%
C 1= (/p%)
Let
1= (/)
m(q) = 17227
— (po/p?)
where p is a function of ¢> = u?> 4+ v* given by Bernoulli equation. Then sin® f, =
m(qo)-
By differentiating the Bernoulli relation we have
pg=—(ap/)
and
(Cz)q = _(V - l)q
Therefore

dm 2q91(q)
dg  w3p2c{1 - (p/p*)}”

where 1(q) = (p5 — p*) + (4§ — ¢*)p5-
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In addition, from the Bernoulli relation it follows that 0<p<p, for any
ge{q>up}. This yields

dl

= (1 1 2 52 .
a (v + Da(p” = pg) <0

q>up

Thus I(g)<I(uy) = 0 for any g > up, which implies

dm

4 <0.

q> 1o

Then

sin B, = m(q..) < lim m(q).
q—up

Applying the L’Hospital rule to the limit in this inequality, we have

2

. . C .

sin” fy < lim m(q) = —g = sin® o,
q—uo uy

which yields that g9 > 4, (Up).

Finally we will prove that g <4,(Uy ). By rotation we choose a new coordinate
systems Ox’y’ with the direction of U., as the direction of new x-axis, Ox’. Then in
the new coordinate system Ox’y’, we have U, = (¢,,0) and Uy = (ug, v)) with
>0 and vj<0. In addition, there hold (u))* + (vj)* = u3 and 2 +1v% =% .
From Remark 1.1 we know that S; (U,,) is also invariant under the rotation of the
coordinate systems. Then in the new coordinate systems Ox'y’, we can get the
following in the same way as above by studying S; (U ):

sin? (wo — ) >sin’ oy,
and we can prove that the shock speed is equal to tan(f; — w.,) with
tan(fy — wo ) <0.

Therefore these yield that

0<0lop <o — /30<g.
Hence —n/2<fly<wo — oy <7/2, and this implies that o9 <1;(U ). The proof is
complete. [

Lemma 2.4 implies that the shock {U,, Uy} satisfies Lax shock condition if we
regard x-direction as time direction. Next, we will prove that it is also a Majda stable
I-shock. To do this, we need the following estimates.
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Lemma 2.5.
|42(Up) — 00|

Proof. Since

i](U()) = — il <0

up — ¢}

and

72(Up) = ——2e>0,

Uy — €5

the result follows from Lemma 2.4. O

Lemma 2.6. Let

az

<m>-ﬁVUW@m}%W@®—WWUm»

Then a; <0, ay<0.

13

(2.8)

Proof. Differentiating the Bernoulli relation with respect to u and v, respectively,

and taking u = uy,v = 0, we have

PolUo

/’u|U:Un ="
]
pv‘U:Uo = O

Therefore

VoW (Up) = (”"(1 —d) 0).

Moreover, from the Rankine—Hugoniot relation (2.5), we can get

_Pple
mum—mmm=< “>.

—Vop

(2.9)

(2.10)

Then by the supersonic inequality (1.6), Assumption (A3) and Lemma 2.4, we can

deduce the result from (2.9) and (2.10). O
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Lemma 2.7. Let f = (Z;) be the vector given by (2.8). Then
det(r2(Up), ) #0 (2.11)

and

<l (2.12)

Proof. By direct calculation and by Lemma 2.6 we have

—Cod2

det(l’g(Uo),?) :Ez(Uo) —————a; | >0 (213)
u} — c?
0 0
and
- cod
det(Vl(Uo),t) = el(Uo) L—al . (214)
uj — ¢

Then by Lemma 2.6 we can deduce the result from (2.13) and (2.14). O

According to Majda [19,20] and Schochet [24], we say 1-shock {U,, U} = (0,0) is
a Majda stable 1-shock if it satisfies Lax entropy condition and satisfies the following
conditions:

1. ¢ is not an eigenvalue of either of (Vy W(U))_IVUH(U)|U:UOr U=u,;
2. det(r(U), W(U) — W(Uy))#0. Here r,(U) = Vy W (U)r2(U).

Then Lemma 2.4 and (2.11) imply that the unperturbed strong shock {U., Uy} is a
Majda stable shock. Therefore as in [7,24] we can parameterize this shock polar near
the state U, as follows.

Proposition 2.1. There exists a 03>0, with 83<0,, such that the shock polar
ST (Us) 0Oy, (Uy) can be parameterized by the shock speed as o+ G(a) with Ge C?
near oy and G(oy) = Uy. Moreover {U.,,G(c)} is a Majda stable 1-shock with
det(Vy W (G(a)))#0.

Proof. It suffices to find the solution, U = G(o), to the following:

c(W(U) = W(U..)) = H(U) — H(U.,.). (2.15)
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Since
Vul{a(W(U) = W(Us)) = (H(U) = H(Uwx )}, 0-0;
=0 VyW(Uy) — VuvH(Uy),
and since Lemma 2.4 and (2.9) imply
det(agVy W (Us) — VuH(Up)) #0,
by the implicit function theorem we can find a unique C?-function U = G(¢) solving
(2.15) near ¢ = g9 and U = U,. Moreover, from Lemma 2.4, (2.9) and (2.11) in
Lemma 2.7, it follows that {U.,, G(g)} is a Majda stable shock for any ¢ close to gy.
This completes the proof. [
Lemma 2.8. Let Uy = G(a)€ Oy, (Uy), then
(VoW (Un)] ' VuH(Up) — 01)Gy(0)
= VoW (Un)]™ (W (Un) = W(Uy)). (2.16)

Moreover, let G;(0¢) = (zl), then

a 2
P + (m(Uo)z “ o, (2.17)
a5 — (41(Uh))
py =N 00 (2.18)

a3 — (7(Up))®
Proof. We can get (2.16) by differentiating the following Rankine-Hugoniot
Relation with respect to a:
a(W(G(0)) = W(Us)) = H(G(0)) — H(Ux).

Let 0 = 0y, therefore U,, = Up in (2.16). As in the proof of Lemma 2.6, we have

VuH(Up) = (‘11 go>.

Then by (2.9), Lemmas 2.4 and 2.6, we can get (2.17) and (2.18). The proof is
complete. [

To conclude the above discussions we give the solution to the Riemann problem
involving a strong 1-shock.
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Proposition 2.2. Let U; = U, in (2.3). There exists a 03, with 63€(0,0,), such that if
U, € Os,(Uy) then problem (2.3) admits a unique admissible solution consisting of two
waves, of which one is a weak 2-wave with magnitude [, and the other is a Majda stable
strong 1-shock with shock speed o, which is a small perturbation of the shock
{Uy, Up}. In addition, it owns the representation: U, = ®(f,0, G(q)).

Proof. It suffices to solve the following equation for any U, near the state U,
#(8,0,G(0)) = Uy, (2.19)
Since

99(p,0,G(0))

8(/3,0) = (VQ(UO), GG(JO))a

p=0,0=0

by Lemmas 2.1 and 2.8 we have

det{@@(ﬁ, 0, G(0))

a(B, o) Hﬁ_oﬂ_%: —ex(Uy) (b1 + 22(Up)b2) <O.

Therefore, by implicit function theorem we can get the desired result. [
As in Section 2.1 we will also use the notation {U, U,} = (o, ) to denote that

U, = ®($,0,G(c)) or to denote the solution to problem (2.3) with U, = U,
throughout the paper.

3. Estimates on the interactions and reflections
3.1. Estimates on the weak interactions and reflections

In this subsection we shall establish the sharp estimates on the interactions and
reflections of weak waves. First, by the standard results (see [9,13] or [17]) we have
the interaction estimates of weak waves in the interior as follows:

Lemma 3.1. Suppose that U;, U, U, are three states close to Uy with {U;,U,} =
(o1, 00), {U[, Um} = (ﬁlaﬂz) and {Um> UR} = (V1772)7 then

o =B +7y;+O(1)4"(B,y) (3.1)

(j=1,2). Here A'(a,B)=73"|wllB;|, where the sum is over all pairs for which
the i-wave from o and j-wave from [§ are approaching; O(1) depends only on the
system and Uj.

By direct computation we have
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Lemma 3.2. Suppose that f € C*(R?); then
1o
1) =50 =100 4100 = ([ [ fotmamaias)sy 32)
o Jo
for any x,yeR".

Let Cr(ax,bi)(k =1,2,3) be points in R*> with a;,;>a;>0(k = 1,2) and denote

by — by
| =arctan s
a; — ap
by — b

Wy =arctan — ,
az — a

0 =w); -,

brs1 — bk
Qk{(x,y)|ak<x<ak+1,y<—+l (x—ak)+bk},
Ajer1 — A

b —b
r = {(x,y)lak <x<@i1,y = (x — ay) +bk}»
d+1 — dk

and denote 7 the outer normal vector to I'}, i.e

. (=brs1 + bi, ak — ag)

103
\/(*bkﬂ + b))+ (ar1 —a)’

(see Fig. 5).
Set

Aa, b) 0 if a=0 and >0,
a? = .
|a| |p| otherwise

O, 0,

Fig. 5. Initial boundary value problem.
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and, without confusion, in the sequel denote O(1) the quantity of which the bound
depends only the system and the states Uy and U,,. Then consider the following
mixed problem:

W(U), +H(U),=0 in 2,
Ul,—y, = U, (3.3)
U-i,=0 on I').

Lemma 3.3. There exist 6;>0 (i=4,5) and 6,>0 such that if |U, — Up|<0da,
|w1| < ds and |wy| < ds with U, - iy =0, then there exists a unique fe(—3,,08,) and a
constant state Uy, with {U,, Uy} = (,0), such that the mixed problem (3.3) in Q, with
the initial data U = U, admits an admissible solution U consisting of a weak 1-wave of
which the magnitude is f§ and satisfying that U = U, in a neighbourhood of I'.
Moreover, there holds

B = Ko+ O(1)|o|? (3.4)

with Ki>0, where the bounds of K, and O(1) depend only on the system and the
state Uj.

Proof. As in [27], it suffices to find the function f = f(w + w1, U,) which solves the
following equation:

®(0,B,U,) - (—sin(w + wy),cos(w + wy)) = 0. (3.5)
Since ¢(0,0, Up) - (0,1) = 0 and since Lemma 2.1 implies

(%((I)(O,,B, U,) - (—sin(w + wy),cos(w + wy))) = r (Up) - (0,1)>0 (3.6)

for f = w = w; = 0 and U, = U, by the implicit function theorem we can get a C>-
function of (w + wy, U,), f = f(w + wy, U,), which solves (3.5) uniquely in some
neighbourhood of f = w =w; =0 and U, = U,.

Moreover, since U, -#; =0 implies f(w;, U,) =0, we can have (3.4) and the
inequality, K’ >0, by Taylor formula and (3.6). Therefore the proof is complete. [

Lemma 3.3 deals only with the case that the paralleling flow moves past a straight
corner or a straight wedge with a small turning angle. To take into account the

reflection of weak waves at boundary, we need the following:

Lemma 3.4. The following equation

D(0,¢,Up) -1ty = D(7y,71, U) - 1 (3.7)
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admits a unique C*-solution of (75,7, w1, U)), & = &(y,, 72, w2, Uy), in a neighbourhood
of e =y, =7y, =wy =0 and Uy = Uy. Moreover, there holds

=71+ Kipa + O()([p1] Ipal + 1) (3.8)
with
0<K] = K}(2, U)) = 1+ O(1) || + Uy — Ui, (3.9)
where the bounds of O(1) depend only on the system and U.
Proof. Since 7, = (—sin w,,cos m,), it suffices to find the solution ¢ to
®(0,¢, Up) - (—sin wy,cos m2) = D(75,71, Ur) - (—sin wa, cos m). (3.10)

Since

0 .
&(dj(oa &, Ul) ’ (—Sll’l 2, COS wz))'s:O,U/:Uo.wZZO =€ (UO)(_}“U 1) ’ (0’ 1) >0,

we can find a C2-function of (y,,7,, s, U)), &= &(y;,72, w2, U;), which solves
Eq. (3.10) uniquely in some neighbourhood of ¢ =y, =y, = w, = 0 and U; = U.
Moreover,
S(V] ) 07 @3, U/) =71
Let

11 = 8(’)}17’)}27602) Ul) - 8(’))17056027 Ul) - 8(0,'})2,(02, Ul) + 8(0,07(1)27 U])a
L= 8(?1707(1)2, U/)a
13 = 8(077)270)27 U1)7

I4 = 8(0707602; Ul)a

thene=0L+ L+ 15— 4.
By Lemma 3.2,

Iy = O[] Iyals

and the uniqueness of the solution ¢ implies that I, = y, and I; = 0. Moreover, from
the Taylor formula, it follows that

L =Ky, + 0(1)[nf,
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where

Ok

K ==
! 0y,

P1=72=0

Then combining the estimates for I, I, I3 and I, we can get estimate (3.8).
Therefore to finish the proof, it suffices to obtain the estimates on Kj.

29 (3.10) and let y, = y, = 0, then we have

07,

Oe . .
— r(Uy) -wiy =1 (U)) - 1,
6?2 71=7,=0
therefore
Oe :VZ(UI)‘ﬂZ (311)
83)2 yl:yZ:O r (Ul) ' ﬁ2

Let wy =0 and U; = U in (3.11), then K{(0, Up) = 1. This yields the estimates on
Kj. The proof is complete. [

From the results above, we can deduce the following:

Proposition 3.1. There exist §;>0 (i = 6,7) and >0, with ds€(0,6,), such that if
U, Uy, U, € O5,(Uy) and wy,w,€(—07,07) with {U;, U, } = (0,a), {Uy, U,} = (7,0)
and U, -Hy = 0, then there exists a unique ¢€ (—5'6, 5’6) and a constant state Uy, with
{U;, Ur} = (&,0), such that the mixed problem (3.3) in Q, with the initial data
Ul,_,, = Ui admits an admissible solution U consisting of a weak 1-wave of which the
magnitude is ¢ and satisfying that U = U, in a neighbourhood of I', (see Fig. 6).
Moreover, there holds

=7+ Ko+ Koo+ O(){la] )| + |o o] + 40y, 0) + |of* + |0} (3.12)

C

0
U,
o

A/ U/

Fig. 6. Boundary interaction involving only weak waves.




Y. Zhang | J. Differential Equations 192 (2003) 1-46 21
with Ko>0 and

0<K; = Ki(w2, Up) =14+ O(1)(|w2| + | U — Up)). (3.13)
Here the bounds of Koy, Ky and O(1) depend only on the system and Uj.

Proof. Asin [27], it suffices to find the solution (e, ) = (¢, f) (o, 7, @ + w1, U)) to the
following equations:

@(0,¢,U;) - (—sin(w + wy),cos(w + wy))
=@(0,8, 00,7, ®(x,0, U)))) - (—sin(w + w1), cos(w + wy)) = 0. (3.14)

Since U, - ii} = 0, by Lemma 3.3 we can find a unique C>-function of (o + wy, U,),
p = p(w + wy, U,), which solves the following equation:

®(0,8,U,) it = 0 (3.15)

in some neighbourhood of f =w; =w =79 =0 and U, = Uy. Moreover, estimate
(3.4) holds with K’ >0. Therefore, we have to solve (3.14) by finding the solution ¢ to
the following for any ', «,7,® and w;, Us:

@(0,¢, Up) - (—sin(w + w),cos(w + wy))
=@(0,5, (0,7, P(x,0,U)))) - (—sin(w + w1),cos(w + wy)).  (3.16)
Indeed by Lemma 3.1 we have the following equality:
®(0,p,9(0,7, #(2,0, Up))) = (75,7}, Ur) (3.17)
in some neighbourhood of 9}, =a = =79 =0 (k =1,2) and U; = U, with

i =7+B+ O lal bl + 4, B) + B[},

73 =+ O(W{lal [yl + 40y, B') + '] e}

Then Eq. (3.16) is reduced to the following equation:
D(0,¢, Up) - (—sin wa, cos w2) = D(y5, 7}, Uy) - (—sin wa, cos w). (3.18)

Applying Lemma 3.4 to (3.18), we can find a C>-function of (3,7, w2, Up), &=
e(v], 75, w2, U;) solving Eq. (3.18) uniquely in some neighbourhood of w; =9} =
75 =& =0 and U; = Uy. Moreover, estimates (3.8) and (3.9) hold near 7| =9, = 0.

Let ' = B. Then by the solutions to (3.15) and (3.18) and by the Eq. (3.17), we can
find an ¢ that solves (3.14) in some neighbourhood of e=f =w; =w =7y =0 and
U =U,=U = Uj, and we can get the desired estimates (3.12) and (3.13). The
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uniqueness of the solution ¢ follows from the fact that

%@(0,87 U)) - (—sin(w + wy),cos(w + w;)) #0 (3.19)

fore =w =w; =0 and U, = U,.
. d = .
Moreover, noticing that %d),-(s, U)l,_o =1i(Uy) #0 (i=1,2) for U= Uy, which

implies |®;(s, U) — U|=4]r;(U,)||s| for U lying in some neighbourhood of U, we
can choose the suitable neighbourhood, Oj,(Up). Thus the proof is complete. [

3.2. Estimate on the boundary perturbation of the strong shock

Let 7 (k =1,2) and w,w;,m, be given as in Section 3.1, and let Oy, (U)) be the
neighbourhood of Uy given in Section 2.1.

Proposition 3.2. There exist 93>0 and 53>0, with G(Os(a0)) < O0s,(Uy) and
ds<|oo|, such that if wy,mre(—0g,d3), then for each k =1,2, the following
equation

G(o) iy =0 (3.20)

admits a unique solution oy € Os,(09). Moreover, {U.,,G(or)} is a Majda stable 1-
shock, and there hold

o =01 + Ko+ O(1)|o|* (3.21)
and
0; = oo + Ko + O(D)]y*,  j=1,2, (3.22)

with Ki >0 and Kij;>0 (j=1,2). Here the bound of O(1) and Ky, Ky, (j=1,2)
depend only on the system; o is the speed of the unperturbed shock in the case b(x) = 0.

Proof. It suffices to find the solution ¢ = a(/) to the following equation:

G(o) - (—sinh,cosh) = 0. (3.23)
Since Lemma 2.8 implies
0 .
—(G(0) - (—sin h,cos h)) = b >0,
do a=a,h=0

we can find a unique C? function of %, ¢ = a(h), with ¢(0) = g¢, which solves the
(3.23) in some neighbourhood of ¢ = gy, = 0.



Y. Zhang | J. Differential Equations 192 (2003) 1-46 23

Then o(wy) =ox (k=1,2), and by the Taylor formula we have the desired
estimates (3.21) and (3.22). This completes the proof. [

3.3. Estimates on the interaction between the strong shock and weak waves

Consider Riemann problem (2.3) given in Section 2 with U; = U, and
U, € 0s,(Uy). Here Os,(Up) is the neighbourhood of Uy given in Section 2.1.

Proposition 3.3. There exist 69>0, 310>0 and 55>0, 59 >0, with d9e(0,0,) and
gy + max(ég, ((510)<07 such that lf Uy, U e 059((]0) and GE(O’() — 010,00 + 510) with
{G(0), Uy} = (0,0) and {U,,, U,} = (B}, B>), then there exists a unique (d',y) € (oo —
39,00+ 09) X (—04,8y) such that Riemann problem (2.3) with U; = U, admits an

admissible solution consisting of a Majda stable strong 1-shock with the speed o', and a
weak 2-wave of which the magnitude is vy, i.e. {U,, U,} = (¢',y). Moreover, there hold

=Koy + B+ o+ OB 1Ba] + B + ol [Bi] + A B2)}  (3.24)
and
o' =+ Ksfy + O{|B] 1Bal + 1B + 1ol [Br] + A(=, By)} (3.25)
with Ky = K»(c)e C!(ag — d10, 00 + S10) and

sup  |Kx(o)|<1, (3.26)

|o—a0| <d10
where the bounds of K3 and O(1) depend only on the system and U.

Proof. As in the proof of Proposition 3.1, it suffices to find the solution (¢/,y) =
(o' (By, By, ), (B, By, @) to the following equation:

¢(ﬁ27 ﬁl ) ¢(Oﬁ, Oa G(G)) = ¢(V7 07 G(G/)) (327)
Indeed by Lemma 3.1, there exist ] and f5 such that
é(ﬁ27ﬁ17¢(a707 G(U))) = ©(ﬁ,27ﬁ/1aG(o-)) (328)

with f; = B; 4 dg0 + O(1){|o| |B1| + A(e, B5)} where dy; is the Kronecker symbol.
Thus Eq. (3.27) can be reduced to the following equation:

®(p3, By, G(0)) = &(7,0,G(d")). (3.29)
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Since Lemma 2.8 implies

det <6<D(y, 0, G(a’)))

8(“/,6') Zdet(rz(Uo),Gg(Cfo))

7=0,0"=0(

= —ex(Up){b2/2(Uy) + b1} <0, (3.30)

by the implicit function theorem we can find the C>-functions of (B, f],0), y =
7(B5, By,0) and o =d'(By, B),0), which solve Eq.(3.29) uniquely in some
neighbourhood of f] = 5 =7 =0 and ¢’ = ¢ = 0.

Therefore by the solutions to (3.29) and (3.28) we can get the solution (¢’,7) to
(3.27) in a neighbourhood of f,=f,=0=9=0 and ¢ =g =0g). Also the
uniqueness of the solution (¢’,y) follows from (3.30).

Let

Il = y(ﬁ,%ﬁ,lao-) - V(ﬂ;aoao-) - ’y(ovﬁ/lvo-) + V(07070)

and let

12 = W/(ﬁlz,070')7
13 = V(Ovﬁ/lva)7

14 = '))(0, 0) G)'
Then y = I, + I, + I3 — I. In the same way as in the proof of Lemma 3.4, we obtain

L= 0(1)|Bi[ 1B,

2]
/
OBl g=p=0

I =9(0,0,0) + By + O(1)|8, .

In addition, from the uniqueness it follows that I; = y(0,0,0) = 0 and
L=p d(B,00) =0

Then combining the estimates for I, I, I and I, we can obtain estimate (3.24).
To prove inequality (3.26) for K, :aa_/“/f’]:[f’z:O’ we differentiate the following
1
equation:

D(p3, By, G(0)) = &(7,0,G(d")),
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with respect to ) and take ] = 5, = 0 and ¢ = gy, then

Oy od’
r(Uo) = r(Uy) =1 +Gr(00) =
op,

(3.31)
OB | ;=0

B=B,=0

Multiplying (3.31) by the matrix ([Vy W (Up)] 'VuH(Up) — aol), then by Lemma
2.8 we can deduce that

oo’

(41(Uo) = a0)r1(Up) = (72(Uo) — Uo)Kz(Go)rz(Uo)ﬂLﬁ
1

I, (332
$i=$;=0

where 7 = [V W(Uy)] ™ (W(Uy) — W(U.,,)) is given by Lemmas 2.6 and 2.7. Hence
by Lemmas 2.5, 2.7 and (3.32), we have

;L](Uo) — 0) det(l’l(U()), ?)
(}Q(UO) — 0'0) det(}"z(Uo), ?)

|Ka(00)| = <lI,

which yields inequality (3.26).
The estimate on ¢’ can be obtained in the same way as above. To do this, let
o' = D) + D, + D3 — Dy where

Dl == G/(ﬂlbﬁ/]aa) - U/(ﬁ/27070) - 6/(07[3/170) + O'/(0,0, O-)v
D2 = UI(B;,O,G),
D3 = G/(Oaﬂ/ha)a

Dy =d'(0,0,0).

Then Dy = O(1)|B5| |B;|- In addition, from the uniqueness of (¢’,7) it follows that

and by the Taylor formula we have
Dy ='(0,0,0) + Kifty + O(1)|;*.

Therefore, estimate (3.25) on ¢’ follows from the above estimates on Dy, D,, Ds,
and Dy.

Moreover, noticing that 4&;(s, U)|,_, = ri(Ug)#0 (i =1,2) for U= Uy, we can
choose the suitable neighbourhood Os,(Uj) by the continuity argument. Thus the
proof is complete. [
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4. Approximate solution

In this section we shall use a modified Glimm scheme as in [27] to obtain the
approximate solution in the approximate domain Qu, which will be defined.
Meanwhile we will establish some estimates on the approximate solutions.

4.1. Some notations

Based on the results in the above sections, we can choose positive constants
5(1), 5(2) and 5/(2), with 5(1)<min(5'2,53,54,56,59), 5/(2)<mi1’1(5g,(510,‘00‘/8)
and

0(2) <min{55, 7,05, min <1| arctan 11.2|) ,arctan E, Wex; — Arctan Dﬁ},
Vo 8 ' Uy Uy
such that B={UeD||U — Uy|<d(1)}, B; ={ov||w|<dé(2)} and B, = {o]||o —
00| <d'(2)} with G(B,)< B, in which there hold Lemma 3.1 and the following:

sup |Kj| sup |Ky|<I. (4.1)
Bx B xB, Bx B xB,

Here K| = K;(w, U) and K; = K>(0o) are coefficients given in Propositions 3.1 and
3.3; §; and &, (1<i<10) are the constants given in the lemmas and propositions in
Sections 2 and 3.

To define the difference scheme, first suppose that

sup |b’(x+)|<%min{min |41.2], min |a|}. (4.2)
V() (}'EBg

x=0

For any Ax>0, let yx = b(kAx) and let Ay = (kAx,yx),0<k< co. Then

— Vi— 1
sup LSS <-min< min
Vo

)bl,z\,(rrréllg |a}.

k>0 Ax 4
Denote
Yk+1 — Vk Yk — Vi—1

A — p o b 2 1’

w(Ay) = arctan Ax arctan v k
w(Ay) = arctan M,
X
Ty ={(x,y)|kAx<x<(k+ 1)Ax, y = b(x,k,Ax)},
where

_ Vit = Vk
b(x,k,Ax) = yx + Ax (x — kAx),
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and denote 7 the outer normal vector to Iy, that is,

(Vk — Vi1, Ax)
VOt =3 + (Ax)?

ne =

Define
Qaxi = {(x,y)|kAx<x<(k 4+ 1)Ax,y<b(x, k,Ax)}
and define the approximate domain as follows:

Qnx = Qavk
k>0

(see Fig. 7).
Let Ay>0 satisfy

Ay — mAx

Ax = 4(|oo| + sup{|412(2)],z€ B}),

where m = supk>o{%}. Then choose a set of mesh points
{Pin|Prn = (kAX, k), k=0,—0c0 <n< + o0}
in R* where
akn = (2n+ 14 0)Ay + yi

and 0y is randomly and independently chosen in (—1, 1). We connect the mesh point
Py, by two line segments to the two mesh points, Pi_j,—1 and Pr_;, if 0, <0, or
connect the mesh point Py, by two line segments to the two mesh points Pj;_;, and
Py py1 if 0, >0. Then for any integers k>1 and ne Z, an interaction diamond Ay ,
with the center at (kAx, 2nAy + yi) is defined to be the domain bounded by four lines

k+1

Q Ax,k

Fig. 7. Approximate domain.
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P ko

N(y1,m)

S0, n)

Pk.nfl

Fig. 8. Interaction diamond A, and orientation of the segments.

segments with vertices N(0x41,n), Prn_1, S(0k,n) and Py, (see Fig. 8), where

Piy1p if 01 <0,
Priip—1 if Opp1>0

N(@/ﬁq,n) = {

and

S(8em) = {Pk_l,n_], if 0:<0,
Pkfl,na if 0;>0.
We call the domain bounded by segments Py ,— N (6,,n), N(6,,n)Po, and Py,_; Py,
a half diamond A,.
We define a class of space-like and orientable curves in the strip {(j — 1)Ax<
x<(j+ 1)Ax} for any integer j>0 as in [1,25].

Definition 4.1. A j-mesh curve J is defined to be an unbounded piecewise linear curve
lying in the strip domain {(j — 1)Ax<x<(j+ 1)Ax} and satisfying the following
properties:

1. J consists of line segments of the form Py, N(0kt1,n), Pip_1S(0k,n) (see
Fig. 8);
2. the y-coordinates along J range from —oo to + 0.

We denote by I;_; the k-mesh curve lying in {(k — 1)Ax<x<kAx}, that is, the
curve which is composed of all segments lying in {(k — 1)Ax<x<kAx} and joining
the mesh points as above.

It is obvious that for any 0<k < + oo each k-mesh curve I divides the R? into I
part and I~ part, the 7~ being the one containing the set {x<0}. As in [25] we also
partially order these mesh curves by saying that J; >J, if every point of the mesh



Y. Zhang | J. Differential Equations 192 (2003) 1-46 29
curve J; is either on J, or contained in J5, and call J an immediate successor to [ if
J>1 and every mesh point of J except one is on /. Here J; (or J,, I, J, resp.)is a ji-
mesh curve (or j,-, i-, j-mesh curve, resp.).

4.2. Glimm scheme

In addition to (4.2), suppose that

+

o0

lw(A4))]<0(2). (4.3)

[}

~.

Then we define the difference scheme in Qy,, that is, define the global approximate
solution Uay g in Qa, for any 0 = (09, 0,0, ...). This can be done by carrying out
the following steps inductively:

For k =0, Uaxp can be defined in {0<x<Ax}nQay with Uavgl,_9,<9 = Us by
a shock polar.

Inductively, assume that the approximate solution Uy has been constructed for
{0<x<kAx}, then we will define the Uayp in {kAx<x<(k + 1)Ax} by solving the
following problems.

Set

Uin = Unco(kAx—,ar ), n< —1
and for n< — 1 define
U,?(y) = Upvo(kAx—,ar,), if ye[yk +2nAy,yi +2(n+ 1)Ay).

First to define Uy in rthombus Ty whose vertices are ((k + 1)Ax, yiy1), ((k+
DAx, —Ay + yis1), (kAx,yx), (kAx,—Ay + yi), we have to solve the following
mixed problem in Ty g:

W(Us), + H(Uy), =0 in Ty,
Uk‘x:kAx = U197 (44)
Uk : ﬁk|[“k = 07
where 7 is the outer normal vector to I'y. If problem (4.4) is solvable, then
define Up,g = Uy in Typ. To solve it we need to consider the following two cases:
Case (i);: Ux_1€B. Then by Proposition 3.1, problem (4.4) admits a unique

admissible solution Uy consisting of one weak l-wave, that is, there exist a
unique &, and a constant state Uy such that

{Uk-1, Ukp} = (ek0.1,0), (4.5)

Uko -1ix =0 (4.6)
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and
Ur = Urp 1in some neighborhood of I'. (4.7)

Case (ii);: Ux—1 = U,. Then problem (4.4) can be solved by the shock polar or
Proposition 3.2, that is, there exist a unique o) and a constant state Uy near the
state Uj such that

{Uk-1, Uro} = (0k),0) (4.8)

and (4.6), (4.7) hold.

Secondly, to define Uayp in each rhombus T, (n< — 1) whose vertices are
(kAx, (2n — DAy + y1), (kAx, 2n+ DAy +y), ((k+1Ax,(2n— DAy + yiy1)
and ((k+ 1)Ax,(2n+ 1)Ay + yr41), we have to solve the following Riemann
problem in each Ty, (n< —1):

{ W(Ui),+H(Uy), =0 in Tx,, 49)

— 7170
Uk|x:kAx - Uk .

If problem (4.9) is solvable, then define Upyp = Uy in Ty ,(n< —1). To solve
problem (4.9), we just need to consider the following three cases:

Case (iii),: Ugn—1 = Uy and Ui,eB. Then by Proposition 3.3, problem (4.9)
admits a unique admissible solution Uy consisting of a weak 2-wave and a Majda
stable strong 1-shock, that is, there exists a unique (o'(k>7 ¢kn2) such that

{Ukn-1, Uk} = (0(k), ek 2), (4.10)

where o) is the shock speed of the strong shock and ¢, is the magnitude of the
weak 2-wave.

Case (iv),: Both Uy ,_1, Up,eB. Then by Lemma 3.1, problem (4.9) admits a
unique admissible solution Uy consisting of two weak waves, that is, there exists a
unique (&p1,&kn2) such that

{Ukn=1, U} = (&1 €kn2)- (4.11)

Case (V);: Ugy—1 = Uxy = Uy. Then Uy = U,,.
Finally we define Uy (kAx, a,) = Uy if n>0 for simplification. Then it is obvious
that Eknl = Ekp2 = 0 for n=0 and k>0.

4.3. Decreasing of Glimm functional

In this subsection we will show that under suitable conditions the approximate
solution can be well defined in Q4. by the steps in Section 4.2.

First by direct computation, we deduce a lemma related to the L* -estimates, as
follows:
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Lemma 4.1. (1) If {U;, U,} = («, B), with U,, U€ B, then
U = Ul <si(|o] +1B])-

Here s = max{|Z®(B, a, U)|, %@(ﬁ,fx, U)||Ue Vo, |B| + o <y}
(2) For any o€ B,, there holds

|G(0) — G(a9)| < s2]l0 — 09]-

Here s, = max{|G,(1)|,7€ By }.

Next, we will prove that under the suitable conditions Ua.g can be globally
defined. Inductively, we assume that Uy, is defined in {x <kAx}nQa, by the steps
in Section 4.2, and satisfies the following:

C-1(k-1) In each Qa,; (0<j<k — 1) there is a Majda stable strong 1-shock of
Uaxo: S«(0(;), with the speed o(; € B,, which divides Q,; into two
parts: Qu ; and Q ;, where QXW is the part bounded by S.(g(;) and
Iy ={y=b(x,j,Ax)}.

C2Ak-1) Uniolgy €B. Uscoloy, = Un, 0<jsh— 1.

A‘,/

C-3(k-1) {S.(0( ) j=0,. — 1} form an approximate 1-characteristic

Lax0: y = Yaxo(x ) which issues from the origin.

Here and in sequel S.(o(;) denotes the strong 1-shock or the strong 1-shock front
with the speed o(; Then we will prove that under suitable conditions Ua,y can be
defined in Qayx and satisfies (C-1(k)), (C-2(k)) and (C-3(k)).

Indeed, by the induction hypotheses: (C-1(k-1)), (C-2(k-1)) and (C-3(k-1)), we can
first define Ua, g and the Majda stable strong 1-shock S*(a(k)) in Q. x by the steps in
Section 4.2. Moreover, due to the construction in Section 4.2, there exists a diamond
A (k) such that S, (o)) enters Ay ) and S, (o)) issues from the centre of Ay ).
Therefore extend y,y to Qaxx such that Aaxo = S«(0(k)) in Qavk, and define 24,
and ‘QXx,k in the same way as in (C-1(k-1)). Then it suffices to impose some suitable
conditions so that there will hold (C-2(k)) and o4 € B,. To this aim we will introduce
a Glimm functional.

We first present here some notations that will be used in the proof. In the sequel,
we use the Greek letters except o to denote the weak waves and denote by o; (or f8;,
etc., resp.) the jth weak wave from weak wave o (or f3, etc., resp.). Moreover, without
confusion, we also use o; (or fi;, etc., resp.) to denote the magnitude of «; (or f8;, etc.,
resp.).

Let J be a k-mesh curve. Then Ua, |, consists of a strong shock wave and various
weak waves.
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Definition 4.2.

L) =3 {lyl: o crosses 7}, j=1.2,

L) =>_ {lo(4)]: 4e2,},

0;(J) = Z {4(a;, B;): both o; and B; cross J, and o; lies below f; on J},
j=12,

On(J) = Z {loa| |1B;|: both o, and f; cross J, and o, lies below 8, on J},

where Q; is the set of corner points A4, lying in J*, that is,
Q= {A,|A,eJT N OQpy, Ay = (nAX,y,), n=0},
and by o; and ff; we mean a weak j-wave from o and a weak j-wave from f,

respectively.

Moreover, by the induction hypotheses: (C-1(k-1)) and (C-2(k-1)), and by (4.1)
and (4.3), we can choose positive constants K;, >0 (j =0, 1,2) and K, >0 such that

the following inequalities hold for any Ue B, we B; and o€ B;:

K. — |K|>K, (j=1,2), (4.12)
1— KI*KZ* > K, (413)

and
Ko. — max{|Ko|, Ky, |Kyil, |Kgsl, |K3|}> K, (4.14)

where K; (j =0,1,2) and K, K|, Kj;, Kz are coefficients given in the proposi-
tions and lemmas in Section 3.

Let ¢’ be the speed of the strong shock crossing J. For any constants C; >0, C >0
and K >0, we define the following.



Y. Zhang | J. Differential Equations 192 (2003) 146 33
Definition 4.3.
L(J) =Ko Lo(J) + Li(J) + K1.La(J),
Ly(J) =o' = ao| + CIL(J),
0(J) =) + A1(J) + Ou(J),
0.(J) =|L(W)P,
F(J) =L({J) + K{O(J) + CQO.(J)},

F,(J) =0’ — ool + C1F(J).

Let

o(3) min(5(1)/8(s1 +52),8(2)/8,9'(2)/8),

T 1+Ky, + Kos

then we have the following:

Proposition 4.1. Suppose that the function b satisfies (4.2) and (4.3). Let I and J be two
k-mesh curves such that J is an immediate successor to I, and suppose that

I
o€ B2’ UAX’O |I(‘\ (QXV.k—l UQX.\‘,/(

>eB.

There exist constants ' >0, K>0, C>0 and C,> 1, depending only on the system in
(1.1), the state U, and the state Uy, such that if F(I)<d' then

Uncolsniar, var, €8 o €B (4.15)
and
Fy(I) 2 Fy(J). (4.16)

Proof. Let A be the diamond between I and J. The proof of the proposition is
divided into four cases:

Case 1: A covers a part of 9Qx, and A covers no part of y,,y. Then Q; and Q;
differ by the vertex point A4y, that is, Q; = Q\{Ax} with Ay = (kAx, yx). Moreover,
ol =d’.

Denote w = w(Ax). Let I = [yu I’ and J = Iy uJ' such that 04 = I' U J'. Let ¢; be
the weak 1-wave crossing J', and let y; and o, be the weak 1-wave and the weak 2-
wave crossing I’, respectively, with o, lying below y, on I (see Fig. 9). Here and
throughout the proof, if a rarefaction wave crossing [ is split into parts that cross
and I’ then these parts are considered to be two different rarefaction waves as in
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Fig. 9. Case 1.

[6,24]. And let y; =0 (or a, = 0, resp.) if there is no 1-weak wave (or no weak 2-
wave, resp.) entering A.
Define

0)=>_ {8, Biely},
Ay j),7) = Z {4Biv), Bieloy}s
IO (j)» @ Z {A ﬁ]a ) eIO }

where by ;€1 ;) we mean that a weak j-wave f8; with magnitude ; crosses Io.
Now we can carry out the proof. By Proposition 3.1, we have

&1 =71 + Koo + Koo + O(1) Q' (4), (4.17)
where
Q'(A) = Il ool + A(yy, @) + o2 @] + Jeaf* + [0,
Therefore

L(J)<L(I) = (K. = Ko)|oo| = (K1 = Ki)|oa| + O(1)Q'(4), (4.18)
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which gives
ILW)P< L)) = 2{(Ko. — Ko)|oo] + (K1 — K)|oa| L1 (Jo) + K1 La(lo) }
—{(Ko« + Ko)|o| + 2y, | + (Kix + Ki)|on|}
{(Kox — Ko)|w| + (Kix — Ki)|oo|}
+ O()L(Q'(A). (4.19)
Then by (4.12), (4.14) and (4.19), we have
0.(I) = Q.(J) = 2K {|o| + |oa| H{L1(lo) + K1 L2(Lo) } + O(1)L(1) Q' (A1)
+ K.min(K.., 2){|o| + [oa|}{|e] + o] + [71]}. (4.20)
On the other hand, from (4.17) we can deduce that
O(J)< OI) = Aoz, Lo o)) + Kiloao| [ L2 (Do) | + K1 A(e2, Lo (1))
+ Kod(w, Iy 1)) + Ko|o| [La(1o)|
— [l oo + O(1)L(1o) Q' (A). (4.21)

Then by (4.20) and (4.21), we can find constants C, and ¢'(1) depending only on
K. (j=0,1,2) and O(1) such that if C>C, and L(I)<'(1) then

K.
> il + o+ o Hlof + o[} <QUI) + COI) — (QU) + CO.(J).  (4.22)
Thus by (4.18) and (4.22) we can find constants C} > 1 and K’ >0 depending only on

K. and O(1) such that (4.16) holds for any C;>C{ and K>K'.
Let &' = min(6'(1), 6(3)/(Kos + Ky« + 1)). If Fy(I)< &', then

1
L) <—=5<d.
(h<g

Therefore we have
Fy(I)=F(J).
Moreover, we have
1
lo” — ao| + L(J) < (1 +F>FS(J)<25/’
1

which yields (4.15) by Lemma 4.1.
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Case 2: A covers a part of 0Q4,, and S.(o(_1)) issues from A and enters A.
Then from the construction it follows that Q; = Q;U {4} and S. (o)) issues from
Ay and crosses J. Moreover, there is no weak wave crossing I or J.

Denote w = w(A4y) as in Case 1. Then

F(I) — F(J)=Ko.|o| + KCKZ,|o]*.

Let &' be given as in Case 1, and let K, C, C; be any constants with C;>1 and
KCK3, >bounds of |O(1)|, where O(1) is given by Proposition 3.2.

If Fy(I)<§', then by direct computation we can obtain (4.15) and (4.16).

Case 3 (Weak—strong interaction): A lies in the interior of Q4. and the strong
shock S.(o(_1)) enters A. Then S,(o()) issues from the center of A, and o =

1) 07 = 0(k).

Let I = [yul' and J = Iy uJ’ such that 94 = I'uJ’. Let y, and o, be the weak
l-wave and the weak 2-wave, respectively, crossing I’ with o, lying below y; on I,
and let &, be the weak 2-wave crossing J' (see Fig. 10). In this case, denote Q'(A) =
911 + |e2| 711, and by Proposition 3.3 we have

& =0y + Koy + O(1)0'(A),

Ty =0 k-1) + K3y + O(1)Q'(4).
Therefore

L(J)<L(I) = (1 = |Ka| Ky )y |+ O(1)Q'(4), (4.23)

Fig. 10. Case 3.
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which gives

LN < LI = 2(1 = [Ka|K1o) [y {Ko. Lo(T) + L1 (Jo) + K. La(lo)}
= (1= [Ka K1) [y (1 + [Ka| Ki) ] + 2Kl } + O() L) Q' (A).
Then by (4.12) and the contraction inequality (4.13) we can deduce that
Q.(I) = Qu(J) 22K 1| L(To) + Kily {In| + KisJoal} + O(1)L(1) Q' (4).

Thus in the same way as in the proof of Case 1, we can choose positive constants &',
C., C; and K’ such that if F,(I)<d' then there hold (4.15) and (4.16) for any
C>C,, C;>Cfand K>K'.

Case 4 (Weak—weak interaction): A lies in the interior of Q4 and covers no part of
Xax.0- Then no strong shock enters A. Carrying out the same step as in the standard
case (see [9,25]), we can choose for any constant C>0 a suitable constant 6" (1) >0
such that if L(I)<é"(1), then

O(I) + CO.(I) — O(J) = CO.(J) 230(A).

Here Q(A) denotes the quadratic term of interactions in A as in [9,17,25]. Thus we
can choose K large enough such that (4.15) and (4.16) hold.

Then from the discussion of the above four cases, we can choose ¢, C, C; and K
such that the proposition holds. This completes the proof. [

From Proposition 4.1 we can deduce the following for any k> 1:

Theorem 4.1. Suppose that the function b satisfies (4.2) and (4.3), and let &', K, C and
Cy be the constants given in Proposition 4.1. If the induction hypotheses (C-1(k-1)), (C-
2(k-1)) and (C-3(k-1)) hold, and if Fy(Iy_1) <, then

Unxolg: €8, Unvolo, = Ux, 0k€B: (4.24)

and

Fs(1k71)>Fs(Ik)~ (4.25)

Lemma 4.2. Suppose that assumption (A2) holds. Then for any 0 < x| <x;, there exists
an xoelxi,xa] such that "Ly (xo) b, (xo)] if b (x0) <P, (x0), or

%e[b;(xo),b/_(xo)] if b’ (xo) =V, (x0). Here b’ (x) and b’ (x) denote the left

derivate and the right derivate of b at the point x, respectively.
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Proof. Let

b(x2) — b(x1)

) = blx) =22 (x— ) — b(),

and choose an xg € (xy,x2) such that g(x¢) is the maximum or minimum of g(x) in
[x1,x2], then it follows the desired result. [

For any function ¢ and any interval E= R', denote by TV{g; E} the total variation
of g on E and denote g(x+) = limy-x g(») and g(x—) = limy-x g(y). As &' (0+) =0,
y>X y<x

by Lemma 4.2 we have

" Jo(4)| STV{H,; [0, 00)}-
=0

Thus we can choose a §" >0, depending only on §(2), miny, |4;2| and min,cp, |a],
such that if TV{#/ ; [0, c0)} <6", then (4.2) and (4.3) hold. Moreover, by Lemma 4.2
and Theorem 4.1, we can deduce the following:
Theorem 4.2. There exists a &,€(0,6%) such that if

TV{E, 5[0, 4+ 0)} <8,

then, for all 6 ,ZB (=1, 1) and every Ax>0, the modified Glimm Scheme in Section
4.2 defines an approximate solution Ua.g and its approximate strong 1-shock front

AAx.o i Qax, which satisfy (C-1(k-1)), (C-2(k-1)), (C-3(k-1)) and (4.25) for any k> 1. In
addition,
TV{ UAX“’()(kAX—, -); (— o0 ,yk]} <4C2(36

for any k=0 and

Zaxo(x + 1) = faxo(X)[< (loo] + C3)lh| + 2Ax

Sfor any x=0 and h>0, where the constants C, and Cs depend only on Kj, (j =
0,1,2), K., C, Ci, K and the bound of O(1).

4.4. Estimates on the approximate shock front

For any k>1 and any interaction diamond A< {(k — )Ax<x<(k + 1)Ax}, we
use the same notations as given in the proof of Proposition 4.1 to define the
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following:
Pilloal + 401, ) + o] (0] + |oa* + o), case 1,
o, case 2,
Oheo(A) = 1912 + Joa 1], case 3,
o), case 4,
0, other cases
and
|o| + o], case 1,
|, case 2,
Eprvp(A) =
711, case 3,
0, case 4 or other cases.

Then Q) 4(4) is the interaction potential in the A and Eayg(A4) is the sum of the

strengths of waves that interact with the boundary or the strong shock. In the same
way as in proving Theorem 4.1, we can get the following (see also [17]):

Theorem 4.3. Let Uay g be an approximate solution given by Theorem 4.2. There exists
a constant M >0 independent of Up.g, 0 and Ax such that

> Oho(A)<M, (4.26)
A

> Eaco(A)<M. (4.27)

Here each summation is over all the diamonds.

Define
GAX,’()(X) =0k, if xe [kAX, (k + 1)AX).
Then from Proposition 3.3 and Theorem 4.3, we can deduce the following:

Lemma 4.3. There exists a constant M, independent of Ax, 0 and Uxy g such that

+
TV{O’ALQ; [0, +OO)} = |O'(k+1) — 0(k>| <M,. (4.28)
k=0

Denote I'y = %y Aro, I's = Uiy Aknik), Where Ay (k=0) and A, (k=0) are
the diamonds whose centres lie on the boundary 9Qx, and the shock front y,,,
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respectively. Let Layo(I'v) (or Laxo(Is), resp.) be the summation of the strengths of
the weak waves leaving I'y, (or leaving Iy, resp.) and let

Ohro(R Z O)ro(4

AcR

Enxo(R) = Z Epxo(A)

AcR

where R = I'y, or I's. Then by the results in Section 3, we have the following:

Lemma 4.4. There exists a constant M3 independent of Uayp, 4,0 such that

LAX,F)(FS) <M3 (EAx,H(FS) + Q,Ax,()(rs))v (429)

Laxo(T's) S M3(Epxo(ITs) + O p(I'v))- (4.30)

5. Global weak solution
5.1. Convergence of the approximate solution

According to the above discussion we can extend Uayp by the constant Uy
continuously across the boundary to whole strip {kAx<x<(k + 1)Ax} for every
k=0.

Let the line {x = a}, with a>0, intersect 9Qry = U {A4r_14k,k>1} at the point
(a, paAX*). In the same way as in [27], by Theorem 4.2 we can prove the following:

Lemma 5.1. The following inequality

0
/ |UAx,5(x+hay +P,%ih) - UAx,H(X,y _|_pé‘c)| dy<M1|h| (51)

o0

holds for any h>0 and x>0, where the constant M, is independent of Ax, 0 and h.

Set

+
J(0,Ax, ) = / SUAX, y 1 1) - [Uneo]l_pne Y (5.2)
k=1

with ¢ = (¢, ¢,) € C (R?, R*) and

[ UAX,H]

Y=kAx = UAX’H(kAx—l-,y) — UAX7(-)(kAX—,y).

Then carrying out the same step as in [25], we have the following:



Y. Zhang | J. Differential Equations 192 (2003) 1-46 41

Lemma 5.2. There are a null set N = [[,7 (=1, 1) and a subsequence of {Ax} denoted
by {A:}2, which has the limit 0, such that

70,45, 9) 5730

for any 0e ([, 2 (=1, 1)\N and ¢, p,e C*(R?).

To establish the main result, we need to estimate the jumps of the approximate
shock front.
Let

_ 9unAx — Yk — yr—1) + Ay

d,
k Ay

Then by the choice of Ax and {yx}, and by Lemma 2.4, we have d;€(0,1).
Moreover, di depends only on {6;, 0</<k — 1}. Thus define

Ik(Ax, 0) = 1(—17dk)(6k) . (dk — l)Ay —+ l(d/(,l)(gk) . (dk + I)Ay,

[x/Ax]
I(x,Ax,0) = Z I (Ax, 0),
k=1
where 1, denotes the character function of the set 4 and [x/Ax] denotes the maximal
integer that does not exceed x/Ax. Then I;(Ax,0) is the jump of the function y =
Zax0(X) at x = kAx, and is a measurable function of (6, x), which depends only on
UAx.()|{()<x<kAx} and {017 0<l<k}~

Lemma 5.3. (1) For any x>0, Ax>0 and 0e [[}5(—1,1),

Laxo(X) = I1(x,Ax,0) + / OAx,0(8) ds.
0

(2) There exist a null set Ny and a subsequence of {A}} denoted by {A] }jio, which
has the limit 0, such that there holds the following:

+ 0
/ eNI(x, 4", 0)* dx——0
0

L 47 -0

for any 0e [[,2 (=1,1)\N;. Here {47} is given by Lemma 5.2.

Proof. Part (1) follows by the direct computation. It suffices to prove part (2).
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As in [25], let

Then for any k>j, we have

k—1
/ Li1; d0 = / 11 d@,-([,- / I d0k>
i=1

=0.
Therefore, we can deduce the following:

[x/AX]

/ (v, Ax,0)2d0 = 3 / e(Ax, 0)[ d0

k=1

Ay

Ax

2

<4 xAx.

+

Then by choosing a subsequence of {47}, {47} such that ) "¢ A7 < + oo, we can

get (2). This completes the proof. [
Then by Lemmas 5.1-5.3, 4.3 and Theorem 4.2, we can get the following:

Theorem 5.1. Suppose assumptions (A1)—(A3) hold, then there exists a 6 >0 such that
if TV{ 5[0, 0)} <& then for each O e (I[.% (=1, 1))\(N U N,), there exist a sequence
of mesh sizes, {Ay}, with A;—>0 as k— + oo, and a pair of functions
Upe L*(Q, B), 19eLip([0,+00)) with y4(0) = 0, such that

(1) {Ug0(x, ")} is convergent in L'(— oo, b(x)) to Uy(x,-) for every x>0, and Uy is a
global weak solution of problem (1.1) in Q, with

TV {Uy(x,-); (—o0,b(x)]} <M,

for every xe0,4+c0), where M, is a constant depending only on the system, the
Sunction b and TV{b',[0,+0)};

(1) {x4,0} is convergent uniformly to y, in any bounded x-interval,

(iii) {oa.0} is convergent in Ll ([0,+0)) and almost everywhere to
o0€BV([0, c0), By) and y4(x) = [y 69(1) dt.

In addition, if 0 is equidistributed, then y,(x)<b(x) for any x>0, with

_ )
Ug|Qm =U,, \/u0+00\90<\/u2m +0v2,.

Moreover, Rankine—Hugoniot relation holds almost everywhere along the set {y =
20(x)}. Here Qo = {(x,y)|y<y(x)} and Qo = {(x,y)[xp(x) <y <b(x)}.
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The proof of (i), (i) and the proof of the convergence of {64, ¢} in (iii) can be
carried out in the same way as in the standard case (see [9,10,27]). The equality in
(iii), zg(x) = Jy o0(¢)dt, can be deduced from Lemma 5.3 and the result on
convergence of {y,, o} and {0y, ¢}. Moreover, by the construction of the solution
and by the results in [26], we can prove the remaining part of Theorem 5.1.
Therefore, the proof is complete.

5.2. Asymptotic behaviour of the strong shock

Let 0e ]2, (—1,1)\(NiUN) be given in Theorem 5.1 and be equidistributed,
and let Uy and y, be the solution and its shock front given in Theorem 5.1,
respectively. By Theorem 5.1 and the results in [10,18], it follows that the solution Uj
contains at most countable shock fronts and countable points of waves interactions.
Moreover, we can modify the solution Uy such that Uy is continuous outside the
shock curves and the points of waves interactions. Then,

Lemma 5.4.

TV{U(x; -); (x0(x), b(x))} 552 0- (5.3)

Proof. Let {4,} be the sequence given in Theorem 5.1. Let Q) 4(4) = Q) ,(4) and let
Ejo(A) = E4,9(A). As in [10], we denote by dQ;, and dE; the measures assigning
the quantities Q) ,(A4) and E;4(A) to the centre of /A respectively.

Since Theorem 4.3 implies the compactness of {dQ),} and {dE;}, we can select
subsequences of {dQ),}, {dE;p} and {4,}, which we still use the same notations to
denote, so that 4;,—0 and so that the limits

dQ;,o —dQj
and
dE],g - dE(;

exist in the W* topology for measures. Moreover, 0)(Q)< o and Ey(Q)< .
Therefore, for any ¢>0 we can choose a x>0 independent of {Uy, ¢} such that for
any />0,

Y OAea) <, (5.4)

k> [x,/Ax]

E/‘()(/lk7n)<8. (5.5)
k= [x;/Ax]
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Moreover, let X! = (x;,y;) (or X7 = (x,, 7)) be the point lying in the y, 4 (or 9Qy,
reps.), then we can find x?>x, independent of {Ax} and {U,¢} such that the
approximate 2-characteristic issuing from X/ intersects 9Q,, at some point in
{x<x?%} and the approximate 1-characteristic issuing from X7 intersects y .0 atsome

point in {x<x"}. Then by the approximate conservation laws and Lemma 4.4 we
can deduce the following:

TV{U4,.0(x=,); (14,0(x), b(x)) } <O(1)e
for x>x8, where the bound of O(1) is independent of ¢, x, Uy, and 4;.

Thus, passing to the limit as 4;—0, by Theorem 5.1 and regularity of Uy we
deduce the following:

TV{Up(x, -); (1o(x), b(x)) } < O(1)e
for x>xY, which completes the proof. [

Denote by {y = b;(x)} the boundary of Q,. Let

and

From Theorem 5.1 and (A2) we know that these equalities are well defined.
Furthermore, from the choice of the neighbourhoods, we have

v v
/ o0 o0
arctan b’ e (arctan —— — Wext, arctan ) .

Uop Uop

Theorem 5.2. There exists a constant state Ut € ST (U, ) such that

im - sup{[Up(x, y) = U [19(x) <y<b(x)} = 0. (5.6)

Moreover, the pair (UT,6,) is the solution to the following equations:

G(o)- (=", ,1)=0, (5.8)

where the function G is given in Proposition 2.1.



Y. Zhang | J. Differential Equations 192 (2003) 1-46 45

Proof. Let Ujg = Uy, 610 = 04,0 and 3,9 = 74,9 Then according to the construc-
tion of the approximate solutions, for every x>0 we have

|G(o10(x—)) - (=bj(x=), )|+ sup |G(a10(x—)) — Upg(x—,y)|

T1.0(x) <y <bi(x)

SO()TV{Uy,0(x—,); (£4,0(x), bi(x)) },

where the bound of O(1) is independent of {4;},, 0, x and {U;g},. Then, passing to
the limit as 4;,—0, by Theorem 5.1 and regularity of Uy we can get the following:

|G(op(x—)) - (=0'(x=), DI+ sup  [G(ap(x—)) — Up(x—, )|
19(x) <y<b(x)

SO(M)TV{Up(x—,-); (x9(x), b(x))} (5.9)

for every x>0.
Moreover, by Theorem 5.1 we have G(a9) e BV([0, o0), B). Let

Ut = lim G(op(x)),

X—+00

then the result follows by Lemma 5.4 and (5.9). O
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