*Accepted Paper*

**Inserted:** 19 nov 2013

**Last Updated:** 25 nov 2013

**Journal:** Evolution Equations and Control Theory (EECT)

**Year:** 2013

**Abstract:**

We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to maps $u:\Omega \subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ in $W^{1,n}(\Omega ;\mathbb{R}^{m})$ with $n\geq m\geq 2$, with respect to the weak $W^{1,p}$-convergence for $p>m-1$, without assuming any coercivity condition.

**Download:**