Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

D. Bucur - D. Mazzoleni - A. Pratelli - B. Velichkov

Lipschitz regularity of the eigenfunctions on optimal domains

created by velichkov on 12 Dec 2013
modified on 27 Sep 2015

[BibTeX]

Published Paper

Inserted: 12 dec 2013
Last Updated: 27 sep 2015

Journal: ARMA
Year: 2014
Doi: 10.1007/s00205-014-0801-6
Links: Link to journal

Abstract:

We study the optimal sets $\Omega^\ast\subset\mathbb{R}^d$ for spectral functionals $F\big(\lambda_1(\Omega),\dots,\lambda_p(\Omega)\big)$, which are bi-Lipschitz with respect to each of the eigenvalues $\lambda_1(\Omega),\dots,\lambda_p(\Omega)$ of the Dirichlet Laplacian on $\Omega$, a prototype being the problem

$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \min{\big\{\lambda_1(\Omega)+\dots+ \lambda_p(\Omega)\;:\;\Omega\subset\mathbb{R}^d,\
\Omega
=1\big\}}. $

We prove the Lipschitz regularity of the eigenfunctions $u_1,\dots,u_p$ of the Dirichlet Laplacian on the optimal set $\Omega^*$ and, as a corollary, we deduce that $\Omega^*$ is open.

For functionals depending only on a generic subset of the spectrum, as for example $\lambda_k(\Omega)$ or $\lambda_{k_1}(\Omega)+\dots+\lambda_{k_p}(\Omega)$ , our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.


Download:

Credits | Cookie policy | HTML 4.0.1 strict | CSS 2.1