Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

F. Charro - G. De Philippis - A. Di Castro - D. Maximo

On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian

created by dephilipp on 29 Jul 2011
modified on 25 Sep 2012

[BibTeX]

Accepted Paper

Inserted: 29 jul 2011
Last Updated: 25 sep 2012

Journal: Calc. Var. Partial Differential Equations
Year: 2011

Abstract:

We prove $L^\infty$ bounds and estimates of the modulus of continuity of solutions to the Poisson problem for the normalized infinity and $p$-Laplacian. We are able to provide a stable family of results depending continuously on the parameter $p$. We also prove the failure of the classical Alexandrov-Bakelman-Pucci estimate for the normalized infinity Laplacian and propose alternate estimates.

Keywords: Infinity Laplacian, A priori estimates, Maximum Principle


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1