

J. Differential Equations 192 (2003) 47-69

Journal of Differential Equations

http://www.elsevier.com/locate/jde

The influence of nonlocal nonlinearities on the long time behavior of solutions of diffusion problems

Mohammed Aassila

Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, 7 rue René Descartes, 67084 Strasbourg, Cedex, France

Received January 12, 2001

Abstract

In this paper we study a nonlocal diffusion problem. The existence is proved using the Schauder fixed point theorem. The convergence of the solution towards a steady state is investigated by using the dynamical systems point of view. © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Nonlocal diffusion problems; Global existence; Asymptotic behavior

1. Introduction

In this paper, we consider a nonlocal diffusion problem. The main questions we here address are the global existence, uniqueness of a solution, and the convergence towards a steady state.

As typical examples of parabolic equations with nonlocal nonlinearities, let us mention the following:

• Equations with space integral term, of the form

$$u_t - \Delta u = g\left(\int_{\Omega} f(u(t, y)) \, dy\right). \tag{1.1}$$

E-mail address: aassila@math.u-strasbg.fr.

Some problems involving both local and nonlocal terms, of the type

$$u_t - \Delta u = \int_{\Omega} f(u(t, y)) \, dy + h(u(t, x)).$$
(1.2)

• Equations with localized source, of the form

$$u_t - \Delta u = f(u(t, x_0(t))).$$
(1.3)

• Equations with space-time integral, of the form

$$u_t - \Delta u = f\left(\int_0^t \int_\Omega \beta(y)g(u(s,y)) \, dy \, ds\right). \tag{1.4}$$

Each equation is considered in a bounded domain with homogeneous Dirichlet boundary conditions.

Problems of these types arise in various models in physics and engineering have been studied by a number of authors. To cite just a few, problems of type (1.1) or (1.2) are related to some ignition models for compressible reactive gases. For problems of these types and some of their variants, the blow-up of solutions was studied, among others, by Bebernes et al. [1], Deng et al. [5], Chadam et al. [3], Wang and Wang [11].

Eq. (1.3) describes physical phenomena where the reaction is driven by the temperature at a single site. This equation was studied by Cannon and Yin [2], Chadam et al. [3], Wang and Chen [10], in the case $x_0(t) = \text{Const.}$, and by Souplet [8] for variable $x_0(t)$.

Last, problems of type (1.4) play an important role in the theory of nuclear reactor dynamics. The blow-up of solutions was studied by Souplet [8], Pao [7] and Guo and Su [6].

Recently, Souplet [9] determined the rate and profile of blow-up of solutions for large classes of nonlocal problems of each type above. He proved that the solutions have global blow-up, and that the blow-up rate is uniform in all compact subsets of the domain.

In any diffusion process, the diffusion velocity \vec{v} is given at the point x by the Fourier law $\vec{v}(x) = -a\nabla u(x)$ where u is the temperature and a is a constant depending on the medium where the process is taking place. The assumption a is constant is, in fact, a first approximation of the reality. For instance, in material science it is clear that physical constants attached to a material will depend on its state, its temperature for example. In this paper, we would like to address the case where the constant a depends on nonlocal quantities. Thus, a could depend on

$$g(u) = \int_{\Omega} u(x) \, dx.$$

48

So, let Ω be a connected bounded Lipschitz open set of \mathbb{R}^n . We denote by Γ the boundary of Ω and by $\{\Gamma_0, \Gamma_1\}$ a partition of it. Set

$$V = H^1_{\Gamma_0}(\Omega) = \{ v \in H^1(\Omega) \colon v = 0 \text{ on } \Gamma_0 \},\$$

and $g: V \to \mathbb{R}$, $f \in V'$, where V' denotes the strong dual of V.

Consider the parabolic problem

$$\begin{cases} u_t - a(g(u))\Delta u = f & \text{in } \Omega \times (0, T), \\ u(\cdot, t) \in V, \ t \in (0, T), \\ u(\cdot, 0) = u_0 \in L^2(\Omega). \end{cases}$$
(1.5)

The paper is organized as follows. In Section 2, we prove the existence and uniqueness of a solution to (1.5). In Section 3, we introduce the steady-state problem, and in Section 4 we study the convergence of the solution towards a steady state.

2. Existence and uniqueness

Without loss of generality, we can assume that V is equipped with the norm

$$\left|\left|u\right|\right|_{V}^{2} = \int_{\Omega} \left|\nabla u\right|^{2} dx$$

and we denote by $\langle \cdot, \cdot \rangle$ the V' - V duality bracket.

The existence result reads as follows:

Theorem 2.1. Assume that $a : \mathbb{R} \to \mathbb{R}_+$ is continuous, $0 < a_0 \leq a(x) \leq a_1$ for all $x \in \mathbb{R}$ and $g : L^2(\Omega) \to \mathbb{R}$ is continuous. Then for any $f \in L^2(0, T; V')$ and $u_0 \in L^2(\Omega)$ there exists u with

$$u \in L^2(0, T; V) \cap C([0, T], L^2(\Omega)), \quad u_t \in L^2(0, T; V')$$

solution to

$$\begin{cases} \frac{d}{dt}(u,v) + a(g(u)) \int_{\Omega} \nabla u \cdot \nabla v \, dx = \langle f, v \rangle & \text{in } \mathscr{D}'(0,T), \quad \forall v \in V, \\ u(0) = u_0. \end{cases}$$
(2.1)

Proof. Let $w \in L^2(0, T; L^2(\Omega))$, then thanks to Dautray–Lions [4], the problem

$$\begin{cases} u \in L^2(0,T;V) \cap C([0,T],L^2(\Omega)), & u_t \in L^2(0,T;V'), \\ \frac{d}{dt}(u,v) + a(g(w)) \int_{\Omega} \nabla u \cdot \nabla v \, dx = \langle f,v \rangle & \text{in } \mathscr{D}'(0,T), \quad \forall v \in V, \\ u(0) = u_0 \end{cases}$$
(2.2)

has a unique solution. Indeed, the mapping $t \mapsto g(w(\cdot, t))$ is measurable, and hence the mapping $t \mapsto a(g(w(\cdot, t))) = a(g(w))$ is also measurable and belongs to $L^{\infty}(0, T)$.

Whence, to prove that (2.1) has a solution, it suffices to prove that the mapping

$$\begin{split} h: L^2(0,T;L^2(\Omega)) &\to L^2(0,T;L^2(\Omega)), \\ w &\mapsto h(w) = u \end{split}$$

has a fixed point. This will be done with the help of the Schauder fixed point theorem.

From (2.2) we have for v = u

$$\left\langle \frac{du}{dt}, u \right\rangle + a(g(w)) \int_{\Omega} |\nabla u|^2 dx = \langle f, u \rangle, \quad t \in (0, T)$$

and consequently

$$\frac{1}{2}\frac{d}{dt}||u||^2 + a_0||u||_V^2 \le ||f||_{V'}||u||_V, \quad t \in (0,T).$$
(2.3)

Now, since

$$||f||_{V'}||u||_{V} \leq \frac{1}{2a_{0}}||f||_{V'}^{2} + \frac{a_{0}}{2}||u||_{V}^{2},$$

we deduce from (2.3) that

$$\frac{1}{2}\frac{d}{dt}||u||^2 + \frac{a_0}{2}||u||_V^2 \leqslant \frac{1}{2a_0}||f||_{V'}^2, \quad t \in (0,T).$$

Integration over (0, T) yields

$$\frac{1}{2}||u||^2 + \frac{a_0}{2}\int_0^T ||u||_V^2 dt \leq \frac{1}{2}||u_0||^2 + \frac{1}{2a_0}\int_0^T ||f||_{V'}^2 dt,$$

and hence

$$||u||_{L^2(0,T;V)}, \quad ||u||_{L^2(0,T;L^2(\Omega))} \le c_1,$$
 (2.4)

where $c_1 > 0$ is a positive constant independent of w.

Since $u_t - a(g(w))\Delta u = f$, we deduce the existence of a positive constant $c_2 > 0$ independent of w such that

$$||u_t||_{L^2(0,T;V')} \le c_2. \tag{2.5}$$

Hence, h maps B into itself and h(B) is relatively compact in B, where we set

$$B = \{ w \in L^2(0, T; L^2(\Omega)) : ||u||_{L^2(0, T; L^2(\Omega))} \leq c_1 \}.$$

To apply the Schauder fixed point theorem, we just need to show that h is continuous. Let w_n be a sequence such that

$$w_n \rightarrow w$$
 in *B* or $L^2(0, T; L^2(\Omega))$

and $u_n = h(w_n)$.

For a subsequence, still denoted by the same symbol, we have

$$w_n(\cdot, t) \rightarrow w(\cdot, t)$$
 in $L^2(\Omega)$, $t \in (0, T)$

and also

$$a(g(w_n)) \to a(g(w)), \quad t \in (0, T).$$

$$(2.6)$$

As a consequence of (2.4) and (2.5), there exists \tilde{u} such that

$$\begin{cases} u_n \rightarrow \tilde{u} & \text{in } L^2(0, T; V), \\ u_n \rightarrow \tilde{u} & \text{in } L^2(0, T; L^2(\Omega)), \\ (u_n)_t \rightarrow (\tilde{u})_t & \text{in } L^2(0, T; V'). \end{cases}$$
(2.7)

For every $v \in V$, $\varphi \in \mathcal{D}(0, T)$, it holds that

$$-\int_{0}^{T}\int_{\Omega}u_{n}v\varphi'\,dx\,dt+\int_{0}^{T}\int_{\Omega}a(g(w_{n}))\nabla u_{n}\nabla v\varphi\,dx\,dt$$
$$=\int_{0}^{T}\langle f,v\rangle\varphi\,dt.$$
(2.8)

Thanks to (2.6) and to the Lebesgue dominated convergence theorem, we have

$$a(g(w_n))\varphi v \rightarrow a(g(w))\varphi v$$
 in $L^2(0,T;V)$

and passing to the limit in (2.8) we deduce that for every $v \in V$:

$$\frac{d}{dt}(\tilde{u},v) + a(g(w)) \int_{\Omega} \nabla \tilde{u} \,\nabla v \, dx = \langle f, v \rangle \quad \text{in } \mathscr{D}'(0,T).$$

Now since

$$(u_n(t), v) - (u_0, v) = \int_0^T \langle (u_n)_t, v \rangle, \quad t \in (0, T), \ \forall v \in V,$$
(2.9)

 $u_n(t) \rightarrow \tilde{u}(t)$ in $L^2(\Omega)$, $t \in (0, T)$,

then by passing to the limit in (2.9) we get

$$(\tilde{u}(t), v) - (u_0, v) = \int_0^T \langle \tilde{u}_t, v \rangle = (\tilde{u}(t), v) - (\tilde{u}(0), v), \quad t \in (0, T), \ \forall v \in V$$

and consequently

$$\tilde{u}(0) = u_0$$
 and $\tilde{u} = u$.

Thus, u_n converges toward u in B, which completes the proof. \Box

Now, we are interested to know whether the solution given in Theorem 2.1 is unique. We have

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that a and g are locally Lipschitz continuous, then the solution u is unique.

Proof. If u_1, u_2 are two solutions, then we have

$$\frac{d}{dt}(u_1 - u_2) - a(g(u_1))\Delta(u_1 - u_2) = -(a(g(u_2)) - a(g(u_1)))\Delta u_2,$$

and consequently

$$\left\langle \frac{d}{dt}(u_1 - u_2), u_1 - u_2 \right\rangle + a(g(u_1)) \int_{\Omega} \left| \nabla(u_1 - u_2) \right|^2 dx$$
$$= a(g(u_2)) - a(g(u_1)) \int_{\Omega} \nabla u_2 \nabla(u_1 - u_2) dx.$$

Since $u_1, u_2 \in C([0, T], L^2(\Omega))$, then there exists a bounded set $S \subset L^2(\Omega)$ such that

$$u_1(t), u_2(t) \in S, \quad \forall t \in [0, T]$$

and thus for some A > 0

$$(g(u_1(t)), g(u_2(t))) \in [-A, A] \times [-A, A].$$

As a and g are locally Lipschitz continuous, and if we denote by c(S), c(A) the Lipschitz constants, then we have

$$\frac{1}{2}\frac{d}{dt}||u_1 - u_2||^2 + a_0||u_1 - u_2||_V^2 \leq c(A)c(S)||u_1 - u_2|| \int_{\Omega} |\nabla u_2| |\nabla (u_1 - u_2)|dx \leq c(A)c(S)||u_1 - u_2|| ||u_2||_V||u_1 - u_2||_V.$$

By Young's inequality we infer

$$\frac{1}{2}\frac{d}{dt}||u_1 - u_2||^2 + a_0||u_1 - u_2||_V^2 \leqslant \frac{a_0}{2}||u_1 - u_2||_V^2 + \frac{c^2(S)c^2(A)||u_2||_V^2}{2a_0}||u_1 - u_2||^2$$

which implies that

$$\frac{d}{dt}||u_1 - u_2||^2 \leqslant \frac{c^2(S)c^2(A)||u_2||_V^2}{a_0}||u_1 - u_2||^2$$

and also

$$\frac{d}{dt}\left\{\exp\left(-\int_0^t \frac{c^2(S)c^2(A)||u_2||_V^2}{a_0}ds\right)||u_1-u_2||^2\right\} \le 0$$

Since the above function is nonincreasing and vanishes at 0, it vanishes in fact everywhere. Hence we have uniqueness. \Box

Remark 2.3. If $f \in L^{\infty}(\mathbb{R}_+, V')$, then we can consider cases where *a* is not defined on the whole real line.

Indeed, we have from the proof of Theorem 2.1.

$$\frac{d}{dt}||u||^{2} + c_{3}||u||^{2} \leq \frac{d}{dt}||u||^{2} + a_{0}||u||_{V}^{2} \leq \frac{1}{a_{0}}||f||_{L^{\infty}(\mathbb{R}_{+},V')}^{2},$$

where $c_3 > 0$ is a positive constant.

Hence, by integration we obtain

$$||u||^2 \leq ||u_0||^2 + \frac{1}{a_0c_4}||f||^2_{L^{\infty}(\mathbb{R}_+,V')},$$

 $c_4 > 0$ is a positive constant. Thus *u* remains a priori bounded.

3. Steady states

Assume, for simplicity, that f is independent of time, that is $f \in V'$ the dual of V and that g is linear. In this section we are interested in finding the weak solutions to the problem

$$\begin{cases} -\Delta(a(g(u))u) = f & \text{in } \Omega, \\ u \in V. \end{cases}$$
(3.1)

The main result here is

Theorem 3.1. Let $a(\cdot) : \mathbb{R} \to \mathbb{R}_+$. Then, problem (3.1) has as much solutions as the problem

$$a(\phi)\phi = g(\psi) \quad in \ \mathbb{R}, \tag{3.2}$$

where ψ is the unique solution of

$$\begin{cases} -\Delta \psi = f & \text{in } \Omega, \\ \psi \in V. \end{cases}$$
(3.3)

Proof. If u is a solution to (3.1), then we have

$$-\Delta(a(g(u))u) = f$$
 in Ω .

Hence, by (3.3) we get

$$a(g(u))u = \psi$$

Applying g to both sides yields

$$a(g(u))g(u) = g(\psi).$$

This means that $g(u) \in \mathbb{R}$ is solution to (3.2).

Now, if ϕ solves (3.2). Then, there exists a unique weak solution to

$$\begin{cases} -a(\phi)\Delta u = f & \text{in } \Omega, \\ u \in V. \end{cases}$$
(3.4)

Since the solution of (3.3) is unique, we have

 $a(\phi)u - \psi$

and then by applying g to both sides we get

$$a(\phi)g(u) = g(\psi) = a(\phi)\phi.$$

Consequently, as a > 0, we get $g(u) = \phi$. Going back to (3.4), we obtain that u is solution to (3.1).

Corollary 3.2. (i) If $g(\psi) = 0$, then the only solution to (3.1) is $u = \frac{\psi}{a(0)}$.

(ii) If a is a continuous function such that $0 < a_0 \leq a(x)$ for all $x \in \mathbb{R}$, then problem (3.1) admits always a solution.

Proof. (i) If $g(\psi) = 0$, the only solution to (3.2) is $\phi = 0$, and hence the only solution to (3.1) is $u = \frac{\psi}{a(0)}$.

(ii) The mapping $\phi \mapsto a(\phi)\phi$ has \mathbb{R} for range, and thanks to the intermediate value theorem, there exists always a solution to (3.1).

If $g(\psi) > 0$, then any ϕ such that $a(\phi) = \frac{g(\psi)}{\phi}$ gives a solution to (3.1). Roughly speaking, any point at the intersection of the graph of *a* and the hyperbola $\phi \mapsto \frac{g(\psi)}{\phi}$ provides a solution to (3.1). \Box

4. Convergence results

In this section we assume that a is locally Lipschitz continuous so that by Theorem 2.2 problem (2.1) has a unique weak solution.

We begin by proving two preliminary results.

Lemma 4.1. Let $u_0^n \in L^2(\Omega)$ be a sequence such that

$$u_0^n \rightarrow u_0 \quad in \ L^2(\Omega) \quad as \ n \rightarrow +\infty.$$
 (4.1)

If, u^n , u are the solutions to (2.1) with initial date u_0^n , u_0 , respectively. Then,

$$u^{n}(t) \rightarrow u(t), \quad \forall t \ge 0 \quad in \ L^{2}(\Omega).$$
 (4.2)

Proof. By (4.1), u_0^n is bounded in $L^2(\Omega)$ and thanks to (2.4) and (2.5) there exists a positive constant c > 0 independent of *n* such that

$$||u^{n}||_{L^{2}(0,T;V)} \leq c,$$

$$||u^{n}||_{L^{\infty}(0,T;L^{2}(\Omega))} \leq c,$$

$$||u^{n}_{t}||_{L^{2}(0,T;V')} \leq c.$$

Consequently, for a subsequence, still denoted by the same symbol, we obtain

$$\begin{cases} u^{n} \rightarrow \tilde{u} & \text{in } L^{2}(0, T; V), \\ u^{n} \rightarrow u & \text{in } L^{2}(0, T; L^{2}(\Omega)), \\ u^{n} \rightarrow \tilde{u} & \text{in } L^{\infty}(0, T; L^{2}(\Omega)) & \text{weak-star}, \\ u^{n}_{t} \rightarrow \tilde{u}_{t} & \text{in } L^{2}(0, T; V'). \end{cases}$$

$$(4.3)$$

For every $v \in V$ and $\varphi \in \mathcal{D}(0, T)$ we have by definition

$$-\int_{0}^{T}\int_{\Omega}u^{n}v\varphi'(t)\,dx\,dt + \int_{0}^{T}\int_{\Omega}a(g(u^{n}))(\nabla u^{n}\cdot\nabla v)\varphi(t)\,dx\,dy$$
$$=\int_{0}^{T}\langle f,v\rangle\varphi(t)\,dt.$$
(4.4)

From (4.3) we have for almost every $t \in (0, T)$

$$g(u^n) \rightarrow g(\tilde{u})$$
 in $L^2(0,T)$

and then by the Lebesgue theorem it holds that

$$a(g(u^n))\varphi \nabla v \rightarrow a(g(\tilde{u}))\varphi \nabla v \text{ in } L^2(0,T;L^2(\Omega))$$

and passing to the limit in (4.4), we get that for every $v \in V$

$$\frac{d}{dt}(\tilde{u}, v) + a(g(\tilde{u})) \int_{\Omega} \nabla \tilde{u} \cdot \nabla v \, dx = \langle f, v \rangle \quad \text{in } \mathscr{D}'(0, T).$$

Now, for every $v \in V$:

$$(u^n(t),v) - (u_0^n,v) = \int_0^t \langle u_t^n,v \rangle dt$$

for almost every t, and since $u^n(t) \rightarrow \tilde{u}(t)$ in $L^2(\Omega)$, we obtain

$$(\tilde{u}(t),v)-(u_0,v)=\int_0^t \langle \tilde{u}_t,v\rangle \, dt=(\tilde{u}(t),v)-(\tilde{u}(0),v).$$

Thus, $\tilde{u}(0) = u_0$ and then $\tilde{u} = u$. Consequently,

$$u^n \rightarrow u$$
 in $L^{\infty}(0, T; L^2(\Omega))$ weak-star

and in particular for every $v \in V$

$$(u^n(t), v) \rightarrow (u(t), v)$$
 in $L^{\infty}(0, T)$ weak-star

The sequence of functions $((u^n(t), v))_n$ is equicontinuous and thus relatively compact in C([0, T]). Indeed, for every $t_1, t_2 \in [0, T], t_2 > t_1$, we have

$$(u^{n}(t_{2}), v) - (u^{n}(t_{1}), v) = \int_{t_{1}}^{t_{2}} \langle u^{n}_{t}, v \rangle dt$$

$$\leq \int_{t_{1}}^{t_{2}} ||u^{n}_{t}||_{V'} ||v||_{V}$$

$$\leq \sqrt{t_{2} - t_{1}} ||v||_{V} ||u^{n}_{t}||_{L^{2}(0,T;V')},$$

$$\leq c\sqrt{t_{2} - t_{1}}.$$

Hence, we deduce that

$$(u^n(t), v) \rightarrow (u(t), v)$$
 in $C([0, T]), \quad \forall v \in V.$

Since V is dense in $L^2(\Omega)$ and $u^n(t)$ is bounded, then we deduce that

 $(u^n(t), v) \rightarrow (u(t), v) \quad \forall v \in L^2(\Omega), \quad \forall t \ge 0$

which completes the proof. \Box

Proposition 4.2. If $a(\cdot) \ge a_0 > 0$ is continuous in \mathbb{R}_+ , and if w is solution to

$$\begin{cases} w \in C([0, T], L^{2}(\Omega)) \cap L^{2}(0, T; V), & w_{t} \in L^{2}(0, T; V'), \\ w(0) \leq 0, & w(0) \neq 0, \\ \frac{d}{dt}(w, v) + a(t) \int_{\Omega} \nabla w \cdot \nabla v \, dx \leq 0 \quad in \ \mathscr{D}'(0, T), \ \forall v \in V, \ v \geq 0. \end{cases}$$
(4.5)

Then, we have

$$w(x,t) < 0 \quad \forall t > 0, \quad a.e. \ x \in \Omega. \tag{4.6}$$

Proof. Let Ω' be a smooth subdomain of Ω large enough so that $\int_{\Omega'} |v(0)| dx = \int_{\Omega'} |w(0)| dx > 0$, where v is the weak solution to

$$\begin{cases} v_t - \Delta v = 0 \quad \text{in } \ \Omega' \times (0, T^*), \\ v(0) = w(0) \quad \text{in } \ \Omega', \\ v(\cdot, t) \in H^1_0(\Omega') \ \forall t \in (0, T^*). \end{cases}$$

Thanks to Dautray–Lions [4], we know that for every $\varepsilon > 0$

$$v \in C^{\infty}((\varepsilon, T^*) \times \Omega')$$

and

$$v(x,t) < 0, \quad \forall (x,t) \in \Omega' \times (0,T^*].$$

$$(4.7)$$

Next, by the weak maximum principle, we have

$$w(t) \leq 0$$
 a.e. in Ω , $\forall t \geq 0$.

Moreover, setting

$$\bar{v}(\cdot,t) = v\left(\cdot, \int_0^t a(s) \, ds\right) \tag{4.8}$$

we have, in a weak sense:

$$\bar{v}_t = v_t \cdot a(t) = a(t)\Delta v = a(t)\Delta \bar{v},$$

$$\bar{v}(0) = v(0) = w(0)|_{\Omega'}.$$

The first above equation holds in $\Omega' \times (0, T)$ with $\int_0^T a(s) ds = T^*$. But T^* and thus T can be chosen arbitrarily, hence by the weak maximum principle we get

$$w \leq \overline{v}$$
 a.e. in Ω' , $\forall t \in [0, T]$.

Hence, (4.6) follows from (4.7) to (4.8). \Box

Now, we study the asymptotic behavior of the solution u to (2.1). We suppose that g satisfies

$$\begin{cases} g(v) \ge 0 \quad \forall v \ge 0, \ v \in L^2(\Omega), \\ g \ne 0, \end{cases}$$
(4.9)

and that

$$\begin{cases} f \in V', \ \langle f, v \rangle \ge 0, \ \forall v \ge 0, \ v \in V, \\ f \ne 0. \end{cases}$$
(4.10)

We define ϕ_1, ϕ_2 as the two intersection points of the graph of *a* with the graph of the hyperbola $\frac{g(\psi)}{\phi}$. To ϕ_1, ϕ_2 correspond two stationary points given by

$$\phi_1 = \frac{\psi}{a(\phi_1)} < \phi_2 = \frac{\psi}{a(\phi_2)}$$

There are two cases to be distinguished:

Case 1:

$$a(\phi_2) \leq a(\phi) \leq a(\phi_1), \quad \forall \phi \in [\phi_1, \phi_2].$$

$$(4.11)$$

In this case, we have two subcases

Subcase 1:

$$\frac{g(\psi)}{\phi} < a(\phi) \quad \forall \phi \in (\phi_1, \phi_2), \quad \text{cf. Theorem 4.6.}$$
(4.12)

Subcase 2:

$$\frac{g(\psi)}{\phi} = a(\phi) \quad \forall \phi \in (\phi_1, \phi_2), \quad \text{cf. Theorem 4.8.}$$
(4.13)

Case 2:

$$a(\phi_1) \leq a(\phi) < \frac{g(\psi)}{\phi}, \quad \forall \phi \in \left[\frac{g(\psi)}{\max_{\phi \in [\phi_1, \phi_2]} a(\phi)}, \phi_1\right), \quad \max_{\phi \in [\phi_1, \phi_2]} a(\phi) > a(\phi_1), \quad (4.14)$$

cf. Theorem 4.9.

First, we consider case 1, and study the asymptotic behavior of u the solution to (2.1). We restrict ourselves to the case where

$$u_1 \leq u_0 \leq u_2$$
 a.e. in Ω . (4.15)

Theorem 4.3. Assume that (4.9)–(4.11), (4.15) hold. Then, the weak solution u of (2.1) satisfies

$$u_1 \leq u(\cdot, t) \leq u_2$$
 a.e. in Ω , $\forall t \geq 0$. (4.16)

Proof. We assume first that $u_1 < u_0 < u_2$ a.e. in Ω , then by (4.9) we have

$$\phi_1 = g(u_1) < g(u_0) < g(u_2) = \phi_2.$$

We claim that

$$0 < t^* := \sup\{t > 0: g(u(\cdot, s)) \in [\phi_1, \phi_2], \ \forall s \in [0, t]\} = +\infty.$$
(4.17)

Indeed, if this is not the case, and since $u \in C(\mathbb{R}_+, L^2(\Omega))$ we have

$$g(u(\cdot,t^*)) = \phi_1 \text{ or } \phi_2.$$

Without loss of generality, we assume that $g(u(\cdot, t^*)) = \phi_2$. Then, for almost every t we have

$$\frac{du}{dt} - a(g(u))\Delta u = f = -a(\phi_2)\Delta u_2 \quad \text{in } L^2(0, t^*; V')$$

or equivalently,

$$\frac{d}{dt}(u-u_2) - a(g(u))\Delta(u-u_2) = \frac{a(\phi_2) - a(g(u))}{a(\phi_2)} \cdot f \quad \text{in } L^2(0,t^*;V').$$

Since $g(u) \in [\phi_1, \phi_2]$, we deduce that

$$\frac{d}{dt}(u - u_2) - a(g(u))\Delta(u - u_2) \le 0 \text{ in } V', \text{ for a.e. } t \in (0, t^*).$$

Hence, if we set $w = u - u_2$ we get

$$\frac{dw}{dt} - a(g(u))\Delta w \leqslant 0,$$

$$w(0) = u_0 - u_2 < 0$$

and then by Proposition 4.2

 $w(t^*) < 0,$

which contradicts $g(u(\cdot, t^*)) = \phi_2$. Thus, $t^* = +\infty$ and

$$u_1 < u(t) < u_2$$
 a.e. in Ω , $\forall t \ge 0$.

Now, if u_0 satisfies

$$\frac{\psi}{a(\phi_1)} = u_1 \leqslant u_0 \leqslant u_2 = \frac{\psi}{a(\phi_2)}$$

then as $n \rightarrow +\infty$, it holds that

$$u_1 < u_0^n = \max\left(\min\left(\left(u_1 + \frac{\psi}{n}\right), u_0\right), \left(u_2 - \frac{\psi}{n}\right)\right) < u_2$$

and thus if u^n is the solution to (2.1) with initial data u_0^n , then for any t

$$u^{n}(t) \in X := \{ v \in L^{2}(\Omega) \colon u_{1} \leq v \leq u_{2} \text{ a.e. in } \Omega \}.$$

The set X is closed and convex in $L^2(\Omega)$, and by Lemma 4.1 is also weakly closed and

$$u(t) \in X, \quad \forall t > 0.$$

Proposition 4.4. (i) For $u_0 \in X$, we define $S(t)u_0 = u(t)$ where $u(t) = u(\cdot, t)$ denotes the solution of (2.1). Then $(S(t))_{t\geq 0}$ is a dynamical system on X.

(ii) The mapping $u \mapsto (\Phi, u)$ is a Lyapounov function on X, where Φ is the weak solution to

$$\begin{cases} -\Delta \Phi = g & \text{in } \Omega, \\ \Phi \in V. \end{cases}$$

Proof. (i) From Theorem 4.3 we deduce that S(t) maps X into X. It is easy to check that it is a dynamical system thanks to Lemma 4.1 and since $u \in C([0, T], L^2(\Omega))$.

(ii) Since $g \in L^2(\Omega) \subset V'$, the problem

$$\begin{cases} -\Delta \Phi = g & \text{in } \Omega, \\ \Phi \in V \end{cases}$$
(4.18)

has a unique solution, and by (4.8) it satisfies $\Phi > 0$ a.e. in Ω .

60

If we choose $v = \Phi$ in (2.1), we get

$$\frac{d}{dt}(\Phi, u) + a(g(u)) \int_{\Omega} \nabla u \cdot \nabla \Phi \, dx = \langle f, \Phi \rangle.$$

Hence by (4.18) we deduce that

$$\frac{d}{dt}(\Phi, u) = g(\psi) - a(g(u))g(u) \quad \text{for a.e. } t \in \mathbb{R}_+.$$
(4.19)

If we choose $u_0 \in X$, then by Theorem 4.3 we obtain

$$\frac{d}{dt}(\Phi, u) \leqslant 0$$

and in the case of (4.12) and (4.13)

$$\frac{d}{dt}(\Phi, u) = 0. \qquad \Box$$

Lemma 4.5. Let u be the weak solution to (2.1). Then, if

 $g(u(t)) \rightarrow \phi_i \quad as \ t \rightarrow +\infty, \quad i=1,2,$

then

$$u(t) \rightarrow u_i$$
 in $L^2(\Omega)$, $i = 1, 2$.

Proof. By definition we have

$$\frac{d}{dt}(u-u_i) - a(g(u))\Delta u = -a(\phi_1)\Delta u_i \quad \text{in } V' \text{ for a.e } t \ge 0$$

or equivalently

$$\frac{d}{dt}(u-u_i) - a(g(u))\Delta(u-u_i) = -(a(\phi_1) - a(g(u)))\Delta u_i$$

in V' for a.e $t \ge 0$.

Hence, when multiplying with $u - u_i$ we get

$$\frac{1}{2}\frac{d}{dt}||u-u_i||^2 + a_0 \int_{\Omega} |\nabla(u-u_i)|^2 dx$$

$$\leq |a(\phi_i) - a(g(u))| \int_{\Omega} |\nabla u_i| |\nabla(u-u_i)| dx.$$

Since for every $\varepsilon > 0$ we have

$$\int_{\Omega} |\nabla u_i| |\nabla (u - u_i)| \, dx \leq \frac{\varepsilon}{2} \int_{\Omega} |\nabla (u - u_i)|^2 \, dx + \frac{1}{2\varepsilon} \int_{\Omega} |\nabla u_i|^2 \, dx$$

we obtain by choosing $\varepsilon \sup_{t \ge 0} |a(\phi_i) - a(g(u))| = a_0$ that

$$\frac{1}{2}\frac{d}{dt}||u-u_i||^2 + \frac{a_0}{2}\int_{\Omega}|\nabla(u-u_i)|^2 dx \le c_1|a(\phi_i) - a(g(u))|$$

where $c_1 > 0$ is a positive constant.

Hence, from the Poincaré inequality we deduce that

$$(||u - u_i||^2)'(t) + c_2||u - u_i||^2(t) \le c_1|a(\phi_i) - a(g(u))|$$

and then integration between t_0 and t yields

$$||u - u_i||^2(t) \le ||u - u_i||^2(t_0)e^{c_2(t_0 - t)} + c_1 \int_{t_0}^t |a(\phi_i)|^2 d\phi_i + a(g(u))|(s)e^{c_2(s - t)} ds.$$

If $\varepsilon > 0$ is a given positive real, let t_0 be such that

$$|a(\phi_i) - a(g(u))|(s) \leq \frac{c_2}{c_1} \frac{\varepsilon}{2} \quad \forall s \geq t_0,$$

then for $t > t_0$ we have

$$||u - u_i||^2(t) \leq ||u - u_i||^2(t_0)e^{c_2(t_0 - t)} + c_2\frac{\varepsilon}{2}\int_{t_0}^t e^{c_2(s - t)} ds$$
$$\leq ||u - u_i||^2(t_0)e^{c_2(t_0 - t)} + \frac{\varepsilon}{2}.$$

Hence, if t is large enough we get

$$||u-u_i||^2(t) \leq \varepsilon$$

which completes the proof. \Box

Theorem 4.6. Assume that (4.11) and (4.12) hold. Then, for $u_0 \in X$, $u_0 \neq u_2$, we have

$$u(t) = S(t)u_0 \rightarrow u_1$$
 in $L^2(\Omega)$ as $t \rightarrow +\infty$.

Proof. From (4.19) we have

$$\frac{d}{dt}(\Phi, u) = g(\psi) - a(g(u))g(u) \leqslant 0$$
(4.20)

and hence by Theorem 4.3 we get

$$(\Phi, u(t)) \ge (\Phi, u_1).$$

Moreover, since by (4.20) the function (Φ, u) is nonincreasing, there exists $c_3 > 0$ such that

$$\lim_{t \to +\infty} (\Phi, u(t)) = c_3 = (\Phi, w)$$

for any $w \in \omega(u_0)$ the ω -limit set of u_0 .

From (4.20) and for any $w \in \omega(u_0)$ we have

$$\frac{d}{dt}(\Phi, S(t)w) = 0 = g(\psi) - a(g(S(t)w))g(S(t)w)$$

that is, by the continuity of $t \mapsto g(S(t)w)$, that

$$g(S(t)w) = \phi_1$$
 for all t or $g(S(t)w) = \phi_2$ for all t.

Hence,

$$g(w) = \phi_1$$
 or ϕ_2 for all $w \in \omega(u_0)$.

We have $\omega(u_0) = \omega_1 \cup \omega_2$ where

$$\omega_i = \{ w \in \omega(u_0) : g(w) = \phi_i \}, \quad i = 1, 2.$$

Consequently, as $t \to +\infty$, we have

$$g(u(t)) \rightarrow \phi_1$$
 or $g(u(t)) \rightarrow \phi_2$.

Thus, if $g(u(t)) \rightarrow \phi_2$, we have $u(t) \rightarrow u_2$. Since $(\Phi, u(t))$ is nonincreasing and $\Phi > 0$ this implies that

$$(\Phi, u(t)) = (\Phi, u_2) \quad \forall t.$$

Since $\Phi > 0$ a.e. in Ω , $u(t) = u_2$ for all t which contradicts $u_0 \neq u_2$. Thus,

$$g(u(t)) \rightarrow \phi_1$$

and Lemma 4.5 permits us to conclude. \Box

Now, let us turn to the stability if the solution u(t) to (2.1) under hypotheses (4.11) and (4.13). For any $\phi \in [\phi_1, \phi_2]$, then $\frac{\psi}{a(\phi)}$ is a stationary point and by (4.19) we have

$$\frac{d}{dt}(\Phi, u) = 0 \Leftrightarrow (\Phi, u(t)) = (\Phi, u_0) \quad \forall t \ge 0.$$

Hence, a natural candidate for the limit of u(t) is

$$u_{\infty} = rac{(\Phi, u_0)}{(\Phi, \psi)} \psi.$$

Since $\omega(u_0)$ is compact, then there exists $w_0 \in \omega(u_0)$ such that

$$a(g(w_0)) = \min_{w \in \omega(u_0)} a(g(w)).$$
(4.21)

First, we need a preliminary result:

Lemma 4.7. For any $w \in \omega(u_0)$, it holds that

$$w \leq \frac{\psi}{a(g(w_0))}$$
 a.e. in Ω .

Proof. Let $w \in \omega$, v(t) = S(t)w. Now

$$-a(g(w_0))\Delta\left(\frac{\psi}{a(g(w_0))}\right) = -\Delta\psi = f$$

and hence

$$\frac{d}{dt}\left(v - \frac{\psi}{a(g(w_0))}\right) - a(g(v))\Delta\left(v - \frac{\psi}{a(g(w_0))}\right)$$
$$= -(a(g(w_0)) - a(g(v)))\Delta\left(\frac{\psi}{a(g(w_0))}\right).$$

Thus we have, since $v \in \omega(u_0), -\Delta(\frac{\psi}{a(g(w_0))}) \ge 0$:

$$\frac{1}{2}\frac{d}{dt}\left\|\left(v-\frac{\psi}{a(g(w_0))}\right)^+\right\|^2 + a(g(v))\int_{\Omega}\left|\nabla\left(v-\frac{\psi}{a(g(w_0))}\right)^+\right|^2 dx$$
$$= (a(g(w_0)) - a(g(v)))\left\langle-\Delta\left(\frac{\psi}{a(g(w_0))}\right), \left(v-\frac{\psi}{a(g(w_0))}\right)^+\right\rangle \leq 0.$$

There exists a positive constant $c_3 > 0$ such that

$$\frac{d}{dt}\left\|\left(v-\frac{\psi}{a(g(w_0))}\right)^+\right\|^2+c_3\left\|\left(v-\frac{\psi}{a(g(w_0))}\right)^+\right\|^2\leqslant 0$$

and hence

$$\left\| \left(S(t)w - \frac{\psi}{a(g(w_0))} \right)^+ \right\|^2 \leq e^{-c_3 t} \left\| \left(w - \frac{\psi}{a(g(w_0))} \right)^+ \right\|^2$$
$$\leq c_4 e^{-c_3 t}.$$

For any $z \in \omega(u_0)$, we can write it as z = S(t)w, and hence

$$\left(z-\frac{\psi}{a(g(w_0))}\right)^+=0\quad\forall z\in\omega(u_0).$$

Hence, the proof is by now complete. \Box

Theorem 4.8. Assume that (4.11) and (4.13) hold. Then, for $u_0 \in X$, we have

$$u(t) \rightarrow u_{\infty}$$
 in $L^{2}(\Omega)$.

Proof. Assume, by contradiction, that $\frac{\psi}{a(g(w_0))} > u_{\infty}$. Let $w \in \omega(u_0)$ and set w(t) = S(t)w, then we have

$$(\Phi, w) = (\Phi, u_0) = (\Phi, u_\infty) < \left(\Phi, \frac{\psi}{a(g(w_0))}\right).$$

Since $a(g(w)) \ge a(g(w_0))$, then we get

$$\frac{d}{dt}\left(w - \frac{\psi}{a(g(w_0))}\right) - a(g(w))\Delta\left(w - \frac{\psi}{a(g(w_0))}\right) \leqslant 0,$$
$$\left(w - \frac{\psi}{a(g(w_0))}\right)(0) \leqslant 0,$$
$$\left(w - \frac{\psi}{a(g(w_0))}\right)(0) \neq 0.$$

For any $w \in \omega(u_0)$, by Theorem 4.3 we have

$$w(t) - \frac{\psi}{a(g(w_0))} < 0 \quad \forall t > 0.$$

Since $S(t)\omega(u_0) = \omega(u_0)$, it follows that

$$g(w) < g\left(\frac{\psi}{a(g(w_0))}\right) \quad \forall w \in \omega(u_0)$$

which contradicts

$$g\left(\frac{\psi}{a(g(w_0))}\right) = \frac{g(\psi)}{a(g(w_0))} = g(w_0)$$

and proves that $\frac{\psi}{a(g(w_0))} \leq u_{\infty}$.

Thus, for any $w \in \omega(u_0)$ it holds

$$w \leqslant \frac{\psi}{a(g(w_0))} \leqslant u_\infty.$$

Since $(\Phi, w) = (\Phi, u_{\infty})$ this imposes $w = u_{\infty}$ for all $w \in \omega(u_0)$, i.e., $\omega(u_0) = \{u_{\infty}\}$. Thus

$$u(t) \rightarrow u_{\infty}$$
 in $L^{2}(\Omega)$,

$$a(g(u(t)) \to a(g(u_{\infty}))),$$

which, by the help of Lemma 4.5, proves the theorem. \Box

Now, we study case (4.14). The result of convergence is

Theorem 4.9. Under hypothesis (4.14), for

$$\frac{\psi}{\max_{\phi \in [\phi_1,\phi_2]} a(\phi)} \leq u_0 \leq u_2, \quad u_0 \neq u_2,$$

we have

$$\lim_{t \to +\infty} u(t) = u_1 \quad in \ L^2(\Omega).$$

Proof. Let

$$X = \left\{ v \in L^2(\Omega) \colon \frac{\psi}{\max_{\phi \in [\phi_1, \phi_2]} a(\phi)} \leqslant v \leqslant u_2 \right\},\$$

then first note that $u \mapsto (\Phi, u)$ is no more a priori a Lyapounov function, and proceeding exactly as in Theorem 4.3 we can show that

$$\frac{\psi}{\max_{\phi \in [\phi_1, \phi_2]} a(\phi)} \leq u(t) \leq u_2 \quad \forall t \ge 0.$$

,

We distinguish two cases:

66

Case 1: $a(g(w_0)) \ge a(g(u_1))$. Then it holds

$$\frac{\psi}{a(g(w_0))} \leq \frac{\psi}{a(g(u_1))} = u_1$$

Thanks to Lemma 4.7 we have

$$\frac{\psi}{\max_{\phi \in [\phi_1, \phi_2]} a(\phi)} \leqslant w \leqslant \frac{\psi}{a(g(w_0))} \leqslant u_1 \quad \forall w \in \omega(u_0).$$
(4.22)

Then, for any $w \in \omega(u_0)$, the function w(t) = S(t)w satisfies

$$\frac{d}{dt}(w(t),\Phi) = g(\psi) - a(g(w(t))g(w(t)) \ge 0 \quad \forall t \ge 0.$$
(4.23)

Define

$$\mathscr{S} := \left\{ x \in \omega(u_0) \colon (\Phi, x) = \inf_{w \in \omega(u_0)} (w, \Phi) = m \right\}$$

which is nonempty since $\omega(u_0)$ is weakly compact in $L^2(\Omega)$.

For any $x \in \omega(u_0) \setminus \mathscr{S}$, we have thanks to (4.23)

$$(\Phi, S(t)x) \ge (\Phi, x) > m, \quad \forall t \ge 0.$$
 (4.24)

Assume, by contradiction, that $u_1 \notin \mathcal{S}$, then for any $x \in \mathcal{S}$ and t > 0 we have

$$S(t)x < u_1 \Rightarrow g(S(t)x) < g(u_1)$$

$$\Rightarrow a(g(S(t)x))g(S(t)x) < g(\psi)$$

$$\Rightarrow (\Phi, S(t)x) > (\Phi, x) = m$$

which contradicts $S(t)\omega(u_0) = \omega(u_0)$. Hence, $u_1 \in \mathscr{S}$.

Thus, for any $x \in \omega(u_0)$ we have

$$x \leq u_1$$
 and $(\Phi, x) \geq (\Phi, u_1)$.

Consequently

$$x = u_1$$
 and $\omega(u_0) = \{u_1\}.$

The conclusion follows from Lemma 4.5.

Case 2: $a(g(w_0)) < a(g(u_1))$. By Lemma 4.7 and since $g(w_0) > 0$ we get

$$w_0 \leqslant \frac{\psi}{a(g(w_0))}$$

and hence

$$a(g(w_0)) \leqslant \frac{g(\psi)}{g(w_0)}.$$

But, since $a(g(w_0)) < a(g(u_1))$, then we have

$$g(w_0) = g(u_2) = \phi_2.$$

As $S(t)\omega(u_0) = \omega(u_0)$, then we claim that $u_2 \in \omega(u_0)$, because otherwise we would have $w \leq u_2$ and $w \neq u_2$. Thus $S(t)w < u_2$ for any t > 0 and then $g(S(t)w) < g(u_2)$. Thus $u_2 \in \omega(u_0)$.

The rest of the proof consists in proving that u_2 cannot belong to $\omega(u_0)$ and that case 2 is in fact impossible.

The mapping $t \mapsto (\Phi, S(t)u_0)$ is nonincreasing in a neighborhood t_1 whenever $g(S(t_1)u_0) \in (\phi_1, \phi_2]$ and therefore

$$\sup_{w \in \mathscr{C}(u_0)} (\Phi, w) = \max\left((\Phi, u_0), \sup_{\substack{x \in \mathscr{C}(u_0) \\ g(x) \leqslant \phi_1}} (\Phi, x) \right),$$

where $\mathscr{C}(u_0)$ is the weak closure of the trajectory of u_0 in $L^2(\Omega)$.

Now, the set $\mathscr{C}(u_0) \cap \{x : g(x) \leq \phi_1\}$ is weakly compact in $L^2(\Omega)$, and consequently there exists $x_* \in \mathscr{C}(u_0) \cap \{x : g(x) \leq \phi_1\}$ such that

$$(\Phi, x_*) = \sup_{\substack{x \in \mathscr{C}(u_0) \\ g(x) \leqslant \phi_1}} (\Phi, x).$$

$$(4.25)$$

Since $g(x_*) \leq \phi_1 < g(u_2)$, we get $x_* \leq u_2$ and $x_* \neq u_2$. Thus $(\Phi, x_*) < (\Phi, u_2)$ and by (4.25) we have

$$\sup_{w \in \mathscr{C}(u_0)} (\Phi, w) < (\Phi, u_2)$$

and hence

$$u_2 \notin \mathscr{C}(u_0) \supset \omega(u_0).$$

This completes the proof of the theorem. \Box

References

 J. Bebernes, A. Bressan, A. Lacey, Total blow-up versus single-point blow-up, J. Differential Equations 73 (1988) 30–44.

68

- [2] J.R. Cannon, H.-M. Yin, A class of nonlinear on-classical parabolic equations, J. Differential Equations 79 (1989) 266–288.
- [3] J.M. Chadam, A. Pierce, H.-M. Yin, The blow-up property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992) 313–328.
- [4] R. Dautray, J.-L. Lions, Analyse Mathématique et calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.
- [5] K. Deng, M.K. Kwang, H.A. Levine, The influence of nonlocal nonlinearities on the long time behaviour of solutions of Burgers equation, Quart. Appl. Math. 5 (1992) 1237–1245.
- [6] J.-S. Guo, H.-W. Su, The blow-up behaviour of the solution of an integrodifferential equation, Differential Integral Equations 5 (1992) 1237–1245.
- [7] C.V. Pao, Nonexistence of global solutions for an integrodifferential system in reactor dynamics, SIAM J. Math. Anal. 11 (1980) 559–564.
- [8] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998) 1301–1334.
- [9] P. Souplet, Uniform blow-up profiles and boundary behaviour for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999) 374–406.
- [10] L. Wang, Q. Chen, The asymptotic behaviour of blow-up solution of localized non-linear equation, J. Math. Anal. Appl. 200 (1996) 315–321.
- [11] M. Wang, Y. Wang, Properties of positive solutions for nonlocal reaction-diffusion problems, Math. Methods Appl. Sci. 19 (1996) 1141–1156.