Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

S. Chen - A. Figalli

Boundary \epsilon-regularity in optimal transportation

created by figalli on 12 Dec 2014
modified on 13 Dec 2014

[BibTeX]

Accepted Paper

Inserted: 12 dec 2014
Last Updated: 13 dec 2014

Journal: Adv. Math.
Year: 2014

Abstract:

We develop an $\epsilon$-regularity theory at the boundary for a general class of Monge-Amp\`ere type equations arising in optimal transportation. As a corollary we deduce that optimal transport maps between H\"older densities supported on $C^2$ uniformly convex domains are $C^{1,\alpha}$ up to the boundary, provided that the cost function is a sufficient small perturbation of the quadratic cost $-x\cdot y$.


Download:

Credits | Cookie policy | HTML 4.0.1 strict | CSS 2.1