*Preprint*

**Inserted:** 6 jan 2019

**Last Updated:** 7 jan 2019

**Year:** 2019

**Abstract:**

In this paper we estimate from above the area of the graph of a singular map $u$ taking a disk to three vectors, the vertices of a triangle, and jumping along three $\C^2-$ embedded curves that meet transversely at only one point of the disk. We show that the relaxed area can be estimated from above by the solution of a Plateau-type problem involving three entangled nonparametric area-minimizing surfaces. The idea is to ``fill the hole'' in the graph of the singular map with a sequence of approximating smooth two-codimensional surfaces of graph-type, by imagining three minimal surfaces, placed vertically over the jump of $u$, coupled together via a triple point in the target triangle. Such a construction depends on the choice of a target triple point, and on a connection passing through it, which dictate the boundary condition for the three minimal surfaces. We show that the singular part of the relaxed area of $u$ cannot be larger than what we obtain by minimizing over all possible target triple points and all corresponding connections.

**Download:**