*Submitted Paper*

**Inserted:** 14 apr 2016

**Last Updated:** 14 apr 2016

**Year:** 2016

**Abstract:**

We consider the optimization problem for a shape cost functional $F(\Omega,f)$ which depends on a domain $\Omega$ varying in a suitable admissible class and on a ``right-hand side'' $f$. More precisely, the cost functional $F$ is given by an integral which involves the solution $u$ of an elliptic PDE in $\Omega$ with right-hand side $f$; the boundary conditions considered are of the Dirichlet type. When the function $f$ is only known up to some degree of uncertainty, our goal is to obtain the existence of an optimal shape in the worst possible situation. Some numerical simulations are provided, showing the difference in the optimal shape between the case when $f$ is perfectly known and the case when only the worst situation is optimized.

**Keywords:**
shape optimization, Dirichlet energy, worst-case optimization

**Download:**