*Preprint*

**Inserted:** 23 jan 2019

**Last Updated:** 18 apr 2019

**Year:** 2019

**Abstract:**

Following a Mazâ€™ya-type approach, we re-adapt the theory of rough traces of BV functions in the context of doubling metric measure spaces supporting a PoincarĂ© inequality. This eventually allows for an integration by parts formula involving indeed the rough trace of such a function. We then compare our analysis with the discussion done in a recent work by P. Lahti and N. Shanmugalingam, where traces of BV functions are studied by means of the more classical Lebesgue-point characterization, and we determine the conditions under which the two notions coincide.

**Download:**