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Abstract

In this paper we study a nonlocal diffusion problem. The existence is proved using the
Schauder fixed point theorem. The convergence of the solution towards a steady state is
investigated by using the dynamical systems point of view.
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1. Introduction

In this paper, we consider a nonlocal diffusion problem. The main questions we
here address are the global existence, uniqueness of a solution, and the convergence
towards a steady state.

As typical examples of parabolic equations with nonlocal nonlinearities, let us
mention the following:

® Equations with space integral term, of the form

u,—Auzg(/Qf(u(t,y))dy). (1.1)
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Some problems involving both local and nonlocal terms, of the type

w— Au = /Q TGt ) dy + h(u(t, x)). (12)

® Equations with localized source, of the form

u, — Au = f(u(t, x0(2))). (1.3)
® Equations with space—time integral, of the form

ur— Au =f< [ [ patats.nas ds). (1.4

Each equation is considered in a bounded domain with homogeneous Dirichlet
boundary conditions.

Problems of these types arise in various models in physics and engineering have
been studied by a number of authors. To cite just a few, problems of type (1.1) or
(1.2) are related to some ignition models for compressible reactive gases. For
problems of these types and some of their variants, the blow-up of solutions was
studied, among others, by Bebernes et al. [1], Deng et al. [5], Chadam et al. [3], Wang
and Wang [11].

Eq. (1.3) describes physical phenomena where the reaction is driven by the
temperature at a single site. This equation was studied by Cannon and Yin [2],
Chadam et al. [3], Wang and Chen [10], in the case x((z) = Const., and by Souplet [§]
for variable x¢(z).

Last, problems of type (1.4) play an important role in the theory of nuclear reactor
dynamics. The blow-up of solutions was studied by Souplet [8], Pao [7] and Guo and
Su [6].

Recently, Souplet [9] determined the rate and profile of blow-up of solutions for
large classes of nonlocal problems of each type above. He proved that the solutions
have global blow-up, and that the blow-up rate is uniform in all compact subsets of
the domain.

In any diffusion process, the diffusion velocity ¢ is given at the point x by the
Fourier law 9(x) = —aVu(x) where u is the temperature and « is a constant
depending on the medium where the process is taking place. The assumption a is
constant is, in fact, a first approximation of the reality. For instance, in material
science it is clear that physical constants attached to a material will depend on its
state, its temperature for example. In this paper, we would like to address the case
where the constant ¢ depends on nonlocal quantities. Thus, a could depend on

g(u) :/Qu(x) dx.
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So, let Q be a connected bounded Lipschitz open set of R". We denote by I' the
boundary of Q and by {I'y,I';} a partition of it. Set

V= H}O(Q) = {veH'(Q): v=0 on Iy},

and g: V—oR, feV’ where V' denotes the strong dual of V.
Consider the parabolic problem

uy—a(gw)Au=f in Qx(0,7),
u(HeV, te(0,T), (1.5)
u(-,0) = upe L*(Q).

The paper is organized as follows. In Section 2, we prove the existence and
uniqueness of a solution to (1.5). In Section 3, we introduce the steady-state problem,
and in Section 4 we study the convergence of the solution towards a steady state.

2. Existence and uniqueness

Without loss of generality, we can assume that V' is equipped with the norm

2 = /Q Vuf dx

and we denote by (-,-)> the V' — V duality bracket.
The existence result reads as follows:

Theorem 2.1. Assume that a: R— R, is continuous, 0 <ay<a(x)<a for all xe R and
g: L*(Q)— R is continuous. Then for any f € L*(0, T; V') and uge L*(Q) there exists u
with

ueL*(0,T; V)~ C([0, T), L*(Q)), u,eL*0,T;V")
solution to

{%(u,v)+a(g(u))fg Vu-Vodx = f,v) in 2'(0,T), YveV, 2.1

u(0) = uy.

Proof. Let we L%(0, T; L*(Q)), then thanks to Dautray—Lions [4], the problem

ueL*(0,T;V)n C([0, T],L*(Q)), ueL*(0,T; V"),
4w, v) +a(g(w)) [, Vu-Vvdx = f,v> in 2'(0,T), YveV, (2.2)
u(0) = up
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has a unique solution. Indeed, the mapping 7+ g(w(, )) is measurable, and hence
the mapping t—a(g(w(-,1))) = a(g(w)) is also measurable and belongs to L* (0, T').
Whence, to prove that (2.1) has a solution, it suffices to prove that the mapping

h:LX0,T; LX(Q)) - L*(0, T; LX(Q)),
wh(w) =u

has a fixed point. This will be done with the help of the Schauder fixed point
theorem.
From (2.2) we have for v =u

<Ccilu >+a w) /|Vu\ dx={f,uy, 1€(0,T)

and consequently

1d

Sl + ol <Al 10, 7). (23)

Now, since

1 2 ap 2
IIfIIVIIIullvéz—%IIfIIVf + 5 lully,

we deduce from (2.3) that

3l + Sl <5 A1 10,7,

Integration over (0, T') yields

Ml + / el dr <3l +—/ 112 .

and hence
el 200,70y, Nl 20, 7:0200)) < €15 (2.4)

where ¢; >0 is a positive constant independent of w.
Since u, — a(g(w))Au = f, we deduce the existence of a positive constant ¢ >0
independent of w such that

e[ 120,70y S €2 (25)
Hence, 4 maps B into itself and i(B) is relatively compact in B, where we set

B={weL(0,T; L*(Q)): |lull;20 1120 <1}
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To apply the Schauder fixed point theorem, we just need to show that /4 is
continuous. Let w, be a sequence such that

w,—w in B or L*(0,T;L*(Q))

and u, = h(w,).
For a subsequence, still denoted by the same symbol, we have

wa(-, ) > w(-, 1) in L*(Q), te(0,T)
and also
a(g(wa))—alg(w)), (0, T). (2.6)
As a consequence of (2.4) and (2.5), there exists @ such that

Upy—11 in L2(0,T; V),
Uy — 1 in L2(0, T; L*(Q)), (2.7)
(up),— (), in L*(0,T;V").

For every ve V,pe2(0,T), it holds that

—/OT /Qunvq/ dxdt—i—/OT/Qa(g(wn))Vuan(p dx dt
/0T<f,v>q)dz. (2.8)

Thanks to (2.6) and to the Lebesgue dominated convergence theorem, we have

a(g(wn))pv—alg(w))gv in L*(0,T; V)
and passing to the limit in (2.8) we deduce that for every ve V:

d : .
E(ﬁ’ v) —i—a(g(w))/g Vi Vodx = {f,v) in Z'(0,T).

Now since

(uu(1),v) — (up,v / {(u),, 0>, te(0,T), YoeV, (2.9)

un(t)—a(t) in LX(Q), te(0,T),

then by passing to the limit in (2.9) we get

(@(1), v) — (1, v / (o> = (@(6),v) — (@(0),0), te(0,T), YoeV
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and consequently

d0)=uy and id=u.
Thus, u, converges toward u in B, which completes the proof. [

Now, we are interested to know whether the solution given in Theorem 2.1 is
unique. We have

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that a and g are
locally Lipschitz continuous, then the solution u is unique.

Proof. If u;,u, are two solutions, then we have

%(ul —uz) = a(g(u))A(wr —uz) = —(a(g(u2)) — alg(r)))Aus,

and consequently

<%(u1 — ), ur — u2> +a(g(ur)) /Q IV (uy — )| dx
=a(g(up)) — a(g(ul))/ Vu,V(uy — uy) dx.
Q

Since uy,uy e C([0, T], L*(R)), then there exists a bounded set S < L?(Q) such that
ui(t),ur(t)eS, Vvtel0,T]
and thus for some 4 >0
(9(ur(1)), g(ux(1))) €[—4, A] x [-4, A].

As a and g are locally Lipschitz continuous, and if we denote by ¢(S),c(4) the
Lipschitz constants, then we have

1d
EEHW — o |[* + aolur — o[} < e(A)e(S)||ur — qu/ |V | |V (uy — uy)|dx
Q

< c(A)e(S)fur — o[ |ua[y[[ur = wal[ -
By Young’s inequality we infer

1d a A(8)A(A)||us|?
2wl + ol — oy < — o + Sl

2
2 |

Uz
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which implies that

2 2 2
c“(8)c(A)||uy
%Hul —u2||2<%”u1 —uz||2

t 2 ZA 2
i{exp<_/ () )||u2||Vds>|ul_u2||2}<0_
dt 0 ao

Since the above function is nonincreasing and vanishes at 0, it vanishes in fact
everywhere. Hence we have uniqueness. [J

and also

Remark 2.3. If fe L* (R, V'), then we can consider cases where « is not defined on
the whole real line.
Indeed, we have from the proof of Theorem 2.1.

d 2 2 d 2 2 1 2
g+ esllullP< Zllll” + aollully < ANz @, 1),

where ¢3>0 is a positive constant.
Hence, by integration we obtain

1
2 2 2
P < ol P+ AV,

¢4>0 is a positive constant. Thus u remains a priori bounded.

3. Steady states

Assume, for simplicity, that /" is independent of time, that is /'€ V' the dual of V'
and that ¢ is linear. In this section we are interested in finding the weak solutions to
the problem

ueVv. (31

{—A(a(g(u»u) =f ing,

The main result here is

Theorem 3.1. Let a(-):R—R,. Then, problem (3.1) has as much solutions as the
problem

a(@)p =g(¥) in R, (3:2)
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where V) is the unique solution of

—AY = n Q
b=f inQ, 63
yeVl.
Proof. If u is a solution to (3.1), then we have
—Ala(g(u))u) =f in Q.
Hence, by (3.3) we get
a(g(u))u =y
Applying g to both sides yields
a(g(u))g(u) = g()
This means that g(u) R is solution to (3.2).
Now, if ¢ solves (3.2). Then, there exists a unique weak solution to
{ —a(¢p)Au=f in Q, 54)
uel.

Since the solution of (3.3) is unique, we have
a(p)u—

and then by applying ¢g to both sides we get

Consequently, as a>0, we get g(u) = ¢. Going back to (3.4), we obtain that u is
solution to (3.1).

Corollary 3.2. (i) If g() = 0, then the only solution to (3.1) is u = %

(i) If a is a continuous function such that 0<ay<a(x) for all xeR, then problem
(3.1) admits always a solution.

Proof. (i) If g(yy) = 0, the only solution to (3.2) is ¢ = 0, and hence the only solution

to (3.1) is u = ;i
(if) The mapping ¢+ a(¢p)¢ has R for range, and thanks to the intermediate value

theorem, there exists always a solution to (3.1).
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If g(y) >0, then any ¢ such that a(¢) = % gives a solution to (3.1). Roughly

speaking, any point at the intersection of the graph of @ and the hyperbola ¢ H%
provides a solution to (3.1). O

4. Convergence results
In this section we assume that a is locally Lipschitz continuous so that by Theorem

2.2 problem (2.1) has a unique weak solution.
We begin by proving two preliminary results.

Lemma 4.1. Let ulie L*(Q) be a sequence such that
up—uy in L*(Q) as n— + . (4.1)
If, u",u are the solutions to (2.1) with initial date ugj,uy, respectively. Then,
u'(t)—u(t),  Vt=0 in [}(Q). (4.2)
Proof. By (4.1), uj is bounded in L*(Q) and thanks to (2.4) and (2.5) there exists a

positive constant ¢> 0 independent of n such that

[l

1200,7:7) S 65
||“n||Lx(o,T;L2(Q)) <S¢
||u7||L2(O,T;V’) <c.
Consequently, for a subsequence, still denoted by the same symbol, we obtain

Wi in L2(0,T; V),

W"'—u in L*(0,T; L*(Q)),

W'—i in L(0,T; L*(Q)) weak-star,
Wi, in L2(0,T; V).

t

(4.3)

For every ve V and ¢ Z(0, T) we have by definition
T T
- / / u"ve' (1) dx dt —|—/ / a(g(u"))(Vu" - Vo)o(t) dx dy
0o Ja 0o Ja

T
_ /0 (ool dr. (4.4)
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From (4.3) we have for almost every 1€ (0, T)
g(u")—g(i@) in L*(0,T)
and then by the Lebesgue theorem it holds that
a(g(u"))pVv—alg(@))pVo in L*(0, T; L*(Q))

and passing to the limit in (4.4), we get that for every ve V'

:le( v) +a(g(a ))/Vu Vodx =< f,vo) in 2'(0,T).

Now, for every veV:
W0~ o) = [ty a
for almost every ¢, and since " (¢)—ii(t) in L*(Q), we obtain

(1), v) — (o, v / (il vy di = (1), v) — (i(0), v).

Thus, #(0) = uy and then i = u. Consequently,
W'—u in L7(0,T;L*(Q)) weak-star
and in particular for every ve V
(u"(t),v)—(u(?),v) in L*(0,T) weak-star.

The sequence of functions (("(?),v)), is equicontinuous and thus relatively compact
in C([0, T]). Indeed, for every #;,1,€[0, T], t,>t,, we have

(U'(t2),v) — (u"(t1), / vy dt

</ e, 1ol
13

< Vo = alllp | 20 7.0
<cvh — 1.
Hence, we deduce that

(u"(t),v) > (u(t),v) in C([0,T]), YveV.
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Since V is dense in L?(2) and «"(¢) is bounded, then we deduce that
(u"(1),v) = (u(t),v) YveL*(Q), Vt=0
which completes the proof. [

Proposition 4.2. If a(-) >ay>0 is continuous in Ry, and if w is solution to

we C([0, T), L*(Q))nL*(0, T; V), w,eL*0,T; V"),
w(0)<0, w(0)=#0, (4.5)
4w, v) +a(t) [, Vw-Vvdx<0 in Z'(0,T), YveV, v=0.

dt

Then, we have

w(x,1)<0 V>0, ae. xeQ. (4.6)

Proof. Let @' be a smooth subdomain of Q large enough so that [, [v(0)|dx =
Jor w(0)|dx>0, where v is the weak solution to

v, —Av=0 in Q x (0,T%),
v(0) =w(0) in
v(-, 1) e H{(Q) Ve (0, T*).

Thanks to Dautray—Lions [4], we know that for every ¢>0
veC¥((e, T") x Q')
and
v(x,1)<0, V(x,1)e x (0,T]. (4.7)
Next, by the weak maximum principle, we have
w(H)<0 a.e. in Q, Vi=0.

Moreover, setting

we have, in a weak sense:
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The first above equation holds in Q' x (0, T') with fOT a(s)ds = T*. But T* and thus
T can be chosen arbitrarily, hence by the weak maximum principle we get

w<? ae. in Q, Vie0,T].
Hence, (4.6) follows from (4.7) to (4.8). O

Now, we study the asymptotic behavior of the solution u to (2.1). We suppose that
g satisfies

>0 VYo=0, vell*(Q),
9(0)20 V020, veLX(Q) 49)
g#0,
and that
14 >0, V=0, veV,
feV, {fiv) v ve (4.10)
f#£0.

We define ¢, ¢, as the two intersection points of the graph of a with the graph of the

hyperbola % To ¢, ¢, correspond two stationary points given by
[ W
= < = .
N a) =" alg)
There are two cases to be distinguished:
Case 1:
a(py)<a(P)<a(¢,), Voelp,, . (4.11)
In this case, we have two subcases
Subcase 1:
9(¥)
7<a(¢) Voe(py,d,), cf. Theorem 4.6. (4.12)
Subcase 2:
g(y) _
o a(p) Voe(py,¢,), cf. Theorem 4.8. (4.13)
Case 2:

o) o) (
b <a@) <2 o[ W) max a@)>ate). (@14)

cf. Theorem 4.9.
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First, we consider case 1, and study the asymptotic behavior of u the solution to
(2.1). We restrict ourselves to the case where

u <uy<u, a.e. in Q. (4.15)

Theorem 4.3. Assume that (4.9)—(4.11), (4.15) hold. Then, the weak solution u of (2.1)
satisfies

w <u(,0)<up ae. in Q, Vr=0. (4.16)

Proof. We assume first that u; <up<u, a.c. in Q, then by (4.9) we have
b1 = g(ur) <g(uo) <g(uz) = .
We claim that
0<r* = sup{t>0: g(u(-,s))€ld;, P,], Vse[0,7]} = + 0. (4.17)
Indeed, if this is not the case, and since ue C(R,, L*(Q)) we have
g(u(-, ') = ¢y or ¢,.

Without loss of generality, we assume that g(u(-, ")) = ¢,. Then, for almost every ¢
we have

o ag)Au =1 = ~agp)Aws in L0,V

or equivalently,

= ) = alg(u) A ) = LI i 120,

Since g(u) € [¢,, ¢,], we deduce that

%(u —uy) —a(g(u)A(u—u)<0 in V', for a.e. 1€(0,1").

Hence, if we set w = u — u, we get
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and then by Proposition 4.2
w(r") <0,
which contradicts g(u(-, ")) = ¢,. Thus, * = +c0 and
u<u(t)<uy ae.in Q, Ve=0.

Now, if u satisfies

a(éy)

then as n— + oo, it holds that

uy < —max(min<<u1 +l’/;),u0), (uz —lﬁ>> <up

and thus if #" is the solution to (2.1) with initial data uj, then for any ¢

=uUSUSU) = ———

W'(eX = {ve*(Q): uy<v<us ae. in Q}.
The set X is closed and convex in L?(Q), and by Lemma 4.1 is also weakly closed and

u(t)eX, Vi>0.

Proposition 4.4. (i) For uge X, we define S(t)uy = u(t) where u(t) = u(-, t) denotes the
solution of (2.1). Then (S(t)),s is a dynamical system on X.

(i) The mapping u— (®,u) is a Lyapounov function on X, where ® is the weak
solution to

—Ad =g inQ,
del.

Proof. (i) From Theorem 4.3 we deduce that S(#) maps X into X. It is easy to check
that it is a dynamical system thanks to Lemma 4.1 and since ue C([0, T], L*(Q)).
(ii) Since ge L*(Q) < V', the problem

Ab=g inQ,
{ g m (4.18)

eV

has a unique solution, and by (4.8) it satisfies >0 a.e. in Q.
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If we choose v = @ in (2.1), we get

%((D,u) +a(g(u))/g Vu-Vodx={f, o).

Hence by (4.18) we deduce that

%(d),u) =g(y) —a(g(u))g(u) for ae. teR;. (4.19)

If we choose uye X, then by Theorem 4.3 we obtain

d
— <
d[(d)7 u)<0

and in the case of (4.12) and (4.13)

d

Lemma 4.5. Let u be the weak solution to (2.1). Then, if
gw(t) >, ast—>+ oo, i=1,2,
then

u(t)»w; in L}(Q), i=1,2.

Proof. By definition we have

d

E(u —u;) —a(g(w))Au= —a(¢,)Au; in V' for a.e =0

or equivalently

%(u — ;) — alg(u)A(u — w;) = —(a(dy) — alg(w)))Au;

in V' for a.e 1>0.

Hence, when multiplying with u — u; we get

<la(¢y) — alg(w)| / V| [V (u — )] dx.
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Since for every ¢>0 we have

> 1
[l wa-wlav<s [ 1V-wPac s [ vula
Q 2 Jo 2e Jo

we obtain by choosing & sup,la(¢;) — a(g(u))| = ao that

1d

sl =l + %5 [ 190 = )l de<alatd) - alg)

where ¢; >0 is a positive constant.
Hence, from the Poincaré inequality we deduce that

([ = wl ) (1) + eallu — wi| (1) < 1 la(¢y) — alg(w))]
and then integration between fy and ¢ yields
t
= w0 <l =l (e ey [ ()
fo
— a(g(w)|(s)e0"" ds.
If e>0 is a given positive real, let 7y be such that

a(¢0) —alg@)|(5) <5 Vs,

then for >ty we have

!
= PO < =l Pa)e 0+ exd [ et
0

<o =l P (r)e> ™0 + 2.
Hence, if ¢ is large enough we get
2
| — wif[*(1) <&
which completes the proof. [

Theorem 4.6. Assume that (4.11) and (4.12) hold. Then, for uye X, ug#uy, we have

u(t) = S(ug—uy in L*(Q) ast— + .

Proof. From (4.19) we have

L.1) = g(0) — alg(u))gla) <0 (4.20)
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and hence by Theorem 4.3 we get
(P, u(1)) = (P, u1).

Moreover, since by (4.20) the function (®, u) is nonincreasing, there exists ¢3 >0 such
that

lim (®,u(t)) =c3=(d,w)

=+

for any wew(up) the w-limit set of uy.
From (4.20) and for any wew(uy) we have

d

A S(Ow) =0=g(¥) —alg(S(1)w))g(S(t)w)

that is, by the continuity of ¢+ g(S(¢)w), that
g(S(t)w) = ¢, for all ¢t or g(S()w) = ¢, for all ¢.
Hence,
g(w) = ¢, or ¢, for all wew(u).
We have o(uy) = w1 U, where
w; ={wew(uy): glw) =¢;}, i=12.
Consequently, as t— + oo, we have
gu(®) >y or g(u(t)) > ,.

Thus, if g(u(t))— ¢,, we have u(t) > uy. Since (®,u(t)) is nonincreasing and ¢ >0
this implies that

(D,u(t)) = (P,uy) Vt.
Since ¢>0 a.e. in Q, u(¢) = up for all ¢ which contradicts uy#u,. Thus,
g(u(t)) = ¢,
and Lemma 4.5 permits us to conclude. [
Now, let us turn to the stability if the solution u(?) to (2.1) under hypotheses (4.11)

and (4.13). For any ¢ €[¢,, ¢,], then % is a stationary point and by (4.19) we have

%(@,u) =0<=(D,u(t)) = (P,uy) Vt=0.
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Hence, a natural candidate for the limit of u(¢) is

Since w(uy) is compact, then there exists woew(up) such that

alg(wg)) = min a(g(w)).

we(uy)
First, we need a preliminary result:

Lemma 4.7. For any wew(uy), it holds that

Proof. Let wew, v(t) = S(z)w. Now

—a(g(w))A(a d )z—Aw —f

and hence

d v v
E(“ - a(g(Wo))> - “(“’(”))A<“ ~ algm)

— —(alg(wo)) - a<g<v>>>A(ﬁ>'

Thus we have, since ve w(uy), —A(a(ngm)>)>o:

(v~aatem)

1 d :

2dt

+alg(0) |

Q

There exists a positive constant ¢3 >0 such that

(v=atem) [+ (-~aatem)

2
+c3

4
dr

)

7 (: )

~ atgte0) ~ atglo)){ -8 (st (o= ot

(4.21)
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< cge” P

and hence

2 2

—c3t
<e

[(so—ate)

For any zew(up), we can write it as z = S(¢)w, and hence

<z - ﬁ)l 0 Vzew(u).

Hence, the proof is by now complete. [

Theorem 4.8. Assume that (4.11) and (4.13) hold. Then, for uye X, we have

u(t)—u, in L*(Q).

Proof. Assume, by contradiction, that %>um.

Wwo
Let wew(up) and set w(t) = S(¢)w, then we have

(®,w) = (®,10) = (P, us0) < (@va@&»)-

Since a(g(w))=a(g(wy)), then we get

%( - ﬁ) - a(g(w))A(w - ﬁ) <0,

(v~ gty @ %0

For any wew(up), by Theorem 4.3 we have

[
w(t) — <0 V>0.
= algon)
Since S(H)w(up) = w(up), it follows that

o) <o) weot)
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which contradicts

and proves that WSMW.
Thus, for any wew(up) it holds

4

W——<U
a(g(wy)) =~

Since (@, w) = (®,uy ) this imposes w = u,, for all wew(uy), i.e., w(up) = {u }-
Thus

u(t)—u, in L*(Q),

a(g(u(r)) —a(g(ux)),
which, by the help of Lemma 4.5, proves the theorem. [
Now, we study case (4.14). The result of convergence is

Theorem 4.9. Under hypothesis (4.14), for
4

— _<up<ua, upFu,
maxye(p,,4,14(P)

we have
tlir+n u(t) =u in L*(Q).
Proof. Let
X = {veLZ(Q): v <v<u2},
MaXg e g, 4,4

then first note that u+ (®,u) is no more a priori a Lyapounov function, and
proceeding exactly as in Theorem 4.3 we can show that

1
——<u(t)<up Vt=0.
MaX e (g, ,)4(P)

We distinguish two cases:
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Case 1: a(g(wo))=a(g(u1)). Then it holds
/4 4

<

a(g(wo)) ~alg(ur))

Thanks to Lemma 4.7 we have

W Y
maX¢€[¢1v¢z]a(¢) a(g(wo))

= Uj.

<wu; Vweo(u).

Then, for any wew(uy), the function w(z) = S(¢)w satisfies

Low(), 8) = g¥) — algw(1)g(w(1) 20 Vr>0.

Define

S = {xew(uo): (@,x) = inf (w,®)= m}

wew(uy)

which is nonempty since w(u) is weakly compact in L?*(Q).
For any xew(up)\%, we have thanks to (4.23)

(@,8(6)x)= (P, x)>m, Vi=0.

Assume, by contradiction, that u; ¢ %, then for any xe.% and >0 we have

S(t)x<u; = g(S(1)x)<g(uy)
= a(g(S(1)x))g(S(1)x) <g()
=(D,S(t)x)>(P,x) =m

which contradicts S(¢)w(uy) = w(up). Hence, u; € &.
Thus, for any xew(uy) we have

x<wu; and (P,x)=(D,uy).
Consequently
x=u and o(uy) = {u}.

The conclusion follows from Lemma 4.5.
Case 2: a(g(wo)) <a(g(u1)). By Lemma 4.7 and since g(wy) >0 we get

"OSalgim))
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(4.22)

(4.23)

(4.24)
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and hence

a(g(wo)) <

But, since a(g(wo)) <a(g(u1)), then we have
g(wo) = g(u2) = ¢,.

As S(t)w(uy) = o(up), then we claim that urew(ug), because otherwise we would
have w<u, and w#u,. Thus S(7)w<u, for any >0 and then g(S(¢#)w) <g(u2). Thus
uyew(up).

The rest of the proof consists in proving that u, cannot belong to w(uy) and that
case 2 is in fact impossible.

The mapping t+— (@, S(t)up) is nonincreasing in a neighborhood 7, whenever
g(S(t1)up) € (¢, ¢,] and therefore

sup (@,w) =max| (®,uy), sup (d,x) |,
we b (up) xe€(up)
g(x) <

where % (up) is the weak closure of the trajectory of ug in L*(Q).
Now, the set € (up) N {x: g(x)<¢,} is weakly compact in L?(2), and consequently
there exists x. €% (ug) N {x: g(x)<¢,} such that

(?,x.) = sup (@,x). (4.25)
xe€(uo)
9(x)< ¢,

Since g(x,) <¢, <g(u2), we get x,<up and x,#up. Thus (P, x,)<(P,uz) and by
(4.25) we have

sup (D, w)<(P,u2)

weE (u)
and hence
Uy ¢ 6 (up) Dw(uyp).

This completes the proof of the theorem. [
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