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I Introduction

In any diffusion process — for heat or population — it is reasonable to admit that the
diffusion velocity v is given at the point by the Fourier law

U(z) = —aVu(z) (1.1)

where u is the temperature or the density of population, Vu is the usual gradient of u,
a is a constant depending on the medium where the process is taking place. Of course
the assumption that a is constant is a first approximation of the reality. For instance in
material science it is clear that “physical constants” attached to a material will depend
on its state, its temperature for example. In this note we would like to address the case
where the constant a depends on nonlocal quantities. For example — in the case where one
investigates the diffusion of a population (bacteria or else) — it is reasonable to assume that
the mobility inside the medium depends on how crowded it is. Thus a could depend on

l(u):/s;u(:c)da: (1.2)

the entire population in the domain 2 or else on the population of a preeminent group
occupying some region 2 C Q —i.e. a could be a function of

l(u) = /, u(z)de . (1.3)

This is this kind of dependence that we would like to study here.

So, let 2 be a connected bounded Lipschitz open set of IR". Of course n = 2 or 3 for the
applications that we mentionned above. Let us denote by I' the boundary of 2 and by I'y
a subset of I' of do measure positive. Then we set

V={veH(Q)|v=0do —ae. on Iy} (1.4)
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We refer to [8], [9], [3] for an introduction to Sobolev spaces, do denotes the surface measure
on I'. Let [ be an application from V into IR then we would like to consider the parabolic
problem

u —a(l(u))Au = fin Q x (0,7),

u(-,t) eV, te (0,T), (1.5)

u(+,0) = ug.

f € V' the strong dual of V', ug € L?() is an initial data. We are especially interested in
the asymptotic behaviour of such a problem.

The paper is divided as follows. In section 2 we address the issue of existence of a
solution. In section 3 we show some uniqueness results. In Section 4 we introduce the
steady state problem and in Section 5 the convergence of the solution towards a steady
state is investigated. This is done by using the dynamical systems point of view and
extends previous results obtained in [5]. Finally in Section 6 we complete these results
weakening our assumptions.

II Existence of a solution
Let a be a function from IR into IR, such that
a is continuous, (2.1)
there exist two constant m, M such that
0<m<all) <M, VE€R. (2.2)

Let V be the subspace of H!(Q) defined by (1.4). Then denote by | a mapping from L?(Q)
into IR such that
[ is continuous from L?(2) into IR. (2.3)

Then it holds:
Theorem 2.1 Under the assumptions (2.1)—(2.3) let
f e L*0,T;V"), wupe L*Q).

Then there exists u solution to

u € L*0,T; V)N C([0,T); L*(Q), wu, € L*(0,T;V"),
u(0) = uy,

(2.4)
i(u,v) + a(l(u))/QVu- Vvdz = (f,v) in D'(0,T), VveV.

dt



In (2.4), (, ) denotes the usual scalar product in L2(2) and (,) the V', V-duality bracket.
We refer to [6], [2] for the spaces introduced throughout the paper.

Proof. We are going to rely on the Schauder fixed point theorem. For this let w €
L*(0,T; L*(2)). Then we claim that the mapping

t— l(w(-1))
is measurable (see for instance [2] for this notion). So, the following mapping
t — a(l(w(-,t))) = a(l(w))

is also measurable and — by (2.2) —in L*(0,7"). Then, it is well known — see for instance
[6] that there exists a unique u solution to

ue L20,T;V)nC([0,T], L*(Q)), w € L*0,T;V"),

u(0) = uo,
d oy (2:5)
ﬁ(u,v) + a(l(w))/QVu -Vudz = (f,v) in D'(0,T), Vv € V.

Then, we would like to show that the mapping

w+— R(w) =u
from L%(0,T; L?(Q)) into itself has a fixed point which will be clearly a solution to (2.4).
For that note first that the last equation of (2.5) reads also

— —a(l(w))Au=f (2.6)

in L2(0,T;V"). Hence it follows by taking the V’, V-duality bracket with u

du

(%,u) + a(l(w)) /Q |Vul’de = (f,u) ae. t € (0,T). (2.7)

Without loss of generality we can assume that V is equipped with the norm given by (see

[12])
lul} = / |Vul? dz (2.8)
Q
so that from (2.7) one derives — thanks to (2.2) —
1d

§%|u|§ +mluly, < |flsjuly ae. t € (0,T). (2.9)
(| |2 is the usual norm in L?(2), | |, the strong dual norm on V'). Using now the Young
inequality
1 m
b< ——a+ b
ab < 2ma + 5
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one easily gets

1d m 1
Integrating between 0 and T we obtain for a.e. t € (0,7)
Lo m [T, 1 o, 1 /T
= — dt < — — L dt 2.11
s+ [ lulde < Gl 5 [ 17 (21)
and so
[ulzzorwys lulrzomizzay < © (212)

for some constant C' independent of w. Using now (2.6) we obtain also
g p20,v) < C (2.13)
where C' is also independent of w. We consider then
B=B(0,C) = {w € L(0,T; I*(®) / lulusoruzy < C} (2.14)

where C is the constant in (2.12). Then, clearly, R is a mapping from B into itself.
Moreover, due to (2.13), (2.14), R(B) is relatively compact in B (see for instance [10]).
Thus in order to be able to apply the Schauder fixed point theorem it is enough to show
that R is continuous. For that let w, be a sequence sucht that

w, — w in Bor L*0,T;L*(Q)).

Let us denote by u, the solution to (2.5) corresponding to w, —i.e. u, = R(w,). Up to
the extraction of a subsequence one can assume that

wyp(-,t) — w(-,t) in L*Q), fora.e. te (0,7)
and thus
a(l(wy,)) — a(l(w)) for a.e. t € (0,T). (2.15)

Moreover, since u, satisfies the estimates (2.12), (2.13) one can find u* such that — up to
a subsequence — it holds

U, = u*® in L*(0,T;V),
un — u®  in L2(0, T; I2(Q)), (2.16)
Ung — u® in L2(0,T;V").

bl

We consider then the last equation of (2.5) corresponding to w = w, — i.e. for every
veV, ¢ €D(0,T) it holds

—/OT/Qunvgo'd:cdt+/OT/Qa(l(wn))Vuancpda:dt:/OT(f,v>cpdt. (2.17)



By (2.15) and the Lebesgue dominated convergence theorem one has

a(l(wn))pv — a(l(w))pv

in L?(0,T;V) and passing to the limit in (2.17) one obtains that u™ satisfies for every

veV
d

dt
Next, one notices that it holds (see [6])

(u®,v) + a(l(w)) /Q Vu® Voudz = (f,v) in D'(0,T). (2.18)

(un(t),v) — (ug,v) = /0 (Unt,v), forae. te(0,T), YveV. (2.19)

Due to (2.16)— without loss of generality — one can assume that
up(t) — u>®(t) in L*Q), forae te(0,T).

Passing to the limit in (2.19) it holds
T
(uoo(t)’ ’U) o (UOaU) = / <’U,f°, U) = (uoo(t)’ U) - (uoo(o), U)a for a.e. ¢ Vv e V.
0

(Note that due to (2.12), (2.13), (2.16), u*,u, € C([0,T]; L*(2))). Thus it follows that
u®(0) = uo

and u™ = u is solution to (2.5). Since u, has only one possible limit, the whole sequence
u, converges toward u in B. This completes the proof of the continuity of R and the proof
of the theorem O

IIT Uniqueness

In this section we would like to address the question of uniqueness of a solution to (2.4).
For this purpose we assume that a and [ are locally Lipschitz continuous — i.e. we assume

that for any bounded interval [—-M, M] of IR and any bounded set Q of L?(Q) it holds:

a(§) —a(§)| < Am € =& V¢, & € [-M, M] (3.1)
l(u) = l(v)| < Lg lu—vls Vu,v€Q, (3.2)
where Ay, Lo are two positive constants, | |, denotes the usual L?*(Q)-norm. Then we

have:

Theorem 3.1 Under the assumptions of Theorem 2.1 if in addition we assume that
(8.1), (3.2) holds then the solution u to (2.4) is unique.
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Proof.  Let uy,us be two solutions to (2.4). By (2.6) it holds in L?(0,T; V")

du1 du2

v a(l(uy))Auy = e a(l(uz))Aus .

This leads to

%(Ul —uz) — a(l(u1))A(ur — u2) = —(a(l(u2)) — a(l(u1)))Aus .

Taking the V', V-duality bracket with u; — us it comes

<%(u1 — Ug), u1 — u2) + a(l(u1)) /Q |V (u1 — ug)|* dzx
— a(l(us)) — ai(uy)) /Q VusV(uy — ua)dz .

Since uy, uy € C([0,T]; L2(Q2)), there exists a bounded set @ of L?(Q) such that, for any
t €[0,T], ui(t),us(t) € Q and thus (I(u1(t)), l(uz(t))) € [-M, M]? for some M > 0. Using
(2.2), (3.1), (3.2) we obtain

1d
gl —ualh mlus —wal} < AwLolus — wla [ [Vual [V(us — ur)ldo
Q
< ApmLg [ur — uzl2 Jugly|ur — ualy
by the Cauchy-Schwarz inequality. By the Young inequality it follows that
A%\/IL2Q |U2|%f
2m

1d 2 2 m 2
§£|u1 — gl + mlu; —ugly, < 5|u1 —uply +

This implies that

|uy — ual3 .

AR LG |ual,
where C(.) € L%(0,T). This reads also

Lol s} <.

and since the above function is non increasing and vanishes at 0 it vanishes identically.

lur — ua3 = C(¢) |ur — ual3,

This completes the proof of uniqueness. ([l
Remark 3.1 Let us assume that f € L*°(0,+o00;V"’). Then, from
d
= —allw)du=f

one derives after multiplication by u

d
3 gl +a(tw) [ [VuPde = (7,u).
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This implies
1d

2 dt
by the Young inequality. Thus we obtain

m 1
[l +mluly <[flluly < Sluly + 5 —If[2

d 1 1
a|u|§ + mlul}, < E|f|2 < E|f|i°°(0,+oo;V’) .
Since for some constant C it holds
Cluls < |July YueV

one obtains for some other constant K
d 2 1 o2
%|u|2 + Klul; < ElflL‘”(O,—l—oo;V’) =F

, i.e.

d
%(eKt|u|§) < KtF.

Integrating one gets
Kt

t
eXtul3 — |ugl3 < / eKFds < S _F.
0 K
Hence it follows that 1
|’U,|§ < |’U,0|§ + mK|f|%°°(0,+oo;V’) : (33)
Thus v remains a priori bounded. This allows to consider cases where a is not defined on
the whole real line.

Remark 3.2 As we will see below, even so uniqueness holds, monotonicity results do
not hold as for the analoguous local case.

IV Steady states

For simplicity we suppose that in (1.5) f is independent of ¢t i.e. f € V' the dual of V.
Moreover, in addition to (2.3), we suppose that [ is linear (for other cases we refer to [11],
[4]). Then we consider the problem of finding a solution to (1.5) independent of ¢ —i.e. the
problem of finding a weak solution to

{apNbe=t i (41)

As we are about to see the solution of such a problem relies on a fixed point argument in
IR — and not in an infinite dimensional space as it would be the case for a local problem.
To see this, let us first introduce ¢ the weak solution to

—Ap = fin
{ peV. (4.2)
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The existence and uniqueness of a solution — i.e. the existence and uniqueness of a ¢ such
that

p eV, /V(p-Vvdx:(f,v), YveV (4.3)
Q

is a direct consequence of the Lax—Milgram theorem due to the fact that V is a Hilbert

space for the norm
1/2
oy = (/ Vol dz) (4.4)
Q

(see [12] — note that we suppose Iy of positive measure).
Then we can prove:

Theorem 4.1 Let a(-) be a mapping from IR into (0,+00). The problem (4.1) has as
much solutions as the problem in IR

a(p)p = U(p). (4.5)

Proof. Let us first consider u solution to (4.1). Since a(l(u)) is a constant the first
equation of (4.1) reads also

Thus, by (4.2) one has
a(l(u))u = .

Taking now [ of both sides one obtains, due to the linearity of [,

i.e. [(u) € R is solution to (4.5).
Conversely, let u be a solution to (4.5). Then there exists a unique weak solution to

{ ;Z(/{)Au = fin Q, (4.6)

Of course due to the uniqueness of the solution to (4.2) one has also
a(p)u = ¢.

Then, taking [ of both sides it comes

and thus since a > 0

l(u) = p.
Going back to (4.6) we see that u is solution to (4.1). This completes the proof of the
theorem. 0



Of course many situations can then occur. Let us list few of them. First if I(¢) = 0 the
only solution to (4.5) is 4 = 0 and thus the only solution to (4.1) is

®

u= a(0)’ (4.7)
If a is a continuous function such that
0<m<a(f) VEER (4.8)
then the range of the mapping
p— a(p)p

is the whole real line and by the intermediate value theorem one is always insured of the
existence of a solution to (4.1). To fix the ideas let us now assume that

I(p) > 0. (4.9)
In this situation, any u such that
)
a u = —
(k) p

will produce a solution to (4.1). In other words any point at the intersection of the graph
of a and the hyperbola y — @ will provide a solution to (4.1). Thus, in the case for
instance of the figure below — see Figure 1 —the problem (4.1) has three solutions. One can
also have a complete continuum of solutions as shown on Figure 2.

Remark 4.1 As announced in the Remark 3.2 monotonicity with respect to the initial
data does not hold for this kind of problems. Indeed, consider for instance

Q=(0,1), l(u):/nu(:c)dcc, fev, f>o.

Let us asume
a(§) =¢ (4.10)

and denote by ¢ the solution to (4.2) i.e. more precisely the solution to:
= finQ, e HAQ). (4.11)

(Due to the maximum principle note that ¢ > 0). Then — see (4.5) — the solution to (4.1)
is given by

1
u= (/ () dm) i (4.12)
Q
Note that (2.2) does not hold for (4.10) but since

/ng(:[:) dz > 0,
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one can modify a(-) given by (4.10) in such a way that (2.2) holds. Let v denote a
nonnegative smooth function with compact support in (0,1/2). Then, consider the problem
(1.5) with initial data

u(l):u, ug:u—i—v.

A monotonicity principle would imply that the solutions u', u? of (1.5) corresponding
respectively to the initial data uj and u? satisfy

u (t) > ul(t) =u, Vt>0. (4.13)
But on (1/2,1) one has

Gy = e g — o) e = (i + ) — ai(w)) s <0

It follows that for ¢ small enough
23
2(t) < =, -
W) <u on (5,)

which contradicts (4.13).

V Asymptotic behaviour

In this section we would like to study the asymptotic behaviour of the solution to (1.5) in
different cases.

5.1 A collection of results on dynamical systems

We introduce here various classical results that will be useful later on. We refer for instance
to [2] for proofs and complements.

Let us denote by (X, d) a complete metric space equipped with the distance d.

Definition 5.1 A dynamical system on X is a family of mapping {S(t)}i>0 from X
into itself such that

(i) S(t) : X — X is continuous
(ii)) S(0)z =2 Ve € X,
(111) S(t+s) = S(t) o S(s) Vs, t >0,
(w) Ve € X, t— S(t)z is continuous from [0,00) into X.

For any z € X, the curve
t— S(t)x

is called the trajectory issued from z. Next, with the asymptotic behaviour in mind, we
introduce the notion of w-limit set. More precisely one has:
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Definition 5.2 Let £ € X. The set

w(z) = {ye X |3t, = +oo such that y = nEIJPoo S(tn)z} 5.1
= 0, Y50 '
is called w-limit set of x.
Then one can show if {S(¢)}+>0 is a dynamical system on X:
Theorem 5.1 For any x € X, t > 0 it holds
w(St)z) = w(z), (5.2)
Stw(z) C w(z). (5.3)
Moreover, if tLiO{S (t)x} is relatively compact in X it holds
S(t)w(z) = w(z) # 0, (5.4)
w(z) is compact, connected in X, 5.
d(S(t)z,w(z)) — 0 when t — +oo, (5.6)
the distance between two sets A, B being defined as
d(A,B)= inf d(a,b). (5.7)

acA, beB
Let (X, d) be a complete metric space and {S(¢)}:>0 a dynamical system on X.

Definition 5.3 A continuous function ® : X — IR is called a Lyapunov function for
{S(t)}tzg Zf it holds
®(S(t)r) < ®(z) Vze X, Vt>0.

In particular for any z € X the function
t— ®(S(t)x)

is nonincreasing.
Then one has the following result known as the invariance principle of LaSalle:

Theorem 5.2 Let {S(t)}+>0 be a dynamical system on X, z € X such that

tLiO{S(t)ac} is relatively compact in X (5.8)

Let ® be a Lyapunov function for this dynamical system, then:
(1) there exists C' such that tliin ®(S(t)z) =C,
—+o00
(i) @(y)=C Vyew(), (5.9)
(iii) @(S(t)y) =2(y)=C Vyew(z)Vt>D0.
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5.2 Asymptotic analysis

In this section we suppose that we are under the assumptions of Theorem 3.1. In particular
we suppose that a is locally Lipschitz continuous so that (1.5) admits a unique weak
solution.

Let us start with the following continuity result:

Lemma 5.1 Let u} € L*(Q) be a sequence such that when n — +o0
ug —ug in L*(Q). (5.10)

Let u™, u the solution to (2.4) corresponding to the initial data uy, ug respectively. Then
it holds
u™(t) = u(t) Vt>0 in L*(Q). (5.11)

(One denotes by u™(t), u(t) the functions u™(-,t), u(-,t) respectively).

Proof.  Since u} — ug in L*(Q), u? is bounded in L?*(2) independently of n and from
(2.12)—(2.13) one deduces that for some constant C' independent of n it holds:

|’Ll,n|L2(0’T;V) S C, (512)
[u"|z(0,s22(0)) < C, (5.13)
ui|r20mvy < C. (5.14)

Thus, one can extract a subsequence from n — that we still label n — such that, when
n — +00:
u® = u*® in L*(0,T;V),
u™ — u® in L2(0,T; L%(Q)),
u® = u® in L®(0,T;L?(Q)) *-weak,
u? = u® in L2(0,T;V").

(We used the compactness of the embedding from H'(0,T;V,V’) into L?(0,T;
L?(f2))). By definition u™ satisfies for every v € V:

—/0 /Qu"v o' (t)dzdt + /0 /Qa(l(u"))(Vu"-Vv) o(t) dz dy (5.16)
- /0 (f0)o(t)dt, Ve DO,T).

I(u™) — I(u*®) in L?(0,T)

(5.15)

Clearly, from (5.15),

and — up to a subsequence — one can assume that this convergence holds for a.e. t € (0,T).
By the Lebesgue theorem one has then that

a(l(u™))pVo — a(l(u®))pVu (5.17)
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in L2(Q x (0,T)) = L?(0,T; L?(?)) and passing to the limit in (5.16) one gets that u™
satisfies for every v € V:

d, . o oo _ Ty
%(u ,0) + a(l(u ))/S;Vu -Vuvdz = (f,v) inD'(0,T).

Moreover, it holds for every v € V:

t
(u™(t),v) — (ug,v) = / (ug,v)dt a.e.t.
0
Since, up to a subsequence, one can assume that for almost every ¢
u™(t) = u®(t) in L*(Q)

passing to the limit in the above inequality leads to

i
(0= (0)0) = (u0) = [ (05", 00t = (w(6),0) — (@=(0),0)
Thus 4*°(0) = uy and by uniqueness of the solution to (2.4) it follows that
u® = u.

By uniqueness of the limit one obtains then that the whole sequence u™ satisfies (5.15)
with 4 = u. Thus we have

u" —u in L*®(0,T; L*(Q)) *-weak
and in particular for every v € V
(u"(t),v) = (u(t),v) in L*=(0,T) *-weak.

Now, for every t1,ty € [0,T], t3 > t; it holds

(u"(t2),0) — (u"(t1),0) = / (g, o) de

12}
[ Lol
t1

1 n
< (ta —t1)2 |vlv|uf|L20,mv)
< Clta—t))2.

VAN

It follows that the sequence of functions (u"(t),v) is equicontinuous and thus relatively
compact in C([0,T]). By uniqueness of the possible limit, one deduces that

(u*(t),v) = (u(t), v))
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in C([0,T]) for every v € V. V being dense in L? and u"(t) being bounded it follows easily
that
(u™(t),v) = (u(t),v) Vve L*Q), Vt>0

which gives (5.11) and completes the proof of the lemma. O

Let us now suppose that [ is nonnegative in the sense that

I(v) >0 Vv >0, ve L3(Q),
{ l(;—é)o_. - (@) (5.18)
For f, we recall that f is independent of ¢ and that
eV, ,0) >0 Yv>0,vel,
{ ;?_ﬁ v ) (5.19)

In short we suppose f > 0 and f # 0. Going back to (4.2) it results from the maximum
principle that
>0 in(

and thus
l(p) > 0. (5.20)

(Note that one can write for some g € L*(Q2), I(v) = [, 9(z)v(z)dz ).

Then we consider pq, ps two intersection points of the graph of a with the graph of the
hyperbola y = I(¢)/p and we suppose that we are in one of the cases described by Figure
1or2.

M1 M2 iz

Figure 1.
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Figure 2.

In other words we assume that

a(pz) < a(p) <a(m) Yué€ lwm,ps),

1) : ;
e < a(p) YV € (u1,p2) in case of Figure 1, (5.21)
W) _ : :
— = a(p) YV € [p1, pe] in case of Figure 2.
7
To p1, pe correspond two stationary points (see Theorem 4.1) given by
4 ¥
pi = < pg = . (5.22)
a(p1) a(p2)

We would like now to analyze the asymptotic behaviour of u the solution to (2.4). We will
restrict ourselves to the case where

u < ug < ug a.e.in Q. (5.23)
First let us show:
Theorem 5.3 Let a(.) > m > 0 be a continuous function on IR,. Let w solution to
w € C([0,T], L*(Q)) N L*(0,T;V), w; € L*(0,T; V"),

w(0) <0, w(0)#0, (5.24)

d
%(w,v) + a(t) / Vw-Vvdz <0 nD'(0,T), VveV, v>0.
Q

Then, one has:
w(z,t) <0 Vt>0, ae ze€ (5.25)
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Proof. Let Q' be a smooth subdomain of Q and v be the weak solution to

—Av=0  inQ x(0,T%),
v(0) = w(0) in O, (5.26)
v(-,t) € H}(Q') Vte (0,T).

(See [6]). We assume ' large enough so that [, [v(0)|dz = [, |w(0)|dz > 0.
It is well known (see [6], [1]) that for any € > 0

v € C®((e,T*) x Q).

Moreover,
v(z,t) <0, V(z,t)eQ x(0,T]. (5.27)

To see this last point one notices first that by the weak maximum principle:
v(z,t) <0 ae. inQ, Vt >0.

Moreover, for ¢ small enough
|’U(', €)|2’QI > 0.

This is due to the fact that v(0) # 0 and v € C([0,T*], L*>(Q')). The usual maximum
principle applied to the domain Q' x [e, T*] implies then (5.27) — see [6]. Next, by the weak
maximum principle again, one has:

w(t) <0 ae. in, V¢t >0.
Moreover, setting
t
() = v(-, / a(s) ds) (5.28)

0
one has in a weak sense
with

7(0) = v(0) = w(0) /q.

(The first above equation holds in ' x (0,7) with fo s)ds = T* but T* and thus T' can
be chosen arbitrarily). Then, the weak maximum pr1nc1ple leads to

w<?v ae inQ, Vtel0,T]

from which it follows (recall that €' is arbitrary and a(.) > m > 0) that (5.25) holds due
0 (5.27)-(5.28). This completes the proof of the theorem. O

Then we turn to the following stability result that holds true when one is under the
assumptions described by Figure 1 or 2. Thus we have:
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Theorem 5.4 Under the assumptions above, in particular if (5.18), (5.19), (5.21),

(5.23) hold then, if u denotes the weak solution to (2.4), it holds:
up <u(t) =u(-,t) <ug a.e inQ, Vt>0.
Proof. Let us assume first that

up < ug < u a.e. in .

Then, due to (5.18), one has
pr = l(ur) < l(wg) < l(ug) = pa.
Let us then denote by ¢, (¢, > 0 by (5.31)) the supremum
t* =sup{t>0]|Il(u(-s)) € [u,ps] Vsel0,t}.

We claim that t* = +o00. Indeed, if not, then one has

Wu(-,t")) =m or pe
(recall that u € C([0,+o0); L?(Q))). Suppose for instance that

Hu(- ")) = pa

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(the proof in the case of equality with u; would be the same). Then, for almost every ¢, it

holds in L2(0,t*; V")

du
) T a(l(w)Au = f = —a(u2)Auy

= —(u—u) —all(w)Au —uz) = (a(pz) - a(l(u)))(—Au,)

dt
d _ (alp2) — a(l(u))
= a(u —uy) —a(l(u)A(u —ug) = () - f.

Since I(u) € [u1, p2], by (5.19), (5.21) one deduces that

% () ~ (@) Al —us) SO in V"

for a.e. t € (0,t*). Setting w = u — uy it comes

c(lj_z: —a(l(u))Aw <0, w(0) = up —uz < 0.

By Theorem 5.3 one deduces that
w(t*) <0

17
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and a contradiction to (5.33). One has thus t* = 400 and by the above argument

up < u(t) <up ae. inQ, Vt>O0. (5.35)
If now ug satisfies
14 14
=u; S ug < uy =
a(p1) R (7))

then, for n — 400, it holds
u; < ug = <u1+£) /\uo\/<u2—£) < Uy
n n

(V denotes the maximum, A the minimum of two functions). Thus, if u™ is the solution to
(2.4) corresponding to uf, one has

u"(t) € X = {v e L*(Q) |us <v<up ae in 0} (5.36)
for any ¢. X convex, closed in L%(Q) is also weakly closed and by (5.11), u(t) € X V¢ > 0.
This completes the proof of the theorem. O

In order to study the asymptotic behaviour of the solution of (2.4), we will rely on the
theory of dynamical systems. In what follows we assume that we are under the assumptions
described in Figure 1 or 2. Moreover, X denotes the set given by (5.36). It is clear that X
is a closed, bounded, convex set of L2(£2). One can equip it with the weak topology. This
topology is metrizable (see for instance [7]) for some distance d for which X is a complete
and compact space. For ug € X, one defines then

S(t)ug = u(t) (5.37)
where u(t) = u(-,t) denotes the solution to (2.4). One has:
Theorem 5.5 {S(t)}+>0 defined by (5.37) is a dynamical system on X.

Proof.  First the fact that S(¢) maps X into itself follows from Theorem 5.4. The
point (i) of Definition 5.1 follows from Lemma 5.1. The points (ii), (iii) are easy to check.
Finally the last point follows from the fact that

u € C([0,T], L*(92)).

This completes the proof of the theorem. (Il

Let us now find out a Lyapunov function for {S(¢)}:>o. For this purpose we introduce
® the weak solution to

dcV (5.38)

Since [ € L?(2) C V' it is clear that (5.38) admits a unique solution. Moreover due to
(5.18) one has

{—A@:l in €,

® >0 a.e. inQ. (5.39)
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If now one takes v = ® in the last equation of (2.4) it comes

d

G0+ aw) [ Vu-Vedo = (£,8) = (-Ap, 9,

Then, (4.2) and (5.38) imply that it holds:

d
a(é,u) =1l(p) — a(l(w))l(u), for a.e. t € (0,+00). (5.40)
If we choose ug € X it is clear that by Theorem 5.4 one has
4 (®,u)<0 (5.41)
J— u .
a0~
in the case of the Figure 1 and, in the case of Figure 2,
d (®,u) =0 (5.42)
— u) = 0. .
dt*’

Thus u — (®,u) is a Lyapunov function on X.
Let us now deduce from all of this the asymptotic behaviour of u solution to (2.4). Let
us assume first that we are in the case of the Figure 1. Then one has:

Theorem 5.6 Under the assumptions described in Figure 1, in particular if (5.21)
holds, then, for ug € X, ug # us, it holds:

u(t) = S(t)uo — uq (5.43)
in L2(Q) when t — +oo0.

Proof. Let us denote by w(ug) the w-limit set of ug. By (5.40) and Theorem 5.4 one
has (see (5.38) for the definition of ®)

% (@,u) = () ~ ali(u))i(u) <0 (5.44)

Thus the scalar product with ® is a Lyapunov function for our problem. Clearly, by (5.29),
one has:

(®,u(t) > (®,uy). (5.45)
Moreover, since by (5.44) the function (®,u) is nonincreasing, there exists C such that
Jm (@, u(t)) = C = (2, w) (5.46)

for any w € w(ug) — (see Theorem 5.2).
Going back to (5.44) for any w € w(uy) it holds by (5.9)

% (@,5(t0w) = 0 = Ig) ~ a(l(SOW)I(S(t)w)
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i.e. one has due to the continuity of the map t — I(S(t)w)
I(Stw)=pm VYVt or I(SEt)w)=p Vit

This implies that
l(w)y=p or py Yw € w(ug).

Set
w; = {w € wluo) [l(w) =} i=12,

w; are two disjoint closed subsets of X such that
w(ug) = w1 Uws.

It follows — see (5.5) — that
w(ug) =w; or ws

i.e. if u denotes the solution to (2.4) one has as t — +o0
l(u(t)) > p1 or l(u(t)) — po.
We can then show the following lemma:
Lemma 5.2 Let u be the weak solution to (2.4). If
l(u(t) = w (1=1,2) (5.47)

when t — +oo then
u(t) > u; (i=1,2) (5.48)
in L*(Q) strong.
Thus, if I(u(t)) — pe, one has u(t) — us. Since (®,u(t)) is nonincreasing and ® > 0,

this implies that
(®,u(t)) = (®,u2) V.

Hence, by (5.39), u(t) = up Vt which contradicts ug # uz. One has so:
I(u(t)) = m

and by Lemma 5.2 the result follows. O

Proof of Lemma 5.2 ;From (1.5) and the definition of u; one has for a.e. ¢ > 0, and
Jn V',

%(u —u;) —a(l(w)Au = —a(ur)Auy;
= %(u —u) —a(l(W)A(u—w) = —(a(w) - a(l(u)))Au;.
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Taking the V' V-duality bracket with u — u; and setting

e(t) = la(m) — a(l(u))|

we get by (2.2):

2dt

By the Young inequality one obtains then for any ¢ > 0

/ V||V (v — w)|dz < = / |V (u —w)|*de + = / |Vu;|? de.
Since ¢ is continuous and bounded one can choose ¢ such that
0leloe = m

where |¢|o, = sup;>(&(t). Then, the conjunction of (5.49), (5.50) leads to

m
2dt|u wl? + /|vu—u,)|2 do < Ce(t)

for some constant C' independent of . So, one obtains for some constant ¢
—t|u —w;|2 + clu — u|3 < Ce(t)

(this is due to the Poincaré inequality).
Setting

the above inequality reads

Integrating between ¢, and ¢, it comes

t
ey(t) — eoy(ty) < C’/ e(s)e** ds
to

t
= y(t) < y(to)ec(tO_t)—i-C’/ g(s)e* ) ds.

€9 > 0 being given one chooses ¢y large enough such that

g(s) <

€o
— Vs>t
g 'E=T0

Qlo

21
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(5.49)

(5.50)

(5.51)



Then, for ¢ > ¢y, it holds:

IN

t
y(t) y(to)ec(to—t)_}_c%/‘ ec(s—t) ds

to
c(s—t)

y(to)ec(toft) + C%)eT
y(to)e™ 9 + .

to

IAIA

Choosing now ¢ large enough one gets clearly

y(t) < eo

which completes the proof of the lemma. ([l

Let us now assume that we are under the assumptions of Figure 2. For any p € [u1, po]

% (5.52)
is a stationary point. Let us consider ug € X. Then, by Theorem 5.4, one has
u(t) € X, Vte(0,+00)
and by (5.40)
d
%(q),u) =0 < (D,ut)) =(®,uy) Vte(0,+00). (5.53)

(From (5.53) it is clear that a natural candidate for the limit of u(t) jis given by (5.52)
with a(u) such that
(2,9)

= (P,u
() )
i.e. a natural limit of u(t) is
(CI>’U0)
Uo = ®. (5.54
(®.9) )

This is what we would like to establish now.
First, we remark that since w(ug) is compact in X equipped with the weak topology,
there exists wy € w(up) such that

a(l(wp)) = mi(n )a(l(w)). (5.55)
wew(ug
(Recall that a and ! are continuous).

Let us set
A — (5.56)

Then we have:
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Lemma 5.3 For any w € w(ug) it holds:

*

w<u* a.e. in Q. (5.57)

Proof. Let w € w(ug), v(t) = S(t)w. One has in L2(0,T; V') — recall that by (5.56)
—a(l(wo))Au* = —Ap = f:

d N *
dt —((w—u")—a(l(v)A(v —u*) = —(a(l(wp)) — a(l(v))Au".

Taking the V', V-duality bracket with (v — u*)* it comes

1d
2dt(v—u |2+a /|V(v

z = (all(wn)) — a(i(v) ) (~Au, (v — u*)*)
0.

IN

This is indeed due to the fact that v € w(uy), (5.55), —Au* > 0. So, for some constant c
it comes d

Zl—w) T +cllo—u)T; <0

= CHe(v—u) By <0
— (0= )3 < e (0(0) — ) I,

Le. [(S)w —u)"f; < e f(w—u")"3
<e @ sup |(w—u)t[
wew(ug)
< Ke “.

Due to (5.4) any z € w(ug) can be written under the form
z=8S(t)w

for ¢ arbitrary. It follows that (z — u*)* =0 V2 € w(ug) — which is (5.57). O

We can now show:

Theorem 5.7 Under the assumptions described in Figure 2, in particular if

l
o) = "2 e fun, (559
then for ug € X it holds in L*(Q)
u(t) = Uoo (5.59)

where Uy, is given by (5.54).
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Proof. We claim first that
u* < U (5.60)

where uy, is given by (5.54). Indeed, if not — since both functions are multiple of ¢ > 0 —
it holds
U > Ugo.

Let w € w(ug). Set w(t) = S(t)w. By (5.54), (5.9) one has then
(@, w) = (2, u0) = (P, uoo) < (®,u"). (5.61)
Moreover v = w — u* satisfies

i(w—u*) _dw
dt o dt

a(l(w))Aw + f
a(l(w))A(w — u*) + (a(l(w)) — a(l(wo)) Au”

weakly. But it holds (see (5.55))

a(l(w)) = a(l(wo))-
Thus v = w — u* satisfies
% —a(l(w))Av <0, v(0) =w—u* <0, v(0) £ 0.

(v(0) # 0 by (5.61)). Using Theorem 5.3, it follows that
w(t)—u* <0 V>0
this for any w € w(up). Since S(t)w(ug) = w(up), it follows that
l(w) <l(u*), Yw € w(uyp).
This contradicts

1) = s = lwo),

and proves (5.60). Thus for any w € w(ug) it holds

w<u* < Uy

Since (®,w) = (P, uo) this imposes w = Uy Yw € w(ug) — i.e.

w(ug) = {oo}-
Thus u(t) the solution to (2.4) satisfies u(t) — uy in L*(Q) and thus a(l(u(t)) — a(l(uw))-
The result follows then from Lemma 5.2. O
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VI Some complements

It is of course easy to obtain an analogous result to Theorem 5.6 when af.) is located below
the hyperbola (see [5] for the type of results available). To end this note we would like to
address a case where the assumption

a(pz) < a(p) < alp) (6.1)

of (5.21) fails. So, we are going to assume that we are in the situation of Figure 3.

M H1 H2 12

M
Figure 3.
In other words we set
M = max a(u) (6.2)
BE[p1,p2]
and we assume that
M > a(w1) (6.3)
Moreover we suppose — under the assumptions of the preceding section — that
) i(e)
< Wy [— [ 6.4
a(p) <a(p) < U BE | (6.4)

Then we can show

Theorem 6.1 Under the assumptions of the preceding section and in the situation
described by Figure 8 — i.e. if (6.2)-(6.4) hold — then for

% Swug < up, U F up (6.5)
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and if u denotes the solution to (2.4) one has

tlgrnoou(t) = u (6.6)
in L*(Q).
Proof. First proceeding exactly as in Theorem 5.4 one shows that
% <u(t) <up, Vt>0. (6.7)

< for the left-hand side inequality one uses the fact that
l
M >a(p), Vpe [%,m] (6.8)

i.e. setting @* = % one proceeds as in below (5.38) but using

@ - ") — a(l(w)A(u — ¢%) = £+ a(i(w) Ay’

dt
- -ae(1- ) >.0).

Next we introduce wg € w(ug) as in (5.55) and u* as in (5.56) (of course X is now the set
X :={vel*Q)/% <v<uy}). Note that u — (®,u) is no more a priori a Lyapunov
function here. We separate two cases:

Case (i): a(l(wo)) > a(l(u1))-
Then it holds

= L4 L4 = Ujp. .
¥ alilwe) = ali(w)) (6.9)

Due to Lemma 5.3 that holds without any change, one has

% <w<u <wu, Yw € w(ug). (6.10)
Thus for any w € w(ug) it holds for w(t) = S(t)w
%(w(t), ®) = I(p) — a(l(w(t)) l(w(t)) >0, Vt>0. (6.11)

Let us introduce the set

A:={z€w(w)|(®,z)= inf (w,®)=c.}

wew(up)

which is nonempty since w(ug) is weakly compact in L%(2). By (6.11), for any z € w(uo)/A
one has
(®,5(t)z) > (®,2) >ci, t>0. (6.12)
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Next we claim that u; € A. Indeed, otherwise by (6.10) and Theorem 5.3, then by (6.4)
and (6.11), we would have for any z € A4 and any ¢ > 0

S(t)z <uy = I(S(t)z) < l(uy)

= (®,5(t)z) > (®,2) = c.. (6.13)

But (6.12)-(6.13) contradict S(¢)w(up) = w(ug). Hence u; € A. So, for any z € w(ug) one
has z < u; and (®,2) > (®,u;) which clearly imply z = uy, i.e. w(ug) = {us} and (6.6)
then follows from Theorem 5.1 and Lemma 5.2.

Case (i): a(l(wo)) < a(l(uy))-

Due to Lemma 5.3 one has

x '4
0= i)
This leads to (o)
4
a(l(wg)) < l(’wo)
(recall that by (6.7), I(wo) > 0).
Since we have assumed
a(l(wo)) < a(l(u1))

the only possibility is
Wwo) = l(uz) = o

(see Figure 3).
But then us € w(ug). Indeed if not, for any w € w(ug) one would have w < uy and w # us.
Thus, for any positive ¢

S(t)w < ug

which implies {(S(¢)w) < I(ug) and contradicts S(t)w(ug) = w(uo).

To conclude, we now show that in fact us cannot belong to w(ug) and thus case (i) is
impossible. To do this we introduce O(ug) the weak closure of the trajectory of ug in L?(f2).
On account of (5.40) and Figure 3, ¢t — (®, S(t)up) is non increasing in a neighbourhood
of t; whenever [(S(¢1)ug) €]p1, u2) and therefore

sup (@,w)zmax((@,uo), su (@,z)). (6.14)
weO(ug) zl(ez)gzttol)

But the set O(ug) N {z | I(2) < p1} is weakly compact in L2(2), thus there exists z, €
O(uo) N{z/1(2) < p1} such that

D, 2,) = d,2).
(@)= _sup (@,7)
()<
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Since I(2z,) < p1 < l(uz), one has z, < uy and 2, # uy. Hence (®,2,) < (®,us). It then
follows from (6.14) that

sup (®,w) < (®,usp)
weO(uo)

and therefore
uz & O(ug) D w(ug).
O
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