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67084 Strasbourg, Cedex, France

Received January 12, 2001

Abstract

In this paper we study a nonlocal diffusion problem. The existence is proved using the

Schauder fixed point theorem. The convergence of the solution towards a steady state is

investigated by using the dynamical systems point of view.
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1. Introduction

In this paper, we consider a nonlocal diffusion problem. The main questions we
here address are the global existence, uniqueness of a solution, and the convergence
towards a steady state.

As typical examples of parabolic equations with nonlocal nonlinearities, let us
mention the following:

* Equations with space integral term, of the form

ut � Du ¼ g

Z
O

f ðuðt; yÞÞ dy

� �
: ð1:1Þ
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Some problems involving both local and nonlocal terms, of the type

ut � Du ¼
Z
O

f ðuðt; yÞÞ dy þ hðuðt; xÞÞ: ð1:2Þ

* Equations with localized source, of the form

ut � Du ¼ f ðuðt; x0ðtÞÞÞ: ð1:3Þ

* Equations with space–time integral, of the form

ut � Du ¼ f

Z t

0

Z
O
bðyÞgðuðs; yÞÞ dy ds

� �
: ð1:4Þ

Each equation is considered in a bounded domain with homogeneous Dirichlet
boundary conditions.

Problems of these types arise in various models in physics and engineering have
been studied by a number of authors. To cite just a few, problems of type (1.1) or
(1.2) are related to some ignition models for compressible reactive gases. For
problems of these types and some of their variants, the blow-up of solutions was
studied, among others, by Bebernes et al. [1], Deng et al. [5], Chadam et al. [3], Wang
and Wang [11].

Eq. (1.3) describes physical phenomena where the reaction is driven by the
temperature at a single site. This equation was studied by Cannon and Yin [2],
Chadam et al. [3], Wang and Chen [10], in the case x0ðtÞ ¼ Const:; and by Souplet [8]
for variable x0ðtÞ:

Last, problems of type (1.4) play an important role in the theory of nuclear reactor
dynamics. The blow-up of solutions was studied by Souplet [8], Pao [7] and Guo and
Su [6].

Recently, Souplet [9] determined the rate and profile of blow-up of solutions for
large classes of nonlocal problems of each type above. He proved that the solutions
have global blow-up, and that the blow-up rate is uniform in all compact subsets of
the domain.

In any diffusion process, the diffusion velocity ~vv is given at the point x by the
Fourier law ~vvðxÞ ¼ �aruðxÞ where u is the temperature and a is a constant
depending on the medium where the process is taking place. The assumption a is
constant is, in fact, a first approximation of the reality. For instance, in material
science it is clear that physical constants attached to a material will depend on its
state, its temperature for example. In this paper, we would like to address the case
where the constant a depends on nonlocal quantities. Thus, a could depend on

gðuÞ ¼
Z
O

uðxÞ dx:
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So, let O be a connected bounded Lipschitz open set of Rn: We denote by G the
boundary of O and by fG0;G1g a partition of it. Set

V ¼ H1
G0
ðOÞ ¼ fvAH1ðOÞ: v ¼ 0 on G0g;

and g : V-R; fAV 0; where V 0 denotes the strong dual of V :
Consider the parabolic problem

ut � aðgðuÞÞDu ¼ f in O
 ð0;TÞ;
uð�; tÞAV ; tAð0;TÞ;
uð�; 0Þ ¼ u0AL2ðOÞ:

8><
>: ð1:5Þ

The paper is organized as follows. In Section 2, we prove the existence and
uniqueness of a solution to (1.5). In Section 3, we introduce the steady-state problem,
and in Section 4 we study the convergence of the solution towards a steady state.

2. Existence and uniqueness

Without loss of generality, we can assume that V is equipped with the norm

jjujj2V ¼
Z
O
jruj2 dx

and we denote by /�; �S the V 0 � V duality bracket.
The existence result reads as follows:

Theorem 2.1. Assume that a :R-Rþ is continuous, 0oa0paðxÞpa1 for all xAR and

g : L2ðOÞ-R is continuous. Then for any fAL2ð0;T ;V 0Þ and u0AL2ðOÞ there exists u

with

uAL2ð0;T ;VÞ-Cð½0;T �;L2ðOÞÞ; utAL2ð0;T ;V 0Þ

solution to

d
dt
ðu; vÞ þ aðgðuÞÞ

R
O ru � rv dx ¼ / f ; vS in D0ð0;TÞ; 8vAV ;

uð0Þ ¼ u0:

(
ð2:1Þ

Proof. Let wAL2ð0;T ;L2ðOÞÞ; then thanks to Dautray–Lions [4], the problem

uAL2ð0;T ;VÞ-Cð½0;T �;L2ðOÞÞ; utAL2ð0;T ;V 0Þ;
d
dt
ðu; vÞ þ aðgðwÞÞ

R
O ru � rv dx ¼ / f ; vS in D0ð0;TÞ; 8vAV ;

uð0Þ ¼ u0

8><
>: ð2:2Þ
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has a unique solution. Indeed, the mapping t/gðwð�; tÞÞ is measurable, and hence
the mapping t/aðgðwð�; tÞÞÞ ¼ aðgðwÞÞ is also measurable and belongs to LNð0;TÞ:

Whence, to prove that (2.1) has a solution, it suffices to prove that the mapping

h : L2ð0;T ;L2ðOÞÞ-L2ð0;T ;L2ðOÞÞ;

w/hðwÞ ¼ u

has a fixed point. This will be done with the help of the Schauder fixed point
theorem.

From (2.2) we have for v ¼ u

du

dt
; u


 �
þ aðgðwÞÞ

Z
O
jruj2 dx ¼ / f ; uS; tAð0;TÞ

and consequently

1

2

d

dt
jjujj2 þ a0jjujj2Vpjj f jjV 0 jjujjV ; tAð0;TÞ: ð2:3Þ

Now, since

jj f jjV 0 jjujjVp
1

2a0
jj f jj2V 0 þ

a0

2
jjujj2V ;

we deduce from (2.3) that

1

2

d

dt
jjujj2 þ a0

2
jjujj2Vp

1

2a0
jj f jj2V 0 ; tAð0;TÞ:

Integration over ð0;TÞ yields

1

2
jjujj2 þ a0

2

Z T

0

jjujj2V dtp
1

2
jju0jj2 þ

1

2a0

Z T

0

jjf jj2V 0 dt;

and hence

jjujjL2ð0;T ;VÞ; jjujjL2ð0;T ;L2ðOÞÞpc1; ð2:4Þ

where c140 is a positive constant independent of w:
Since ut � aðgðwÞÞDu ¼ f ; we deduce the existence of a positive constant c240

independent of w such that

jjutjjL2ð0;T ;V 0Þpc2: ð2:5Þ

Hence, h maps B into itself and hðBÞ is relatively compact in B; where we set

B ¼ fwAL2ð0;T ;L2ðOÞÞ: jjujjL2ð0;T ;L2ðOÞÞpc1g:
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To apply the Schauder fixed point theorem, we just need to show that h is
continuous. Let wn be a sequence such that

wn-w in B or L2ð0;T ;L2ðOÞÞ

and un ¼ hðwnÞ:
For a subsequence, still denoted by the same symbol, we have

wnð�; tÞ-wð�; tÞ in L2ðOÞ; tAð0;TÞ

and also

aðgðwnÞÞ-aðgðwÞÞ; tAð0;TÞ: ð2:6Þ

As a consequence of (2.4) and (2.5), there exists ũ such that

un,ũ in L2ð0;T ;VÞ;
un-ũ in L2ð0;T ;L2ðOÞÞ;
ðunÞt,ð̃uÞt in L2ð0;T ;V 0Þ:

8><
>: ð2:7Þ

For every vAV ;jADð0;TÞ; it holds that

�
Z T

0

Z
O

unvj0 dx dt þ
Z T

0

Z
O

aðgðwnÞÞrunrvj dx dt

¼
Z T

0

/ f ; vSj dt: ð2:8Þ

Thanks to (2.6) and to the Lebesgue dominated convergence theorem, we have

aðgðwnÞÞjv-aðgðwÞÞjv in L2ð0;T ;VÞ

and passing to the limit in (2.8) we deduce that for every vAV :

d

dt
ðũ; vÞ þ aðgðwÞÞ

Z
O
rũ rv dx ¼ / f ; vS in D0ð0;TÞ:

Now since

ðunðtÞ; vÞ � ðu0; vÞ ¼
Z T

0

/ðunÞt; vS; tAð0;TÞ; 8vAV ; ð2:9Þ

unðtÞ-ũðtÞ in L2ðOÞ; tAð0;TÞ;

then by passing to the limit in (2.9) we get

ðũðtÞ; vÞ � ðu0; vÞ ¼
Z T

0

/ũt; vS ¼ ðũðtÞ; vÞ � ðũð0Þ; vÞ; tAð0;TÞ; 8vAV
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and consequently

ũð0Þ ¼ u0 and ũ ¼ u:

Thus, un converges toward u in B; which completes the proof. &

Now, we are interested to know whether the solution given in Theorem 2.1 is
unique. We have

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that a and g are

locally Lipschitz continuous, then the solution u is unique.

Proof. If u1; u2 are two solutions, then we have

d

dt
ðu1 � u2Þ � aðgðu1ÞÞDðu1 � u2Þ ¼ �ðaðgðu2ÞÞ � aðgðu1ÞÞÞDu2;

and consequently

d

dt
ðu1 � u2Þ; u1 � u2


 �
þ aðgðu1ÞÞ

Z
O
jrðu1 � u2Þj2 dx

¼ aðgðu2ÞÞ � aðgðu1ÞÞ
Z
O
ru2rðu1 � u2Þ dx:

Since u1; u2ACð½0;T �;L2ðOÞÞ; then there exists a bounded set SCL2ðOÞ such that

u1ðtÞ; u2ðtÞAS; 8tA½0;T �

and thus for some A40

ðgðu1ðtÞÞ; gðu2ðtÞÞÞA½�A;A� 
 ½�A;A�:

As a and g are locally Lipschitz continuous, and if we denote by cðSÞ; cðAÞ the
Lipschitz constants, then we have

1

2

d

dt
jju1 � u2jj2 þ a0jju1 � u2jj2Vp cðAÞcðSÞjju1 � u2jj

Z
O
jru2j jrðu1 � u2Þjdx

p cðAÞcðSÞjju1 � u2jj jju2jjV jju1 � u2jjV :

By Young’s inequality we infer

1

2

d

dt
jju1 � u2jj2 þ a0jju1 � u2jj2Vp

a0

2
jju1 � u2jj2V þ c2ðSÞc2ðAÞjju2jj2V

2a0
jju1 � u2jj2
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which implies that

d

dt
jju1 � u2jj2p

c2ðSÞc2ðAÞjju2jj2V
a0

jju1 � u2jj2

and also

d

dt
exp �

Z t

0

c2ðSÞc2ðAÞjju2jj2V
a0

ds

 !
jju1 � u2jj2

( )
p0:

Since the above function is nonincreasing and vanishes at 0, it vanishes in fact
everywhere. Hence we have uniqueness. &

Remark 2.3. If fALNðRþ;V 0Þ; then we can consider cases where a is not defined on
the whole real line.

Indeed, we have from the proof of Theorem 2.1.

d

dt
jjujj2 þ c3jjujj2p

d

dt
jjujj2 þ a0jjujj2Vp

1

a0
jjf jj2LNðRþ;V 0Þ;

where c340 is a positive constant.
Hence, by integration we obtain

jjujj2pjju0jj2 þ
1

a0c4
jjf jj2LNðRþ;V 0Þ;

c440 is a positive constant. Thus u remains a priori bounded.

3. Steady states

Assume, for simplicity, that f is independent of time, that is fAV 0 the dual of V

and that g is linear. In this section we are interested in finding the weak solutions to
the problem

�DðaðgðuÞÞuÞ ¼ f in O;

uAV :

(
ð3:1Þ

The main result here is

Theorem 3.1. Let að�Þ :R-Rþ: Then, problem (3.1) has as much solutions as the

problem

aðfÞf ¼ gðcÞ in R; ð3:2Þ
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where c is the unique solution of

�Dc ¼ f in O;

cAV :

(
ð3:3Þ

Proof. If u is a solution to (3.1), then we have

�DðaðgðuÞÞuÞ ¼ f in O:

Hence, by (3.3) we get

aðgðuÞÞu ¼ c:

Applying g to both sides yields

aðgðuÞÞgðuÞ ¼ gðcÞ:

This means that gðuÞAR is solution to (3.2).
Now, if f solves (3.2). Then, there exists a unique weak solution to

�aðfÞDu ¼ f in O;

uAV :

(
ð3:4Þ

Since the solution of (3.3) is unique, we have

aðfÞu � c

and then by applying g to both sides we get

aðfÞgðuÞ ¼ gðcÞ ¼ aðfÞf:

Consequently, as a40; we get gðuÞ ¼ f: Going back to (3.4), we obtain that u is
solution to (3.1).

Corollary 3.2. (i) If gðcÞ ¼ 0; then the only solution to (3.1) is u ¼ c
að0Þ:

(ii) If a is a continuous function such that 0oa0paðxÞ for all xAR; then problem

(3.1) admits always a solution.

Proof. (i) If gðcÞ ¼ 0; the only solution to (3.2) is f ¼ 0; and hence the only solution

to (3.1) is u ¼ c
að0Þ:

(ii) The mapping f/aðfÞf has R for range, and thanks to the intermediate value
theorem, there exists always a solution to (3.1).
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If gðcÞ40; then any f such that aðfÞ ¼ gðcÞ
f gives a solution to (3.1). Roughly

speaking, any point at the intersection of the graph of a and the hyperbola f/gðcÞ
f

provides a solution to (3.1). &

4. Convergence results

In this section we assume that a is locally Lipschitz continuous so that by Theorem
2.2 problem (2.1) has a unique weak solution.

We begin by proving two preliminary results.

Lemma 4.1. Let un
0AL2ðOÞ be a sequence such that

un
0,u0 in L2ðOÞ as n-þN: ð4:1Þ

If, un; u are the solutions to (2.1) with initial date un
0; u0; respectively. Then,

unðtÞ,uðtÞ; 8tX0 in L2ðOÞ: ð4:2Þ

Proof. By (4.1), un
0 is bounded in L2ðOÞ and thanks to (2.4) and (2.5) there exists a

positive constant c40 independent of n such that

jjunjjL2ð0;T ;VÞpc;

jjunjjLNð0;T ;L2ðOÞÞpc;

jjun
t jjL2ð0;T ;V 0Þpc:

Consequently, for a subsequence, still denoted by the same symbol, we obtain

un,ũ in L2ð0;T ;VÞ;
un-u in L2ð0;T ;L2ðOÞÞ;
un,ũ in LNð0;T ;L2ðOÞÞ weak-star;

un
t,ũt in L2ð0;T ;V 0Þ:

8>>><
>>>:

ð4:3Þ

For every vAV and jADð0;TÞ we have by definition

�
Z T

0

Z
O

unvj0ðtÞ dx dt þ
Z T

0

Z
O

aðgðunÞÞðrun � rvÞjðtÞ dx dy

¼
Z T

0

/f ; vSjðtÞ dt: ð4:4Þ
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From (4.3) we have for almost every tAð0;TÞ

gðunÞ-gðũÞ in L2ð0;TÞ

and then by the Lebesgue theorem it holds that

aðgðunÞÞjrv-aðgðũÞÞjrv in L2ð0;T ;L2ðOÞÞ

and passing to the limit in (4.4), we get that for every vAV

d

dt
ðũ; vÞ þ aðgðũÞÞ

Z
O
rũ � rv dx ¼ / f ; vS in D0ð0;TÞ:

Now, for every vAV :

ðunðtÞ; vÞ � ðun
0; vÞ ¼

Z t

0

/un
t ; vS dt

for almost every t; and since unðtÞ-ũðtÞ in L2ðOÞ; we obtain

ðũðtÞ; vÞ � ðu0; vÞ ¼
Z t

0

/ũt; vS dt ¼ ðũðtÞ; vÞ � ðũð0Þ; vÞ:

Thus, ũð0Þ ¼ u0 and then ũ ¼ u: Consequently,

un,u in LNð0;T ;L2ðOÞÞ weak-star

and in particular for every vAV

ðunðtÞ; vÞ,ðuðtÞ; vÞ in LNð0;TÞ weak-star:

The sequence of functions ððunðtÞ; vÞÞn is equicontinuous and thus relatively compact

in Cð½0;T �Þ: Indeed, for every t1; t2A½0;T �; t24t1; we have

ðunðt2Þ; vÞ � ðunðt1Þ; vÞ ¼
Z t2

t1

/un
t ; vS dt

p
Z t2

t1

jjun
t jjV 0 jjvjjV

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t1

p
jjvjjV jjun

t jjL2ð0;T ;V 0Þ;

p c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t1

p
:

Hence, we deduce that

ðunðtÞ; vÞ-ðuðtÞ; vÞ in Cð½0;T �Þ; 8vAV :
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Since V is dense in L2ðOÞ and unðtÞ is bounded, then we deduce that

ðunðtÞ; vÞ-ðuðtÞ; vÞ 8vAL2ðOÞ; 8tX0

which completes the proof. &

Proposition 4.2. If að�ÞXa040 is continuous in Rþ; and if w is solution to

wACð½0;T �;L2ðOÞÞ-L2ð0;T ;VÞ; wtAL2ð0;T ;V 0Þ;
wð0Þp0; wð0Þc0;

d
dt
ðw; vÞ þ aðtÞ

R
O rw � rv dxp0 in D0ð0;TÞ; 8vAV ; vX0:

8><
>: ð4:5Þ

Then, we have

wðx; tÞo0 8t40; a:e: xAO: ð4:6Þ

Proof. Let O0 be a smooth subdomain of O large enough so that
R
O0 jvð0Þjdx ¼R

O0 jwð0Þjdx40; where v is the weak solution to

vt � Dv ¼ 0 in O0 
 ð0;T�Þ;
vð0Þ ¼ wð0Þ in O0;

vð�; tÞAH1
0 ðO0Þ 8tAð0;T�Þ:

8><
>:

Thanks to Dautray–Lions [4], we know that for every e40

vACNððe;T�Þ 
 O0Þ

and

vðx; tÞo0; 8ðx; tÞAO0 
 ð0;T��: ð4:7Þ

Next, by the weak maximum principle, we have

wðtÞp0 a:e: in O; 8tX0:

Moreover, setting

%vð�; tÞ ¼ v �;
Z t

0

aðsÞ ds

� �
ð4:8Þ

we have, in a weak sense:

%vt ¼ vt � aðtÞ ¼ aðtÞDv ¼ aðtÞD%v;

%vð0Þ ¼ vð0Þ ¼ wð0ÞjO0 :
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The first above equation holds in O0 
 ð0;TÞ with
R T

0
aðsÞ ds ¼ T�: But T� and thus

T can be chosen arbitrarily, hence by the weak maximum principle we get

wp%v a:e: in O0; 8tA½0;T �:

Hence, (4.6) follows from (4.7) to (4.8). &

Now, we study the asymptotic behavior of the solution u to (2.1). We suppose that
g satisfies

gðvÞX0 8vX0; vAL2ðOÞ;
gc0;

(
ð4:9Þ

and that

fAV 0; / f ; vSX0; 8vX0; vAV ;

fc0:

(
ð4:10Þ

We define f1;f2 as the two intersection points of the graph of a with the graph of the

hyperbola gðcÞ
f : To f1;f2 correspond two stationary points given by

f1 ¼
c

aðf1Þ
of2 ¼

c
aðf2Þ

:

There are two cases to be distinguished:
Case 1:

aðf2ÞpaðfÞpaðf1Þ; 8fA½f1;f2�: ð4:11Þ

In this case, we have two subcases
Subcase 1:

gðcÞ
f

oaðfÞ 8fAðf1;f2Þ; cf : Theorem 4:6: ð4:12Þ

Subcase 2:

gðcÞ
f

¼ aðfÞ 8fAðf1;f2Þ; cf : Theorem 4:8: ð4:13Þ

Case 2:

aðf1ÞpaðfÞogðcÞ
f

; 8fA gðcÞ
maxfA½f1;f2�aðfÞ

;f1

� �
; max

fA½f1;f2�
aðfÞ4aðf1Þ; ð4:14Þ

cf. Theorem 4.9.
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First, we consider case 1, and study the asymptotic behavior of u the solution to
(2.1). We restrict ourselves to the case where

u1pu0pu2 a:e: in O: ð4:15Þ

Theorem 4.3. Assume that (4.9)–(4.11), (4.15) hold. Then, the weak solution u of (2.1)
satisfies

u1puð�; tÞpu2 a:e: in O; 8tX0: ð4:16Þ

Proof. We assume first that u1ou0ou2 a.e. in O; then by (4.9) we have

f1 ¼ gðu1Þogðu0Þogðu2Þ ¼ f2:

We claim that

0ot� :¼ supft40: gðuð�; sÞÞA½f1;f2�; 8sA½0; t�g ¼ þN: ð4:17Þ

Indeed, if this is not the case, and since uACðRþ;L2ðOÞÞ we have

gðuð�; t�ÞÞ ¼ f1 or f2:

Without loss of generality, we assume that gðuð�; t�ÞÞ ¼ f2: Then, for almost every t

we have

du

dt
� aðgðuÞÞDu ¼ f ¼ �aðf2ÞDu2 in L2ð0; t�;V 0Þ

or equivalently,

d

dt
ðu � u2Þ � aðgðuÞÞDðu � u2Þ ¼

aðf2Þ � aðgðuÞÞ
aðf2Þ

� f in L2ð0; t�;V 0Þ:

Since gðuÞA½f1;f2�; we deduce that

d

dt
ðu � u2Þ � aðgðuÞÞDðu � u2Þp0 in V 0; for a:e: tAð0; t�Þ:

Hence, if we set w ¼ u � u2 we get

dw

dt
� aðgðuÞÞDwp0;

wð0Þ ¼ u0 � u2o0
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and then by Proposition 4.2

wðt�Þo0;

which contradicts gðuð�; t�ÞÞ ¼ f2: Thus, t� ¼ þN and

u1ouðtÞou2 a:e: in O; 8tX0:

Now, if u0 satisfies

c
aðf1Þ

¼ u1pu0pu2 ¼
c

aðf2Þ

then as n-þN; it holds that

u1oun
0 ¼ max min u1 þ

c
n

� �
; u0

� �
; u2 �

c
n

� �� �
ou2

and thus if un is the solution to (2.1) with initial data un
0; then for any t

unðtÞAX :¼ fvAL2ðOÞ: u1pvpu2 a:e: in Og:

The set X is closed and convex in L2ðOÞ; and by Lemma 4.1 is also weakly closed and

uðtÞAX ; 8t40:

Proposition 4.4. (i) For u0AX ; we define SðtÞu0 ¼ uðtÞ where uðtÞ ¼ uð�; tÞ denotes the

solution of (2.1). Then ðSðtÞÞtX0 is a dynamical system on X :

(ii) The mapping u/ðF; uÞ is a Lyapounov function on X ; where F is the weak

solution to

�DF ¼ g in O;

FAV :

(

Proof. (i) From Theorem 4.3 we deduce that SðtÞ maps X into X : It is easy to check

that it is a dynamical system thanks to Lemma 4.1 and since uACð½0;T �;L2ðOÞÞ:
(ii) Since gAL2ðOÞCV 0; the problem

�DF ¼ g in O;

FAV

(
ð4:18Þ

has a unique solution, and by (4.8) it satisfies F40 a.e. in O:
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If we choose v ¼ F in (2.1), we get

d

dt
ðF; uÞ þ aðgðuÞÞ

Z
O
ru � rF dx ¼ / f ;FS:

Hence by (4.18) we deduce that

d

dt
ðF; uÞ ¼ gðcÞ � aðgðuÞÞgðuÞ for a:e: tARþ: ð4:19Þ

If we choose u0AX ; then by Theorem 4.3 we obtain

d

dt
ðF; uÞp0

and in the case of (4.12) and (4.13)

d

dt
ðF; uÞ ¼ 0: &

Lemma 4.5. Let u be the weak solution to (2.1). Then, if

gðuðtÞÞ-fi as t-þN; i ¼ 1; 2;

then

uðtÞ-ui in L2ðOÞ; i ¼ 1; 2:

Proof. By definition we have

d

dt
ðu � uiÞ � aðgðuÞÞDu ¼ �aðf1ÞDui in V 0 for a:e tX0

or equivalently

d

dt
ðu � uiÞ � aðgðuÞÞDðu � uiÞ ¼ �ðaðf1Þ � aðgðuÞÞÞDui

in V 0 for a:e tX0:

Hence, when multiplying with u � ui we get

1

2

d

dt
jju � uijj2 þ a0

Z
O
jrðu � uiÞj2 dx

pjaðfiÞ � aðgðuÞÞj
Z
O
jruij jrðu � uiÞj dx:
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Since for every e40 we haveZ
O
jruij jrðu � uiÞj dxp

e
2

Z
O
jrðu � uiÞj2 dx þ 1

2e

Z
O
jruij2 dx

we obtain by choosing e suptX0jaðfiÞ � aðgðuÞÞj ¼ a0 that

1

2

d

dt
jju � uijj2 þ

a0

2

Z
O
jrðu � uiÞj2 dxpc1jaðfiÞ � aðgðuÞÞj

where c140 is a positive constant.
Hence, from the Poincaré inequality we deduce that

ðjju � uijj2Þ0ðtÞ þ c2jju � uijj2ðtÞpc1jaðfiÞ � aðgðuÞÞj

and then integration between t0 and t yields

jju � uijj2ðtÞpjju � uijj2ðt0Þec2ðt0�tÞ þ c1

Z t

t0

jaðfiÞ

� aðgðuÞÞjðsÞec2ðs�tÞ ds:

If e40 is a given positive real, let t0 be such that

jaðfiÞ � aðgðuÞÞjðsÞpc2

c1

e
2

8sXt0;

then for t4t0 we have

jju � uijj2ðtÞp jju � uijj2ðt0Þec2ðt0�tÞ þ c2
e
2

Z t

t0

ec2ðs�tÞ ds

p jju � uijj2ðt0Þec2ðt0�tÞ þ e
2
:

Hence, if t is large enough we get

jju � uijj2ðtÞpe

which completes the proof. &

Theorem 4.6. Assume that (4.11) and (4.12) hold. Then, for u0AX ; u0au2; we have

uðtÞ ¼ SðtÞu0-u1 in L2ðOÞ as t-þN:

Proof. From (4.19) we have

d

dt
ðF; uÞ ¼ gðcÞ � aðgðuÞÞgðuÞp0 ð4:20Þ
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and hence by Theorem 4.3 we get

ðF; uðtÞÞXðF; u1Þ:

Moreover, since by (4.20) the function ðF; uÞ is nonincreasing, there exists c340 such
that

lim
t-þN

ðF; uðtÞÞ ¼ c3 ¼ ðF;wÞ

for any wAoðu0Þ the o-limit set of u0:
From (4.20) and for any wAoðu0Þ we have

d

dt
ðF;SðtÞwÞ ¼ 0 ¼ gðcÞ � aðgðSðtÞwÞÞgðSðtÞwÞ

that is, by the continuity of t/gðSðtÞwÞ; that

gðSðtÞwÞ ¼ f1 for all t or gðSðtÞwÞ ¼ f2 for all t:

Hence,

gðwÞ ¼ f1 or f2 for all wAoðu0Þ:

We have oðu0Þ ¼ o1,o2 where

oi ¼ fwAoðu0Þ: gðwÞ ¼ fig; i ¼ 1; 2:

Consequently, as t-þN; we have

gðuðtÞÞ-f1 or gðuðtÞÞ-f2:

Thus, if gðuðtÞÞ-f2; we have uðtÞ-u2: Since ðF; uðtÞÞ is nonincreasing and F40
this implies that

ðF; uðtÞÞ ¼ ðF; u2Þ 8t:

Since F40 a.e. in O; uðtÞ ¼ u2 for all t which contradicts u0au2: Thus,

gðuðtÞÞ-f1

and Lemma 4.5 permits us to conclude. &

Now, let us turn to the stability if the solution uðtÞ to (2.1) under hypotheses (4.11)

and (4.13). For any fA½f1;f2�; then c
aðfÞ is a stationary point and by (4.19) we have

d

dt
ðF; uÞ ¼ 03ðF; uðtÞÞ ¼ ðF; u0Þ 8tX0:
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Hence, a natural candidate for the limit of uðtÞ is

uN ¼ ðF; u0Þ
ðF;cÞ c:

Since oðu0Þ is compact, then there exists w0Aoðu0Þ such that

aðgðw0ÞÞ ¼ min
wAoðu0Þ

aðgðwÞÞ: ð4:21Þ

First, we need a preliminary result:

Lemma 4.7. For any wAoðu0Þ; it holds that

wp
c

aðgðw0ÞÞ
a:e: in O:

Proof. Let wAo; vðtÞ ¼ SðtÞw: Now

�aðgðw0ÞÞD
c

aðgðw0ÞÞ

� �
¼ �Dc ¼ f

and hence

d

dt
v � c

aðgðw0ÞÞ

� �
� aðgðvÞÞD v � c

aðgðw0ÞÞ

� �

¼ �ðaðgðw0ÞÞ � aðgðvÞÞÞD c
aðgðw0ÞÞ

� �
:

Thus we have, since vAoðu0Þ;�Dð c
aðgðw0ÞÞÞX0:

1

2

d

dt
v � c

aðgðw0ÞÞ

� �þ����
����

����
����
2

þaðgðvÞÞ
Z
O
r v � c

aðgðw0ÞÞ

� �þ����
����
2

dx

¼ ðaðgðw0ÞÞ � aðgðvÞÞÞ �D
c

aðgðw0ÞÞ

� �
; v � c

aðgðw0ÞÞ

� �þ
 �
p0:

There exists a positive constant c340 such that

d

dt
v � c

aðgðw0ÞÞ

� �þ����
����

����
����
2

þc3 v � c
aðgðw0ÞÞ

� �þ����
����

����
����
2

p0
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and hence

SðtÞw � c
aðgðw0ÞÞ

� �þ����
����

����
����
2

p e�c3t w � c
aðgðw0ÞÞ

� �þ����
����

����
����
2

p c4e
�c3t:

For any zAoðu0Þ; we can write it as z ¼ SðtÞw; and hence

z � c
aðgðw0ÞÞ

� �þ
¼ 0 8zAoðu0Þ:

Hence, the proof is by now complete. &

Theorem 4.8. Assume that (4.11) and (4.13) hold. Then, for u0AX ; we have

uðtÞ-uN in L2ðOÞ:

Proof. Assume, by contradiction, that c
aðgðw0ÞÞ4uN:

Let wAoðu0Þ and set wðtÞ ¼ SðtÞw; then we have

ðF;wÞ ¼ ðF; u0Þ ¼ ðF; uNÞo F;
c

aðgðw0ÞÞ

� �
:

Since aðgðwÞÞXaðgðw0ÞÞ; then we get

d

dt
w � c

aðgðw0ÞÞ

� �
� aðgðwÞÞD w � c

aðgðw0ÞÞ

� �
p0;

w � c
aðgðw0ÞÞ

� �
ð0Þp0;

w � c
aðgðw0ÞÞ

� �
ð0Þc0:

For any wAoðu0Þ; by Theorem 4.3 we have

wðtÞ � c
aðgðw0ÞÞ

o0 8t40:

Since SðtÞoðu0Þ ¼ oðu0Þ; it follows that

gðwÞog
c

aðgðw0ÞÞ

� �
8wAoðu0Þ
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which contradicts

g
c

aðgðw0ÞÞ

� �
¼ gðcÞ

aðgðw0ÞÞ
¼ gðw0Þ

and proves that c
aðgðw0ÞÞpuN:

Thus, for any wAoðu0Þ it holds

wp
c

aðgðw0ÞÞ
puN:

Since ðF;wÞ ¼ ðF; uNÞ this imposes w ¼ uN for all wAoðu0Þ; i.e., oðu0Þ ¼ fuNg:
Thus

uðtÞ,uN in L2ðOÞ;

aðgðuðtÞÞ-aðgðuNÞÞ;

which, by the help of Lemma 4.5, proves the theorem. &

Now, we study case (4.14). The result of convergence is

Theorem 4.9. Under hypothesis (4.14), for

c
maxfA½f1;f2�aðfÞ

pu0pu2; u0au2;

we have

lim
t-þN

uðtÞ ¼ u1 in L2ðOÞ:

Proof. Let

X ¼ vAL2ðOÞ: c
maxfA½f1;f2�aðfÞ

pvpu2

� �
;

then first note that u/ðF; uÞ is no more a priori a Lyapounov function, and
proceeding exactly as in Theorem 4.3 we can show that

c
maxfA½f1;f2�aðfÞ

puðtÞpu2 8tX0:

We distinguish two cases:
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Case 1: aðgðw0ÞÞXaðgðu1ÞÞ: Then it holds

c
aðgðw0ÞÞ

p
c

aðgðu1ÞÞ
¼ u1:

Thanks to Lemma 4.7 we have

c
maxfA½f1;f2�aðfÞ

pwp
c

aðgðw0ÞÞ
pu1 8wAoðu0Þ: ð4:22Þ

Then, for any wAoðu0Þ; the function wðtÞ ¼ SðtÞw satisfies

d

dt
ðwðtÞ;FÞ ¼ gðcÞ � aðgðwðtÞÞgðwðtÞÞX0 8tX0: ð4:23Þ

Define

S :¼ xAoðu0Þ: ðF; xÞ ¼ inf
wAoðu0Þ

ðw;FÞ ¼ m

� �

which is nonempty since oðu0Þ is weakly compact in L2ðOÞ:
For any xAoðu0Þ\S; we have thanks to (4.23)

ðF;SðtÞxÞXðF; xÞ4m; 8tX0: ð4:24Þ

Assume, by contradiction, that u1eS; then for any xAS and t40 we have

SðtÞxou1 ) gðSðtÞxÞogðu1Þ

) aðgðSðtÞxÞÞgðSðtÞxÞogðcÞ

) ðF;SðtÞxÞ4ðF; xÞ ¼ m

which contradicts SðtÞoðu0Þ ¼ oðu0Þ: Hence, u1AS:
Thus, for any xAoðu0Þ we have

xpu1 and ðF; xÞXðF; u1Þ:

Consequently

x ¼ u1 and oðu0Þ ¼ fu1g:

The conclusion follows from Lemma 4.5.
Case 2: aðgðw0ÞÞoaðgðu1ÞÞ: By Lemma 4.7 and since gðw0Þ40 we get

w0p
c

aðgðw0ÞÞ
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and hence

aðgðw0ÞÞp
gðcÞ
gðw0Þ

:

But, since aðgðw0ÞÞoaðgðu1ÞÞ; then we have

gðw0Þ ¼ gðu2Þ ¼ f2:

As SðtÞoðu0Þ ¼ oðu0Þ; then we claim that u2Aoðu0Þ; because otherwise we would
have wpu2 and wau2: Thus SðtÞwou2 for any t40 and then gðSðtÞwÞogðu2Þ: Thus
u2Aoðu0Þ:

The rest of the proof consists in proving that u2 cannot belong to oðu0Þ and that
case 2 is in fact impossible.

The mapping t/ðF;SðtÞu0Þ is nonincreasing in a neighborhood t1 whenever
gðSðt1Þu0ÞAðf1;f2� and therefore

sup
wACðu0Þ

ðF;wÞ ¼ max ðF; u0Þ; sup
xACðu0Þ
gðxÞpf1

ðF; xÞ

0
B@

1
CA;

where Cðu0Þ is the weak closure of the trajectory of u0 in L2ðOÞ:
Now, the set Cðu0Þ-fx : gðxÞpf1g is weakly compact in L2ðOÞ; and consequently

there exists x�ACðu0Þ-fx: gðxÞpf1g such that

ðF; x�Þ ¼ sup
xACðu0Þ
gðxÞpf1

ðF; xÞ: ð4:25Þ

Since gðx�Þpf1ogðu2Þ; we get x�pu2 and x�au2: Thus ðF; x�ÞoðF; u2Þ and by
(4.25) we have

sup
wACðu0Þ

ðF;wÞoðF; u2Þ

and hence

u2eCðu0Þ*oðu0Þ:

This completes the proof of the theorem. &
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