The influence of nonlocal nonlinearities on the long time behavior of solutions of diffusion problems

Mohammed Aassila
Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, 7 rue René Descartes, 67084 Strasbourg, Cedex, France

Received January 12, 2001

Abstract

In this paper we study a nonlocal diffusion problem. The existence is proved using the Schauder fixed point theorem. The convergence of the solution towards a steady state is investigated by using the dynamical systems point of view. (C) 2003 Elsevier Science (USA). All rights reserved.

Keywords: Nonlocal diffusion problems; Global existence; Asymptotic behavior

1. Introduction

In this paper, we consider a nonlocal diffusion problem. The main questions we here address are the global existence, uniqueness of a solution, and the convergence towards a steady state.

As typical examples of parabolic equations with nonlocal nonlinearities, let us mention the following:

- Equations with space integral term, of the form

$$
\begin{equation*}
u_{t}-\Delta u=g\left(\int_{\Omega} f(u(t, y)) d y\right) \tag{1.1}
\end{equation*}
$$

[^0]Some problems involving both local and nonlocal terms, of the type

$$
\begin{equation*}
u_{t}-\Delta u=\int_{\Omega} f(u(t, y)) d y+h(u(t, x)) \tag{1.2}
\end{equation*}
$$

- Equations with localized source, of the form

$$
\begin{equation*}
u_{t}-\Delta u=f\left(u\left(t, x_{0}(t)\right)\right) \tag{1.3}
\end{equation*}
$$

- Equations with space-time integral, of the form

$$
\begin{equation*}
u_{t}-\Delta u=f\left(\int_{0}^{t} \int_{\Omega} \beta(y) g(u(s, y)) d y d s\right) \tag{1.4}
\end{equation*}
$$

Each equation is considered in a bounded domain with homogeneous Dirichlet boundary conditions.

Problems of these types arise in various models in physics and engineering have been studied by a number of authors. To cite just a few, problems of type (1.1) or (1.2) are related to some ignition models for compressible reactive gases. For problems of these types and some of their variants, the blow-up of solutions was studied, among others, by Bebernes et al. [1], Deng et al. [5], Chadam et al. [3], Wang and Wang [11].

Eq. (1.3) describes physical phenomena where the reaction is driven by the temperature at a single site. This equation was studied by Cannon and Yin [2], Chadam et al. [3], Wang and Chen [10], in the case $x_{0}(t)=$ Const., and by Souplet [8] for variable $x_{0}(t)$.

Last, problems of type (1.4) play an important role in the theory of nuclear reactor dynamics. The blow-up of solutions was studied by Souplet [8], Pao [7] and Guo and Su [6].

Recently, Souplet [9] determined the rate and profile of blow-up of solutions for large classes of nonlocal problems of each type above. He proved that the solutions have global blow-up, and that the blow-up rate is uniform in all compact subsets of the domain.

In any diffusion process, the diffusion velocity \vec{v} is given at the point x by the Fourier law $\vec{v}(x)=-a \nabla u(x)$ where u is the temperature and a is a constant depending on the medium where the process is taking place. The assumption a is constant is, in fact, a first approximation of the reality. For instance, in material science it is clear that physical constants attached to a material will depend on its state, its temperature for example. In this paper, we would like to address the case where the constant a depends on nonlocal quantities. Thus, a could depend on

$$
g(u)=\int_{\Omega} u(x) d x
$$

So, let Ω be a connected bounded Lipschitz open set of \mathbb{R}^{n}. We denote by Γ the boundary of Ω and by $\left\{\Gamma_{0}, \Gamma_{1}\right\}$ a partition of it. Set

$$
V=H_{\Gamma_{0}}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{0}\right\}
$$

and $g: V \rightarrow \mathbb{R}, f \in V^{\prime}$, where V^{\prime} denotes the strong dual of V.
Consider the parabolic problem

$$
\left\{\begin{array}{l}
u_{t}-a(g(u)) \Delta u=f \quad \text { in } \Omega \times(0, T), \tag{1.5}\\
u(\cdot, t) \in V, t \in(0, T) \\
u(\cdot, 0)=u_{0} \in L^{2}(\Omega)
\end{array}\right.
$$

The paper is organized as follows. In Section 2, we prove the existence and uniqueness of a solution to (1.5). In Section 3, we introduce the steady-state problem, and in Section 4 we study the convergence of the solution towards a steady state.

2. Existence and uniqueness

Without loss of generality, we can assume that V is equipped with the norm

$$
\|u\|_{V}^{2}=\int_{\Omega}|\nabla u|^{2} d x
$$

and we denote by $\langle\cdot, \cdot\rangle$ the $V^{\prime}-V$ duality bracket.
The existence result reads as follows:
Theorem 2.1. Assume that $a: \mathbb{R} \rightarrow \mathbb{R}_{+}$is continuous, $0<a_{0} \leqslant a(x) \leqslant a_{1}$ for all $x \in \mathbb{R}$ and $g: L^{2}(\Omega) \rightarrow \mathbb{R}$ is continuous. Then for any $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and $u_{0} \in L^{2}(\Omega)$ there exists u with

$$
u \in L^{2}(0, T ; V) \cap C\left([0, T], L^{2}(\Omega)\right), \quad u_{t} \in L^{2}\left(0, T ; V^{\prime}\right)
$$

solution to

$$
\left\{\begin{array}{l}
\frac{d}{d t}(u, v)+a(g(u)) \int_{\Omega} \nabla u \cdot \nabla v d x=\langle f, v\rangle \quad \text { in } \mathscr{D}^{\prime}(0, T), \quad \forall v \in V, \tag{2.1}\\
u(0)=u_{0} .
\end{array}\right.
$$

Proof. Let $w \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, then thanks to Dautray-Lions [4], the problem

$$
\left\{\begin{array}{l}
u \in L^{2}(0, T ; V) \cap C\left([0, T], L^{2}(\Omega)\right), \quad u_{t} \in L^{2}\left(0, T ; V^{\prime}\right), \tag{2.2}\\
\frac{d}{d t}(u, v)+a(g(w)) \int_{\Omega} \nabla u \cdot \nabla v d x=\langle f, v\rangle \quad \text { in } \mathscr{D}^{\prime}(0, T), \quad \forall v \in V, \\
u(0)=u_{0}
\end{array}\right.
$$

has a unique solution. Indeed, the mapping $t \mapsto g(w(\cdot, t))$ is measurable, and hence the mapping $t \mapsto a(g(w(\cdot, t)))=a(g(w))$ is also measurable and belongs to $L^{\infty}(0, T)$.

Whence, to prove that (2.1) has a solution, it suffices to prove that the mapping

$$
\begin{aligned}
& h: L^{2}\left(0, T ; L^{2}(\Omega)\right) \rightarrow L^{2}\left(0, T ; L^{2}(\Omega)\right), \\
& w \mapsto h(w)=u
\end{aligned}
$$

has a fixed point. This will be done with the help of the Schauder fixed point theorem.

From (2.2) we have for $v=u$

$$
\left\langle\frac{d u}{d t}, u\right\rangle+a(g(w)) \int_{\Omega}|\nabla u|^{2} d x=\langle f, u\rangle, \quad t \in(0, T)
$$

and consequently

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u\|^{2}+a_{0}\|u\|_{V}^{2} \leqslant\|f\|_{V^{\prime}}\|u\|_{V}, \quad t \in(0, T) \tag{2.3}
\end{equation*}
$$

Now, since

$$
\|f\|_{V^{\prime}}\|u\|_{V} \leqslant \frac{1}{2 a_{0}}\|f\|_{V^{\prime}}^{2}+\frac{a_{0}}{2}\|u\|_{V}^{2}
$$

we deduce from (2.3) that

$$
\frac{1}{2} \frac{d}{d t}\|u\|^{2}+\frac{a_{0}}{2}\|u\|_{V}^{2} \leqslant \frac{1}{2 a_{0}}\|f\|_{V^{\prime}}^{2}, \quad t \in(0, T)
$$

Integration over $(0, T)$ yields

$$
\frac{1}{2}\|u\|^{2}+\frac{a_{0}}{2} \int_{0}^{T}\|u\|_{V}^{2} d t \leqslant \frac{1}{2}\left\|u_{0}\right\|^{2}+\frac{1}{2 a_{0}} \int_{0}^{T}\|f\|_{V^{\prime}}^{2} d t
$$

and hence

$$
\begin{equation*}
\|u\|_{L^{2}(0, T ; V)}, \quad\|u\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leqslant c_{1}, \tag{2.4}
\end{equation*}
$$

where $c_{1}>0$ is a positive constant independent of w.
Since $u_{t}-a(g(w)) \Delta u=f$, we deduce the existence of a positive constant $c_{2}>0$ independent of w such that

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{2}\left(0, T ; V^{\prime}\right)} \leqslant c_{2} . \tag{2.5}
\end{equation*}
$$

Hence, h maps B into itself and $h(B)$ is relatively compact in B, where we set

$$
B=\left\{w \in L^{2}\left(0, T ; L^{2}(\Omega)\right):\|u\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leqslant c_{1}\right\}
$$

To apply the Schauder fixed point theorem, we just need to show that h is continuous. Let w_{n} be a sequence such that

$$
w_{n} \rightarrow w \quad \text { in } B \text { or } L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

and $u_{n}=h\left(w_{n}\right)$.
For a subsequence, still denoted by the same symbol, we have

$$
w_{n}(\cdot, t) \rightarrow w(\cdot, t) \quad \text { in } L^{2}(\Omega), \quad t \in(0, T)
$$

and also

$$
\begin{equation*}
a\left(g\left(w_{n}\right)\right) \rightarrow a(g(w)), \quad t \in(0, T) . \tag{2.6}
\end{equation*}
$$

As a consequence of (2.4) and (2.5), there exists \tilde{u} such that

$$
\begin{cases}u_{n} \rightharpoonup \tilde{u} & \text { in } L^{2}(0, T ; V) \tag{2.7}\\ u_{n} \rightarrow \tilde{u} & \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \\ \left(u_{n}\right)_{t} \rightharpoonup(\tilde{u})_{t} & \text { in } L^{2}\left(0, T ; V^{\prime}\right)\end{cases}
$$

For every $v \in V, \varphi \in \mathscr{D}(0, T)$, it holds that

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} u_{n} v \varphi^{\prime} d x d t+\int_{0}^{T} \int_{\Omega} a\left(g\left(w_{n}\right)\right) \nabla u_{n} \nabla v \varphi d x d t \\
& \quad=\int_{0}^{T}\langle f, v\rangle \varphi d t . \tag{2.8}
\end{align*}
$$

Thanks to (2.6) and to the Lebesgue dominated convergence theorem, we have

$$
a\left(g\left(w_{n}\right)\right) \varphi v \rightarrow a(g(w)) \varphi v \quad \text { in } L^{2}(0, T ; V)
$$

and passing to the limit in (2.8) we deduce that for every $v \in V$:

$$
\frac{d}{d t}(\tilde{u}, v)+a(g(w)) \int_{\Omega} \nabla \tilde{u} \nabla v d x=\langle f, v\rangle \quad \text { in } \mathscr{D}^{\prime}(0, T)
$$

Now since

$$
\begin{gather*}
\left(u_{n}(t), v\right)-\left(u_{0}, v\right)=\int_{0}^{T}\left\langle\left(u_{n}\right)_{t}, v\right\rangle, \quad t \in(0, T), \quad \forall v \in V, \tag{2.9}\\
u_{n}(t) \rightarrow \tilde{u}(t) \quad \text { in } L^{2}(\Omega), \quad t \in(0, T),
\end{gather*}
$$

then by passing to the limit in (2.9) we get

$$
(\tilde{u}(t), v)-\left(u_{0}, v\right)=\int_{0}^{T}\left\langle\tilde{u}_{t}, v\right\rangle=(\tilde{u}(t), v)-(\tilde{u}(0), v), \quad t \in(0, T), \quad \forall v \in V
$$

and consequently

$$
\tilde{u}(0)=u_{0} \quad \text { and } \quad \tilde{u}=u
$$

Thus, u_{n} converges toward u in B, which completes the proof.
Now, we are interested to know whether the solution given in Theorem 2.1 is unique. We have

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that a and g are locally Lipschitz continuous, then the solution u is unique.

Proof. If u_{1}, u_{2} are two solutions, then we have

$$
\frac{d}{d t}\left(u_{1}-u_{2}\right)-a\left(g\left(u_{1}\right)\right) \Delta\left(u_{1}-u_{2}\right)=-\left(a\left(g\left(u_{2}\right)\right)-a\left(g\left(u_{1}\right)\right)\right) \Delta u_{2}
$$

and consequently

$$
\begin{aligned}
& \left\langle\frac{d}{d t}\left(u_{1}-u_{2}\right), u_{1}-u_{2}\right\rangle+a\left(g\left(u_{1}\right)\right) \int_{\Omega}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x \\
& \quad=a\left(g\left(u_{2}\right)\right)-a\left(g\left(u_{1}\right)\right) \int_{\Omega} \nabla u_{2} \nabla\left(u_{1}-u_{2}\right) d x
\end{aligned}
$$

Since $u_{1}, u_{2} \in C\left([0, T], L^{2}(\Omega)\right)$, then there exists a bounded set $S \subset L^{2}(\Omega)$ such that

$$
u_{1}(t), u_{2}(t) \in S, \quad \forall t \in[0, T]
$$

and thus for some $A>0$

$$
\left(g\left(u_{1}(t)\right), g\left(u_{2}(t)\right)\right) \in[-A, A] \times[-A, A] .
$$

As a and g are locally Lipschitz continuous, and if we denote by $c(S), c(A)$ the Lipschitz constants, then we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|u_{1}-u_{2}\right\|^{2}+a_{0}\left\|u_{1}-u_{2}\right\|_{V}^{2} & \leqslant c(A) c(S)\left\|u_{1}-u_{2}\right\| \int_{\Omega}\left|\nabla u_{2}\right|\left|\nabla\left(u_{1}-u_{2}\right)\right| d x \\
& \leqslant c(A) c(S)\left\|u_{1}-u_{2}\right\|\left\|u_{2}\right\|_{V}\left\|u_{1}-u_{2}\right\|_{V}
\end{aligned}
$$

By Young's inequality we infer

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{1}-u_{2}\right\|^{2}+a_{0}\left\|u_{1}-u_{2}\right\|_{V}^{2} \leqslant \frac{a_{0}}{2}\left\|u_{1}-u_{2}\right\|_{V}^{2}+\frac{c^{2}(S) c^{2}(A)\left\|u_{2}\right\|_{V}^{2}}{2 a_{0}}\left\|u_{1}-u_{2}\right\|^{2}
$$

which implies that

$$
\frac{d}{d t}\left\|u_{1}-u_{2}\right\|^{2} \leqslant \frac{c^{2}(S) c^{2}(A)\left\|u_{2}\right\|_{V}^{2}}{a_{0}}\left\|u_{1}-u_{2}\right\|^{2}
$$

and also

$$
\frac{d}{d t}\left\{\exp \left(-\int_{0}^{t} \frac{c^{2}(S) c^{2}(A)\left\|u_{2}\right\|_{V}^{2}}{a_{0}} d s\right)\left\|u_{1}-u_{2}\right\|^{2}\right\} \leqslant 0
$$

Since the above function is nonincreasing and vanishes at 0 , it vanishes in fact everywhere. Hence we have uniqueness.

Remark 2.3. If $f \in L^{\infty}\left(\mathbb{R}_{+}, V^{\prime}\right)$, then we can consider cases where a is not defined on the whole real line.

Indeed, we have from the proof of Theorem 2.1.

$$
\frac{d}{d t}\|u\|^{2}+c_{3}\|u\|^{2} \leqslant \frac{d}{d t}\|u\|^{2}+a_{0}\|u\|_{V}^{2} \leqslant \frac{1}{a_{0}}\|f\|_{L^{\infty}\left(\mathbb{R}_{+}, V^{\prime}\right)}^{2},
$$

where $c_{3}>0$ is a positive constant.
Hence, by integration we obtain

$$
\|u\|^{2} \leqslant\left\|u_{0}\right\|^{2}+\frac{1}{a_{0} c_{4}}\|f\|_{L^{\infty}\left(\mathbb{R}_{+}, V^{\prime}\right)}^{2}
$$

$c_{4}>0$ is a positive constant. Thus u remains a priori bounded.

3. Steady states

Assume, for simplicity, that f is independent of time, that is $f \in V^{\prime}$ the dual of V and that g is linear. In this section we are interested in finding the weak solutions to the problem

$$
\left\{\begin{array}{l}
-\Delta(a(g(u)) u)=f \quad \text { in } \Omega, \tag{3.1}\\
u \in V .
\end{array}\right.
$$

The main result here is
Theorem 3.1. Let $a(\cdot): \mathbb{R} \rightarrow \mathbb{R}_{+}$. Then, problem (3.1) has as much solutions as the problem

$$
\begin{equation*}
a(\phi) \phi=g(\psi) \quad \text { in } \mathbb{R} \tag{3.2}
\end{equation*}
$$

where ψ is the unique solution of

$$
\left\{\begin{array}{l}
-\Delta \psi=f \quad \text { in } \Omega \tag{3.3}\\
\psi \in V
\end{array}\right.
$$

Proof. If u is a solution to (3.1), then we have

$$
-\Delta(a(g(u)) u)=f \quad \text { in } \Omega
$$

Hence, by (3.3) we get

$$
a(g(u)) u=\psi
$$

Applying g to both sides yields

$$
a(g(u)) g(u)=g(\psi)
$$

This means that $g(u) \in \mathbb{R}$ is solution to (3.2).
Now, if ϕ solves (3.2). Then, there exists a unique weak solution to

$$
\left\{\begin{array}{l}
-a(\phi) \Delta u=f \quad \text { in } \Omega \tag{3.4}\\
u \in V
\end{array}\right.
$$

Since the solution of (3.3) is unique, we have

$$
a(\phi) u-\psi
$$

and then by applying g to both sides we get

$$
a(\phi) g(u)=g(\psi)=a(\phi) \phi
$$

Consequently, as $a>0$, we get $g(u)=\phi$. Going back to (3.4), we obtain that u is solution to (3.1).

Corollary 3.2. (i) If $g(\psi)=0$, then the only solution to (3.1) is $u=\frac{\psi}{a(0)}$.
(ii) If a is a continuous function such that $0<a_{0} \leqslant a(x)$ for all $x \in \mathbb{R}$, then problem (3.1) admits always a solution.

Proof. (i) If $g(\psi)=0$, the only solution to (3.2) is $\phi=0$, and hence the only solution to (3.1) is $u=\frac{\psi}{a(0)}$.
(ii) The mapping $\phi \mapsto a(\phi) \phi$ has \mathbb{R} for range, and thanks to the intermediate value theorem, there exists always a solution to (3.1).

If $g(\psi)>0$, then any ϕ such that $a(\phi)=\frac{g(\psi)}{\phi}$ gives a solution to (3.1). Roughly speaking, any point at the intersection of the graph of a and the hyperbola $\phi \mapsto \frac{g(\psi)}{\phi}$ provides a solution to (3.1).

4. Convergence results

In this section we assume that a is locally Lipschitz continuous so that by Theorem 2.2 problem (2.1) has a unique weak solution.

We begin by proving two preliminary results.
Lemma 4.1. Let $u_{0}^{n} \in L^{2}(\Omega)$ be a sequence such that

$$
\begin{equation*}
u_{0}^{n}-u_{0} \quad \text { in } L^{2}(\Omega) \quad \text { as } n \rightarrow+\infty . \tag{4.1}
\end{equation*}
$$

If, u^{n}, u are the solutions to (2.1) with initial date u_{0}^{n}, u_{0}, respectively. Then,

$$
\begin{equation*}
u^{n}(t) \rightharpoonup u(t), \quad \forall t \geqslant 0 \quad \text { in } L^{2}(\Omega) \tag{4.2}
\end{equation*}
$$

Proof. By (4.1), u_{0}^{n} is bounded in $L^{2}(\Omega)$ and thanks to (2.4) and (2.5) there exists a positive constant $c>0$ independent of n such that

$$
\begin{aligned}
& \left\|u^{n}\right\|_{L^{2}(0, T ; V)} \leqslant c, \\
& \left\|u^{n}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \leqslant c \\
& \left\|u_{t}^{n}\right\|_{L^{2}\left(0, T ; V^{\prime}\right)} \leqslant c
\end{aligned}
$$

Consequently, for a subsequence, still denoted by the same symbol, we obtain

$$
\left\{\begin{array}{l}
u^{n} \rightharpoonup \tilde{u} \text { in } L^{2}(0, T ; V) \tag{4.3}\\
u^{n} \rightarrow u \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right), \\
u^{n} \rightharpoonup \tilde{u} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \quad \text { weak-star, } \\
u_{t}^{n}-\tilde{u_{t}} \text { in } L^{2}\left(0, T ; V^{\prime}\right)
\end{array}\right.
$$

For every $v \in V$ and $\varphi \in \mathscr{D}(0, T)$ we have by definition

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} u^{n} v \varphi^{\prime}(t) d x d t+\int_{0}^{T} \int_{\Omega} a\left(g\left(u^{n}\right)\right)\left(\nabla u^{n} \cdot \nabla v\right) \varphi(t) d x d y \\
& \quad=\int_{0}^{T}\langle f, v\rangle \varphi(t) d t \tag{4.4}
\end{align*}
$$

From (4.3) we have for almost every $t \in(0, T)$

$$
g\left(u^{n}\right) \rightarrow g(\tilde{u}) \quad \text { in } L^{2}(0, T)
$$

and then by the Lebesgue theorem it holds that

$$
a\left(g\left(u^{n}\right)\right) \varphi \nabla v \rightarrow a(g(\tilde{u})) \varphi \nabla v \quad \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

and passing to the limit in (4.4), we get that for every $v \in V$

$$
\frac{d}{d t}(\tilde{u}, v)+a(g(\tilde{u})) \int_{\Omega} \nabla \tilde{u} \cdot \nabla v d x=\langle f, v\rangle \quad \text { in } \mathscr{D}^{\prime}(0, T) .
$$

Now, for every $v \in V$:

$$
\left(u^{n}(t), v\right)-\left(u_{0}^{n}, v\right)=\int_{0}^{t}\left\langle u_{t}^{n}, v\right\rangle d t
$$

for almost every t, and since $u^{n}(t) \rightarrow \tilde{u}(t)$ in $L^{2}(\Omega)$, we obtain

$$
(\tilde{u}(t), v)-\left(u_{0}, v\right)=\int_{0}^{t}\left\langle\tilde{u}_{t}, v\right\rangle d t=(\tilde{u}(t), v)-(\tilde{u}(0), v)
$$

Thus, $\tilde{u}(0)=u_{0}$ and then $\tilde{u}=u$. Consequently,

$$
u^{n} \rightharpoonup u \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \quad \text { weak-star }
$$

and in particular for every $v \in V$

$$
\left(u^{n}(t), v\right) \longrightarrow(u(t), v) \quad \text { in } L^{\infty}(0, T) \quad \text { weak-star. }
$$

The sequence of functions $\left(\left(u^{n}(t), v\right)\right)_{n}$ is equicontinuous and thus relatively compact in $C([0, T])$. Indeed, for every $t_{1}, t_{2} \in[0, T], t_{2}>t_{1}$, we have

$$
\begin{aligned}
\left(u^{n}\left(t_{2}\right), v\right)-\left(u^{n}\left(t_{1}\right), v\right) & =\int_{t_{1}}^{t_{2}}\left\langle u_{t}^{n}, v\right\rangle d t \\
& \leqslant \int_{t_{1}}^{t_{2}}\left\|u_{t}^{n}\right\|_{V^{\prime}}\|v\|_{V} \\
& \leqslant \sqrt{t_{2}-t_{1}}\|v\|_{V}\left\|u_{t}^{n}\right\|_{L^{2}\left(0, T ; V^{\prime}\right)} \\
& \leqslant c \sqrt{t_{2}-t_{1}}
\end{aligned}
$$

Hence, we deduce that

$$
\left(u^{n}(t), v\right) \rightarrow(u(t), v) \quad \text { in } C([0, T]), \quad \forall v \in V .
$$

Since V is dense in $L^{2}(\Omega)$ and $u^{n}(t)$ is bounded, then we deduce that

$$
\left(u^{n}(t), v\right) \rightarrow(u(t), v) \quad \forall v \in L^{2}(\Omega), \quad \forall t \geqslant 0
$$

which completes the proof.
Proposition 4.2. If $a(\cdot) \geqslant a_{0}>0$ is continuous in \mathbb{R}_{+}, and if w is solution to

$$
\left\{\begin{array}{l}
w \in C\left([0, T], L^{2}(\Omega)\right) \cap L^{2}(0, T ; V), \quad w_{t} \in L^{2}\left(0, T ; V^{\prime}\right), \tag{4.5}\\
w(0) \leqslant 0, w(0) \not \equiv 0, \\
\frac{d}{d t}(w, v)+a(t) \int_{\Omega} \nabla w \cdot \nabla v d x \leqslant 0 \quad \text { in } \mathscr{D}^{\prime}(0, T), \forall v \in V, v \geqslant 0 .
\end{array}\right.
$$

Then, we have

$$
\begin{equation*}
w(x, t)<0 \quad \forall t>0, \quad \text { a.e. } x \in \Omega . \tag{4.6}
\end{equation*}
$$

Proof. Let Ω^{\prime} be a smooth subdomain of Ω large enough so that $\int_{\Omega^{\prime}}|v(0)| d x=$ $\int_{\Omega^{\prime}}|w(0)| d x>0$, where v is the weak solution to

$$
\left\{\begin{array}{l}
v_{t}-\Delta v=0 \quad \text { in } \Omega^{\prime} \times\left(0, T^{*}\right) \\
v(0)=w(0) \quad \text { in } \Omega^{\prime} \\
v(\cdot, t) \in H_{0}^{1}\left(\Omega^{\prime}\right) \forall t \in\left(0, T^{*}\right)
\end{array}\right.
$$

Thanks to Dautray-Lions [4], we know that for every $\varepsilon>0$

$$
v \in C^{\infty}\left(\left(\varepsilon, T^{*}\right) \times \Omega^{\prime}\right)
$$

and

$$
\begin{equation*}
v(x, t)<0, \quad \forall(x, t) \in \Omega^{\prime} \times\left(0, T^{*}\right] . \tag{4.7}
\end{equation*}
$$

Next, by the weak maximum principle, we have

$$
w(t) \leqslant 0 \quad \text { a.e. in } \Omega, \quad \forall t \geqslant 0 .
$$

Moreover, setting

$$
\begin{equation*}
\bar{v}(\cdot, t)=v\left(\cdot, \int_{0}^{t} a(s) d s\right) \tag{4.8}
\end{equation*}
$$

we have, in a weak sense:

$$
\begin{gathered}
\bar{v}_{t}=v_{t} \cdot a(t)=a(t) \Delta v=a(t) \Delta \bar{v} \\
\bar{v}(0)=v(0)=\left.w(0)\right|_{\Omega^{\prime}}
\end{gathered}
$$

The first above equation holds in $\Omega^{\prime} \times(0, T)$ with $\int_{0}^{T} a(s) d s=T^{*}$. But T^{*} and thus T can be chosen arbitrarily, hence by the weak maximum principle we get

$$
w \leqslant \bar{v} \quad \text { a.e. in } \Omega^{\prime}, \quad \forall t \in[0, T] .
$$

Hence, (4.6) follows from (4.7) to (4.8).
Now, we study the asymptotic behavior of the solution u to (2.1). We suppose that g satisfies

$$
\left\{\begin{array}{l}
g(v) \geqslant 0 \quad \forall v \geqslant 0, \quad v \in L^{2}(\Omega) \tag{4.9}\\
g \neq 0
\end{array}\right.
$$

and that

$$
\left\{\begin{array}{l}
f \in V^{\prime},\langle f, v\rangle \geqslant 0, \quad \forall v \geqslant 0, \quad v \in V \tag{4.10}\\
f \not \equiv 0 .
\end{array}\right.
$$

We define ϕ_{1}, ϕ_{2} as the two intersection points of the graph of a with the graph of the hyperbola $\frac{g(\psi)}{\phi}$. To ϕ_{1}, ϕ_{2} correspond two stationary points given by

$$
\phi_{1}=\frac{\psi}{a\left(\phi_{1}\right)}<\phi_{2}=\frac{\psi}{a\left(\phi_{2}\right)}
$$

There are two cases to be distinguished:
Case 1:

$$
\begin{equation*}
a\left(\phi_{2}\right) \leqslant a(\phi) \leqslant a\left(\phi_{1}\right), \quad \forall \phi \in\left[\phi_{1}, \phi_{2}\right] . \tag{4.11}
\end{equation*}
$$

In this case, we have two subcases
Subcase 1:

$$
\begin{equation*}
\frac{g(\psi)}{\phi}<a(\phi) \quad \forall \phi \in\left(\phi_{1}, \phi_{2}\right), \quad \text { cf. Theorem 4.6. } \tag{4.12}
\end{equation*}
$$

Subcase 2:

$$
\begin{equation*}
\frac{g(\psi)}{\phi}=a(\phi) \quad \forall \phi \in\left(\phi_{1}, \phi_{2}\right), \quad \text { cf. Theorem 4.8. } \tag{4.13}
\end{equation*}
$$

Case 2:

$$
\begin{equation*}
a\left(\phi_{1}\right) \leqslant a(\phi)<\frac{g(\psi)}{\phi}, \quad \forall \phi \in\left[\frac{g(\psi)}{\max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)}, \phi_{1}\right), \quad \max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)>a\left(\phi_{1}\right) \tag{4.14}
\end{equation*}
$$

cf. Theorem 4.9.

First, we consider case 1 , and study the asymptotic behavior of u the solution to (2.1). We restrict ourselves to the case where

$$
\begin{equation*}
u_{1} \leqslant u_{0} \leqslant u_{2} \quad \text { a.e. in } \Omega . \tag{4.15}
\end{equation*}
$$

Theorem 4.3. Assume that (4.9)-(4.11), (4.15) hold. Then, the weak solution u of (2.1) satisfies

$$
\begin{equation*}
u_{1} \leqslant u(\cdot, t) \leqslant u_{2} \quad \text { a.e. in } \Omega, \quad \forall t \geqslant 0 \tag{4.16}
\end{equation*}
$$

Proof. We assume first that $u_{1}<u_{0}<u_{2}$ a.e. in Ω, then by (4.9) we have

$$
\phi_{1}=g\left(u_{1}\right)<g\left(u_{0}\right)<g\left(u_{2}\right)=\phi_{2} .
$$

We claim that

$$
\begin{equation*}
0<t^{*}:=\sup \left\{t>0: g(u(\cdot, s)) \in\left[\phi_{1}, \phi_{2}\right], \forall s \in[0, t]\right\}=+\infty . \tag{4.17}
\end{equation*}
$$

Indeed, if this is not the case, and since $u \in C\left(\mathbb{R}_{+}, L^{2}(\Omega)\right)$ we have

$$
g\left(u\left(\cdot, t^{*}\right)\right)=\phi_{1} \text { or } \phi_{2} .
$$

Without loss of generality, we assume that $g\left(u\left(\cdot, t^{*}\right)\right)=\phi_{2}$. Then, for almost every t we have

$$
\frac{d u}{d t}-a(g(u)) \Delta u=f=-a\left(\phi_{2}\right) \Delta u_{2} \quad \text { in } L^{2}\left(0, t^{*} ; V^{\prime}\right)
$$

or equivalently,

$$
\frac{d}{d t}\left(u-u_{2}\right)-a(g(u)) \Delta\left(u-u_{2}\right)=\frac{a\left(\phi_{2}\right)-a(g(u))}{a\left(\phi_{2}\right)} \cdot f \quad \text { in } L^{2}\left(0, t^{*} ; V^{\prime}\right)
$$

Since $g(u) \in\left[\phi_{1}, \phi_{2}\right]$, we deduce that

$$
\frac{d}{d t}\left(u-u_{2}\right)-a(g(u)) \Delta\left(u-u_{2}\right) \leqslant 0 \quad \text { in } V^{\prime}, \quad \text { for a.e. } t \in\left(0, t^{*}\right)
$$

Hence, if we set $w=u-u_{2}$ we get

$$
\begin{gathered}
\frac{d w}{d t}-a(g(u)) \Delta w \leqslant 0 \\
w(0)=u_{0}-u_{2}<0
\end{gathered}
$$

and then by Proposition 4.2

$$
w\left(t^{*}\right)<0,
$$

which contradicts $g\left(u\left(\cdot, t^{*}\right)\right)=\phi_{2}$. Thus, $t^{*}=+\infty$ and

$$
u_{1}<u(t)<u_{2} \quad \text { a.e. in } \Omega, \quad \forall t \geqslant 0 .
$$

Now, if u_{0} satisfies

$$
\frac{\psi}{a\left(\phi_{1}\right)}=u_{1} \leqslant u_{0} \leqslant u_{2}=\frac{\psi}{a\left(\phi_{2}\right)}
$$

then as $n \rightarrow+\infty$, it holds that

$$
u_{1}<u_{0}^{n}=\max \left(\min \left(\left(u_{1}+\frac{\psi}{n}\right), u_{0}\right),\left(u_{2}-\frac{\psi}{n}\right)\right)<u_{2}
$$

and thus if u^{n} is the solution to (2.1) with initial data u_{0}^{n}, then for any t

$$
u^{n}(t) \in X:=\left\{v \in L^{2}(\Omega): u_{1} \leqslant v \leqslant u_{2} \text { a.e. in } \Omega\right\} .
$$

The set X is closed and convex in $L^{2}(\Omega)$, and by Lemma 4.1 is also weakly closed and

$$
u(t) \in X, \quad \forall t>0 .
$$

Proposition 4.4. (i) For $u_{0} \in X$, we define $S(t) u_{0}=u(t)$ where $u(t)=u(\cdot, t)$ denotes the solution of (2.1). Then $(S(t))_{t \geqslant 0}$ is a dynamical system on X.
(ii) The mapping $u \mapsto(\Phi, u)$ is a Lyapounov function on X, where Φ is the weak solution to

$$
\left\{\begin{array}{l}
-\Delta \Phi=g \quad \text { in } \Omega \\
\Phi \in V
\end{array}\right.
$$

Proof. (i) From Theorem 4.3 we deduce that $S(t)$ maps X into X. It is easy to check that it is a dynamical system thanks to Lemma 4.1 and since $u \in C\left([0, T], L^{2}(\Omega)\right)$.
(ii) Since $g \in L^{2}(\Omega) \subset V^{\prime}$, the problem

$$
\left\{\begin{array}{l}
-\Delta \Phi=g \quad \text { in } \Omega \tag{4.18}\\
\Phi \in V
\end{array}\right.
$$

has a unique solution, and by (4.8) it satisfies $\Phi>0$ a.e. in Ω.

If we choose $v=\Phi$ in (2.1), we get

$$
\frac{d}{d t}(\Phi, u)+a(g(u)) \int_{\Omega} \nabla u \cdot \nabla \Phi d x=\langle f, \Phi\rangle
$$

Hence by (4.18) we deduce that

$$
\begin{equation*}
\frac{d}{d t}(\Phi, u)=g(\psi)-a(g(u)) g(u) \quad \text { for a.e. } t \in \mathbb{R}_{+} \tag{4.19}
\end{equation*}
$$

If we choose $u_{0} \in X$, then by Theorem 4.3 we obtain

$$
\frac{d}{d t}(\Phi, u) \leqslant 0
$$

and in the case of (4.12) and (4.13)

$$
\frac{d}{d t}(\Phi, u)=0
$$

Lemma 4.5. Let u be the weak solution to (2.1). Then, if

$$
g(u(t)) \rightarrow \phi_{i} \quad \text { as } t \rightarrow+\infty, \quad i=1,2
$$

then

$$
u(t) \rightarrow u_{i} \quad \text { in } L^{2}(\Omega), \quad i=1,2
$$

Proof. By definition we have

$$
\frac{d}{d t}\left(u-u_{i}\right)-a(g(u)) \Delta u=-a\left(\phi_{1}\right) \Delta u_{i} \quad \text { in } V^{\prime} \text { for a.e } t \geqslant 0
$$

or equivalently

$$
\begin{aligned}
& \frac{d}{d t}\left(u-u_{i}\right)-a(g(u)) \Delta\left(u-u_{i}\right)=-\left(a\left(\phi_{1}\right)-a(g(u))\right) \Delta u_{i} \\
& \quad \text { in } V^{\prime} \text { for a.e } t \geqslant 0 .
\end{aligned}
$$

Hence, when multiplying with $u-u_{i}$ we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|\left|u-u_{i}\right|\right|^{2}+a_{0} \int_{\Omega}\left|\nabla\left(u-u_{i}\right)\right|^{2} d x \\
& \quad \leqslant\left|a\left(\phi_{i}\right)-a(g(u))\right| \int_{\Omega}\left|\nabla u_{i}\right|\left|\nabla\left(u-u_{i}\right)\right| d x
\end{aligned}
$$

Since for every $\varepsilon>0$ we have

$$
\int_{\Omega}\left|\nabla u_{i}\right|\left|\nabla\left(u-u_{i}\right)\right| d x \leqslant \frac{\varepsilon}{2} \int_{\Omega}\left|\nabla\left(u-u_{i}\right)\right|^{2} d x+\frac{1}{2 \varepsilon} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x
$$

we obtain by choosing $\varepsilon \sup _{t \geqslant 0}\left|a\left(\phi_{i}\right)-a(g(u))\right|=a_{0}$ that

$$
\frac{1}{2} \frac{d}{d t}\left\|u-u_{i}\right\|^{2}+\frac{a_{0}}{2} \int_{\Omega}\left|\nabla\left(u-u_{i}\right)\right|^{2} d x \leqslant c_{1}\left|a\left(\phi_{i}\right)-a(g(u))\right|
$$

where $c_{1}>0$ is a positive constant.
Hence, from the Poincare inequality we deduce that

$$
\left(\left\|u-u_{i}\right\|^{2}\right)^{\prime}(t)+c_{2}\left\|u-u_{i}\right\|^{2}(t) \leqslant c_{1}\left|a\left(\phi_{i}\right)-a(g(u))\right|
$$

and then integration between t_{0} and t yields

$$
\begin{aligned}
\| u & -u_{i}\left\|^{2}(t) \leqslant\right\| u-u_{i} \|^{2}\left(t_{0}\right) e^{c_{2}\left(t_{0}-t\right)}+c_{1} \int_{t_{0}}^{t} \mid a\left(\phi_{i}\right) \\
& -a(g(u)) \mid(s) e^{c_{2}(s-t)} d s .
\end{aligned}
$$

If $\varepsilon>0$ is a given positive real, let t_{0} be such that

$$
\left|a\left(\phi_{i}\right)-a(g(u))\right|(s) \leqslant \frac{c_{2}}{c_{1}} \frac{\varepsilon}{2} \quad \forall s \geqslant t_{0}
$$

then for $t>t_{0}$ we have

$$
\begin{aligned}
\left\|u-u_{i}\right\|^{2}(t) & \leqslant\left\|u-u_{i}\right\|^{2}\left(t_{0}\right) e^{c_{2}\left(t_{0}-t\right)}+c_{2} \frac{\varepsilon}{2} \int_{t_{0}}^{t} e^{c_{2}(s-t)} d s \\
& \leqslant\left\|u-u_{i}\right\|^{2}\left(t_{0}\right) e^{c_{2}\left(t_{0}-t\right)}+\frac{\varepsilon}{2} .
\end{aligned}
$$

Hence, if t is large enough we get

$$
\left\|u-u_{i}\right\|^{2}(t) \leqslant \varepsilon
$$

which completes the proof.
Theorem 4.6. Assume that (4.11) and (4.12) hold. Then, for $u_{0} \in X, u_{0} \neq u_{2}$, we have

$$
u(t)=S(t) u_{0} \rightarrow u_{1} \quad \text { in } L^{2}(\Omega) \quad \text { as } t \rightarrow+\infty .
$$

Proof. From (4.19) we have

$$
\begin{equation*}
\frac{d}{d t}(\Phi, u)=g(\psi)-a(g(u)) g(u) \leqslant 0 \tag{4.20}
\end{equation*}
$$

and hence by Theorem 4.3 we get

$$
(\Phi, u(t)) \geqslant\left(\Phi, u_{1}\right) .
$$

Moreover, since by (4.20) the function (Φ, u) is nonincreasing, there exists $c_{3}>0$ such that

$$
\lim _{t \rightarrow+\infty}(\Phi, u(t))=c_{3}=(\Phi, w)
$$

for any $w \in \omega\left(u_{0}\right)$ the ω-limit set of u_{0}.
From (4.20) and for any $w \in \omega\left(u_{0}\right)$ we have

$$
\frac{d}{d t}(\Phi, S(t) w)=0=g(\psi)-a(g(S(t) w)) g(S(t) w)
$$

that is, by the continuity of $t \mapsto g(S(t) w)$, that

$$
g(S(t) w)=\phi_{1} \quad \text { for all } t \text { or } g(S(t) w)=\phi_{2} \quad \text { for all } t
$$

Hence,

$$
g(w)=\phi_{1} \text { or } \phi_{2} \text { for all } w \in \omega\left(u_{0}\right)
$$

We have $\omega\left(u_{0}\right)=\omega_{1} \cup \omega_{2}$ where

$$
\omega_{i}=\left\{w \in \omega\left(u_{0}\right): g(w)=\phi_{i}\right\}, \quad i=1,2 .
$$

Consequently, as $t \rightarrow+\infty$, we have

$$
g(u(t)) \rightarrow \phi_{1} \quad \text { or } \quad g(u(t)) \rightarrow \phi_{2} .
$$

Thus, if $g(u(t)) \rightarrow \phi_{2}$, we have $u(t) \rightarrow u_{2}$. Since $(\Phi, u(t))$ is nonincreasing and $\Phi>0$ this implies that

$$
(\Phi, u(t))=\left(\Phi, u_{2}\right) \quad \forall t .
$$

Since $\Phi>0$ a.e. in $\Omega, u(t)=u_{2}$ for all t which contradicts $u_{0} \neq u_{2}$. Thus,

$$
g(u(t)) \rightarrow \phi_{1}
$$

and Lemma 4.5 permits us to conclude.
Now, let us turn to the stability if the solution $u(t)$ to (2.1) under hypotheses (4.11) and (4.13). For any $\phi \in\left[\phi_{1}, \phi_{2}\right]$, then $\frac{\psi}{a(\phi)}$ is a stationary point and by (4.19) we have

$$
\frac{d}{d t}(\Phi, u)=0 \Leftrightarrow(\Phi, u(t))=\left(\Phi, u_{0}\right) \quad \forall t \geqslant 0 .
$$

Hence, a natural candidate for the limit of $u(t)$ is

$$
u_{\infty}=\frac{\left(\Phi, u_{0}\right)}{(\Phi, \psi)} \psi
$$

Since $\omega\left(u_{0}\right)$ is compact, then there exists $w_{0} \in \omega\left(u_{0}\right)$ such that

$$
\begin{equation*}
a\left(g\left(w_{0}\right)\right)=\min _{w \in \omega\left(u_{0}\right)} a(g(w)) . \tag{4.21}
\end{equation*}
$$

First, we need a preliminary result:
Lemma 4.7. For any $w \in \omega\left(u_{0}\right)$, it holds that

$$
w \leqslant \frac{\psi}{a\left(g\left(w_{0}\right)\right)} \quad \text { a.e. in } \Omega .
$$

Proof. Let $w \in \omega, v(t)=S(t) w$. Now

$$
-a\left(g\left(w_{0}\right)\right) \Delta\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)=-\Delta \psi=f
$$

and hence

$$
\begin{aligned}
& \frac{d}{d t}\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)-a(g(v)) \Delta\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right) \\
& \quad=-\left(a\left(g\left(w_{0}\right)\right)-a(g(v))\right) \Delta\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right) .
\end{aligned}
$$

Thus we have, since $v \in \omega\left(u_{0}\right),-\Delta\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right) \geqslant 0$:

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\|^{2}+a(g(v)) \int_{\Omega}\left|\nabla\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right|^{2} d x \\
& \quad=\left(a\left(g\left(w_{0}\right)\right)-a(g(v))\right)\left\langle-\Delta\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right),\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\rangle \leqslant 0
\end{aligned}
$$

There exists a positive constant $c_{3}>0$ such that

$$
\frac{d}{d t}\left\|\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\|^{2}+c_{3}\left\|\left(v-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\|^{2} \leqslant 0
$$

and hence

$$
\begin{aligned}
\left\|\left(S(t) w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\|^{2} & \leqslant e^{-c_{3} t}\left\|\left(w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}\right\|^{2} \\
& \leqslant c_{4} e^{-c_{3} t}
\end{aligned}
$$

For any $z \in \omega\left(u_{0}\right)$, we can write it as $z=S(t) w$, and hence

$$
\left(z-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)^{+}=0 \quad \forall z \in \omega\left(u_{0}\right)
$$

Hence, the proof is by now complete.
Theorem 4.8. Assume that (4.11) and (4.13) hold. Then, for $u_{0} \in X$, we have

$$
u(t) \rightarrow u_{\infty} \quad \text { in } L^{2}(\Omega)
$$

Proof. Assume, by contradiction, that $\frac{\psi}{a\left(g\left(w_{0}\right)\right)}>u_{\infty}$.
Let $w \in \omega\left(u_{0}\right)$ and set $w(t)=S(t) w$, then we have

$$
(\Phi, w)=\left(\Phi, u_{0}\right)=\left(\Phi, u_{\infty}\right)<\left(\Phi, \frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)
$$

Since $a(g(w)) \geqslant a\left(g\left(w_{0}\right)\right)$, then we get

$$
\begin{gathered}
\frac{d}{d t}\left(w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)-a(g(w)) \Delta\left(w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right) \leqslant 0 \\
\left(w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)(0) \leqslant 0 \\
\left(w-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)(0) \not \equiv 0
\end{gathered}
$$

For any $w \in \omega\left(u_{0}\right)$, by Theorem 4.3 we have

$$
w(t)-\frac{\psi}{a\left(g\left(w_{0}\right)\right)}<0 \quad \forall t>0 .
$$

Since $S(t) \omega\left(u_{0}\right)=\omega\left(u_{0}\right)$, it follows that

$$
g(w)<g\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right) \quad \forall w \in \omega\left(u_{0}\right)
$$

which contradicts

$$
g\left(\frac{\psi}{a\left(g\left(w_{0}\right)\right)}\right)=\frac{g(\psi)}{a\left(g\left(w_{0}\right)\right)}=g\left(w_{0}\right)
$$

and proves that $\frac{\psi}{a\left(g\left(w_{0}\right)\right)} \leqslant u_{\infty}$.
Thus, for any $w \in \omega\left(u_{0}\right)$ it holds

$$
w \leqslant \frac{\psi}{a\left(g\left(w_{0}\right)\right)} \leqslant u_{\infty} .
$$

Since $(\Phi, w)=\left(\Phi, u_{\infty}\right)$ this imposes $w=u_{\infty}$ for all $w \in \omega\left(u_{0}\right)$, i.e., $\omega\left(u_{0}\right)=\left\{u_{\infty}\right\}$.
Thus

$$
\begin{aligned}
& u(t) \rightharpoonup u_{\infty} \quad \text { in } L^{2}(\Omega), \\
& a\left(g(u(t)) \rightarrow a\left(g\left(u_{\infty}\right)\right),\right.
\end{aligned}
$$

which, by the help of Lemma 4.5, proves the theorem.
Now, we study case (4.14). The result of convergence is
Theorem 4.9. Under hypothesis (4.14), for

$$
\frac{\psi}{\max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)} \leqslant u_{0} \leqslant u_{2}, \quad u_{0} \neq u_{2},
$$

we have

$$
\lim _{t \rightarrow+\infty} u(t)=u_{1} \quad \text { in } L^{2}(\Omega)
$$

Proof. Let

$$
X=\left\{v \in L^{2}(\Omega): \frac{\psi}{\max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)} \leqslant v \leqslant u_{2}\right\},
$$

then first note that $u \mapsto(\Phi, u)$ is no more a priori a Lyapounov function, and proceeding exactly as in Theorem 4.3 we can show that

$$
\frac{\psi}{\max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)} \leqslant u(t) \leqslant u_{2} \quad \forall t \geqslant 0 .
$$

We distinguish two cases:

Case 1: $a\left(g\left(w_{0}\right)\right) \geqslant a\left(g\left(u_{1}\right)\right)$. Then it holds

$$
\frac{\psi}{a\left(g\left(w_{0}\right)\right)} \leqslant \frac{\psi}{a\left(g\left(u_{1}\right)\right)}=u_{1} .
$$

Thanks to Lemma 4.7 we have

$$
\begin{equation*}
\frac{\psi}{\max _{\phi \in\left[\phi_{1}, \phi_{2}\right]} a(\phi)} \leqslant w \leqslant \frac{\psi}{a\left(g\left(w_{0}\right)\right)} \leqslant u_{1} \quad \forall w \in \omega\left(u_{0}\right) . \tag{4.22}
\end{equation*}
$$

Then, for any $w \in \omega\left(u_{0}\right)$, the function $w(t)=S(t) w$ satisfies

$$
\begin{equation*}
\frac{d}{d t}(w(t), \Phi)=g(\psi)-a(g(w(t)) g(w(t)) \geqslant 0 \quad \forall t \geqslant 0 . \tag{4.23}
\end{equation*}
$$

Define

$$
\mathscr{S}:=\left\{x \in \omega\left(u_{0}\right):(\Phi, x)=\inf _{w \in \omega\left(u_{0}\right)}(w, \Phi)=m\right\}
$$

which is nonempty since $\omega\left(u_{0}\right)$ is weakly compact in $L^{2}(\Omega)$.
For any $x \in \omega\left(u_{0}\right) \backslash \mathscr{S}$, we have thanks to (4.23)

$$
\begin{equation*}
(\Phi, S(t) x) \geqslant(\Phi, x)>m, \quad \forall t \geqslant 0 . \tag{4.24}
\end{equation*}
$$

Assume, by contradiction, that $u_{1} \notin \mathscr{S}$, then for any $x \in \mathscr{S}$ and $t>0$ we have

$$
\begin{aligned}
S(t) x< & u_{1} \Rightarrow g(S(t) x)<g\left(u_{1}\right) \\
& \Rightarrow a(g(S(t) x)) g(S(t) x)<g(\psi) \\
& \Rightarrow(\Phi, S(t) x)>(\Phi, x)=m
\end{aligned}
$$

which contradicts $S(t) \omega\left(u_{0}\right)=\omega\left(u_{0}\right)$. Hence, $u_{1} \in \mathscr{S}$.
Thus, for any $x \in \omega\left(u_{0}\right)$ we have

$$
x \leqslant u_{1} \quad \text { and } \quad(\Phi, x) \geqslant\left(\Phi, u_{1}\right) .
$$

Consequently

$$
x=u_{1} \quad \text { and } \quad \omega\left(u_{0}\right)=\left\{u_{1}\right\} .
$$

The conclusion follows from Lemma 4.5.
Case 2: $a\left(g\left(w_{0}\right)\right)<a\left(g\left(u_{1}\right)\right)$. By Lemma 4.7 and since $g\left(w_{0}\right)>0$ we get

$$
w_{0} \leqslant \frac{\psi}{a\left(g\left(w_{0}\right)\right)}
$$

and hence

$$
a\left(g\left(w_{0}\right)\right) \leqslant \frac{g(\psi)}{g\left(w_{0}\right)}
$$

But, since $a\left(g\left(w_{0}\right)\right)<a\left(g\left(u_{1}\right)\right)$, then we have

$$
g\left(w_{0}\right)=g\left(u_{2}\right)=\phi_{2} .
$$

As $S(t) \omega\left(u_{0}\right)=\omega\left(u_{0}\right)$, then we claim that $u_{2} \in \omega\left(u_{0}\right)$, because otherwise we would have $w \leqslant u_{2}$ and $w \neq u_{2}$. Thus $S(t) w<u_{2}$ for any $t>0$ and then $g(S(t) w)<g\left(u_{2}\right)$. Thus $u_{2} \in \omega\left(u_{0}\right)$.

The rest of the proof consists in proving that u_{2} cannot belong to $\omega\left(u_{0}\right)$ and that case 2 is in fact impossible.

The mapping $t \mapsto\left(\Phi, S(t) u_{0}\right)$ is nonincreasing in a neighborhood t_{1} whenever $g\left(S\left(t_{1}\right) u_{0}\right) \in\left(\phi_{1}, \phi_{2}\right]$ and therefore

$$
\sup _{w \in \mathscr{C}\left(u_{0}\right)}(\Phi, w)=\max \left(\left(\Phi, u_{0}\right), \sup _{\substack{x \in \mathscr{C}\left(u_{0}\right) \\ g(x) \leqslant \phi_{1}}}(\Phi, x)\right)
$$

where $\mathscr{C}\left(u_{0}\right)$ is the weak closure of the trajectory of u_{0} in $L^{2}(\Omega)$.
Now, the set $\mathscr{C}\left(u_{0}\right) \cap\left\{x: g(x) \leqslant \phi_{1}\right\}$ is weakly compact in $L^{2}(\Omega)$, and consequently there exists $x_{*} \in \mathscr{C}\left(u_{0}\right) \cap\left\{x: g(x) \leqslant \phi_{1}\right\}$ such that

$$
\begin{equation*}
\left(\Phi, x_{*}\right)=\sup _{\substack{x \in \mathscr{C}\left(u_{0}\right) \\ g(x) \leqslant \phi_{1}}}(\Phi, x) \tag{4.25}
\end{equation*}
$$

Since $g\left(x_{*}\right) \leqslant \phi_{1}<g\left(u_{2}\right)$, we get $x_{*} \leqslant u_{2}$ and $x_{*} \neq u_{2}$. Thus $\left(\Phi, x_{*}\right)<\left(\Phi, u_{2}\right)$ and by (4.25) we have

$$
\sup _{w \in \mathscr{C}\left(u_{0}\right)}(\Phi, w)<\left(\Phi, u_{2}\right)
$$

and hence

$$
u_{2} \notin \mathscr{C}\left(u_{0}\right) \supset \omega\left(u_{0}\right) .
$$

This completes the proof of the theorem.

References

[1] J. Bebernes, A. Bressan, A. Lacey, Total blow-up versus single-point blow-up, J. Differential Equations 73 (1988) 30-44.
[2] J.R. Cannon, H.-M. Yin, A class of nonlinear on-classical parabolic equations, J. Differential Equations 79 (1989) 266-288.
[3] J.M. Chadam, A. Pierce, H.-M. Yin, The blow-up property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992) 313-328.
[4] R. Dautray, J.-L. Lions, Analyse Mathématique et calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.
[5] K. Deng, M.K. Kwang, H.A. Levine, The influence of nonlocal nonlinearities on the long time behaviour of solutions of Burgers equation, Quart. Appl. Math. 5 (1992) 1237-1245.
[6] J.-S. Guo, H.-W. Su, The blow-up behaviour of the solution of an integrodifferential equation, Differential Integral Equations 5 (1992) 1237-1245.
[7] C.V. Pao, Nonexistence of global solutions for an integrodifferential system in reactor dynamics, SIAM J. Math. Anal. 11 (1980) 559-564.
[8] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998) 1301-1334.
[9] P. Souplet, Uniform blow-up profiles and boundary behaviour for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999) 374-406.
[10] L. Wang, Q. Chen, The asymptotic behaviour of blow-up solution of localized non-linear equation, J. Math. Anal. Appl. 200 (1996) 315-321.
[11] M. Wang, Y. Wang, Properties of positive solutions for nonlocal reaction-diffusion problems, Math. Methods Appl. Sci. 19 (1996) 1141-1156.

[^0]: E-mail address: aassila@math.u-strasbg.fr.

