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CLASSICAL GAUSS-GREEN FORMULA

THEOREM

Let E C Q be an open regular set; that is, int(E) =E and OE is a Ct
(n — 1)-manifold in Q. Then V¢ € C(Q;R")

/divqbdx =— [ ¢-vpedw#"t,
E eJ3

where vg is the interior unit normal to OE.
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BY THEORY

e u:Q CR"—Ris a function of bounded variation in Q, u € BV(Q), if
u € L1(Q) and the distributional gradient Du is a finite Radon measure; that
is, a vector valued Borel measure with finite total variation on €.

e A set E of (locally) finite perimeter in Q is a set whose characteristic
function xg is a (locally) BV function in Q. By the polar decomposition of
Radon measures, Dxg = vg|Dxg|, for some Borel function vg with norm 1
|DxE|-a.e.

@ Relevant subsets of the topological boundary of E:

o the reduced boundary, (De Giorgi)

O"E :={x € Q:3lim_o % = vg(x) € S}, on which the unit
vector v is well defined and called measure theoretic interior unit normal,
since we have the blow-up property (E — x)/r — {(y — x) - ve > 0} =: H,/_(x)
in measure as r — 0 for any x € 9*E;

o the measure theoretic boundary, (Federer) 0™E := Q\ (E° U E'), where
E?:={x € R": lim,,o BG5Sl = d}, which satisfies 9E 5 0" E and
A""HO™E \ 0*E) = 0. Hence, we can integrate on 9™E or 8" E with respect
to 2" ! indifferently.

o |Dxg| = s#""1L_O*E (De Giorgi's theorem).
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(GAUSS-GREEN FORMULA FOR SETS OF FINITE

PERIMETER

We just need to apply the definition of distributional derivative

/XEdiV¢dX:—/¢~dDXE:—/¢-UEd|DXE|
Q Q Q

and then De Giorgi's theorem.

THEOREM (De Giorgi and Federer)

Let E C Q be a set of locally finite perimeter. Then V¢ € CX(Q;R")

/ divg dx = — ¢-vedA#"L
E o*E

@ Aim: to weaken the regularity hypotheses on the vector fields.

e Strategy: to characterize the divergence in a weak sense (as a Radon

measure) and the trace as an approximate limit or the density of a Radon
measure.
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FINE PROPERTIES OF BV FUNCTIONS

Important properties of BV functions:
o if uc BV(Q), then |Du| < "1

@ precise representative: any BV function u admits a representative u™* well
defined 7#"~1-a.e. which satisfies u*(x) = lim._,o(u * pc)(x) 5" 1-a.e. for
any mollification of u. In particular, if E is a set of finite perimeter,

N 1
XE = Xer + EXB*E;

o if u e BV(Q) and supp(u) € Q, then Du(Q2) = 0;
o Leibniz rule: if u,v € BV(Q) N L>(Q), then uv € BV(Q2) N L>(Q) and

D(uv) = u*Dv + v*Du.
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GAUSS-GREEN FORMULA FOR BV VECTOR FIELDS

THEOREM (Vol’'pert)
Let u € BV(; R") N L>®°(Q; R") and E € Q2 be a set of finite perimeter, then

/ d div(v) = divu(E') = —/ Uy, - ve dH"L
El *E

/ d div(u) = diva(EL U 9°E) = — / Uy Ve dHTT,
E1U0*E E

where E is the measure theoretic interior of E and u.,, are respectively the
interior and the exterior trace; that is, the approximate limits of u in #" *-a.e.
x € O*E restricted to HE (x) := {y € R": (y — x) - (£ve(x)) = 0}.

The boundedness assumption on u can be removed, if we assume
Ui, € LYO*E, "~ 1), as shown by Maz'ya and Ambrosio-Fusco-Pallara.
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DIVERGENCE-MEASURE FIELDS: DEFINITION

o A vector field F € LP(;R"),1 < p < oo is said to be a divergence-measure
field, and we write F € DMP(Q), if divF is a finite Radon measure on €.

o A vector field F is a locally divergence-measure field, and we write
F € DM}, (), if F € DMP(W) for any open set W € Q.
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BRIEF HISTORY

Anzellotti (1983) was the first to study divergence-measure fields, even though he
considered the special case p = co. Then, these new function spaces were
introduced in the early 2000s by many authors for different purposes.

@ Chen and Frid were interested in the applications to the theory of systems of
conservation laws with the Lax entropy condition and obtained a Gauss-Green
formula for divergence-measure fields on open bounded sets with Lipschitz
deformable boundary. Later, Chen, Torres and Ziemer extended this result to
sets of finite perimeter in the case p = oco.

@ Degiovanni, Marzocchi, Musesti, §i|hav§/ and Schuricht wanted to prove the
existence of a normal trace under weak regularity hypotheses, in order to
achieve a representation formula for Cauchy fluxes, contact interactions and
forces in the context of continuum mechanics.

@ Ambrosio, Crippa and Maniglia studied a class of these vector fields induced
by functions of bounded deformation, with the aim of extending
theDiPerna-Lions theory of the transport equation.
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A FEW RECENT APPLICATIONS

@ Phuc-Torres studied the existence of solutions to
divF = p,

finding sufficient and necessary condition for a nonnegative measure p on R”
in the case F € LP(R";R") and F continuous, and for a signed Radon
measure in the case p = oco; moreover, this problem is also related to the
characterization of the dual of the space BV.

@ Frid unified the theory of Chen-Frid and Silhavy for extended
divergence-measure fields and showed well-posedness of entropy solutions to
conservation laws with suitable boundary conditions.

@ Schuricht, Kawohl, Scheven, Schmidt and many others rediscovered the
techniques of Anzellotti, and applied the theory of divergence-measure fields
to the study of 1-Laplace and minimal surface type equations, looking for
super and subsolutions and dual formulations.
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COMPARISON WITH BV/(Q; R") AND ABSOLUTE

CONTINUITY

o BV(Q; RN LP(Q;R™) C DMP(Q). Indeed if F = (Fq,...,F,) € LP(Q; R")
with F; € BV(Q) for j = 1,...n, then it is clear that D;F; are finite Radon
measures for each i, and so divF = Zj'f':l D;F; is also a finite Radon
measure.

@ The condition divF = p, with u Radon measure, allows for cancellations;
hence, for n > 2, the inclusion is strict. For example (Chen-Frid, 1999),

Fle) =sin (2 ) .)

satisfies
F € DM™(R?)\ BVioc(R?; R?).
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ABSOLUTE CONTINUITY AND LEIBNIZ RULE

o (Silahvy, 2005, Chen-Torres-Ziemer, 2009, and Phuc-Torres, 2008)
If n>2and F e DM} (Q) for L5 < p < oo, then we have
|divF| <« 5£"~9, where q := ﬁ is the conjugate exponent of p.
This result is sharp if 1 < p < 27, then for any arbitrary signed Radon
measure i with compact support inside Q there exists F € DM? () such
that divF = p. On the other hand, if -5 < p < oo, then for any s>n—gq
there exists a field F € DM} (Q) such that |divF]| is not J#° absolutely
continuous.
Therefore, if F € DM>(Q), then |divF| < 571,

o (Chen-Frid, 1999) If g € BV(Q) N L*>(Q) and F € DM>(Q), we have
gF € DM>(Q) and

div(gF) = g*divF + F - Dg,

where g* is the precise representative of g and F - Dg is the weak-star limit
of F-V(g*ps)as § — 0, which satisfies |F - Dg| < |Dg|. Hence, it is in
particular possible to use this formula in the case g = xg with E € Q of
finite perimeter.
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ANZELLOTTI’S FIRST INVESTIGATIONS

Anzellotti (1983) was the first to define the space DM (), which he denoted by
X,,(Q). He considered the pairing between F and u € W1(Q) N L>(Q) N C°(Q)
(which we now call normal trace functional on the Lipschitz boundary 0Q):

(F, u)oq ::/uddivF—i—/F-Vudx
Q Q

THEOREM (ANZELLOTTI, 1983)

Let Q be a bounded open set with Lipschitz boundary, F € DM>(Q) and
u€ BV(Q)NL®(Q)N COQ). Then (F,-)sq is a Radon measure on 02,
satisfying (F,-Yoq = [F - vQ] 2" "L 0Q. In addition, there exists a suitable
Radon measure (F, Du) such that the following Gauss-Green formula holds:

/uddivF+/ d(F,Du):—/ ulF -vq]d#" 1,
Q Q o0

with (F, Du) = F - Vudx if u € WHH(Q).
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CHEN-FRID: LIPSCHITZ DEFORMABLE BOUNDARIES

DEFINITION

Let Q be an open set in R". We say that 9L is a deformable Lipschitz boundary if
Q has Lipschitz boundary and there exists a Lipschitz deformation of the
boundary; that is, a map W : 9Q x [0,1] — Q such that W is a bi-Lipschitz
homeomorphism onto its image and W(-,0) = Id on 9Q. We define

00 := V(02 x {s}),s € [0,1] and we set Qs to be the open subset of Q whose
boundary is 0€2s.

The Lipschitz deformation is regular if

lim J22W, =1 in [}0Q; 7" 1),
T7—01

where W (x) = W(x, 7).
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CHEN-FRID: THE GAUSS-GREEN FORMULA ON
LIPSCHITZ DEFORMABLE OPEN SETS

THEOREM (CHEN-FRID, 1999, 2003)

Let F € DMP(Q) and Q be a bounded open set with deformable Lipschitz
boundary with deformation W. Then, for any ¢ € Lip(Q2) N L>°(Q2), we have

s—0

/¢ddivF+/F-V¢dx:—ess|im/ ng-I/Qsdz%”"*l
Q Q 9.

s—0

= —esslim [ (¢F - vq,) oV, SO, do" L,
o0

If p = oo and the deformation is regular, then the functional normal trace is
represented by a function F; - vq € L>(09; 7#"~1) such that
||./T", . I/QHLoo(aQ;d%n—l) < ||F||LOO(Q;]Rn) and, for any ¢ € Lip(aﬂ),

esslim/ (F-st)o\Ils¢dj‘f”_1:/ (Fi-va) pdr™ 1. (1)
o0 o0

s—0

vy
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SILHAVY: CLASSIFICATION OF THE NORMAL TRACE
FUNCTIONALS

THEOREM (SILHAVY, 2005)

Let F € DM} (R") and E be a set of finite perimeter, then there exists a linear
functional NE(F,-) : Lip.(0*E) — R such that

NE(F, ¢lo-g) = ddivF F-V¢d
(F.dlore) = [ oddnF+ [ F-Vos. )

for any ¢ € Lip (R").
If F is weakly dominated on O*E; that is,

lim inf/ / |F(y) - ve(x)| dy d#""(x) < oo, then NE(F,-) is a measure
*E J B(x,r)

r—0

supported on O*E.
If F € DM>(R"), then NE(F,¢|o-g) = — [,z & (Fi - ve) A"~ for some
function (F; - vg) € L®°(0*E; #"~1). Also, for " 1-a.e. x € O*E, we have

55 ) = g —> /B Fly). 27X g,

r=0 Wn—1r" JB(x,nNH_(x) ly — x|
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DEGIOVANNI-MARZOCCHI-MUSESTI AND SCHURICHT:

FAMILIES OF ADMISSIBLE SETS OF FINITE PERIMETER

For the purpose of applications to the foundations of continuum mechanics, some
more conditions are imposed on the admissible sets of finite perimeter: given
F € DMJ,.(£2), we consider sets of finite perimeter E such that

|divF|(8*E) =0 and hd#"! < . (3)
o*E

where h € L] () is a nonnegative function such that one can extract a
subsequence {Fy }xen of the canonical mollification Fy := F * p., of
F € L}, .(Q;R") satisfying *

F. — F in L (;R") 4)
Fi(x) = F(x) for each x € Q such that h(x) < 400 (5)
|Fi(x)| < h(x) for each x € Q and k € N. (6)

'Here and below we will still denote by F the particular representative which is the limit of
the sequence Fy in the sense (5).
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THE GAUSS-GREEN FORMULA IN DML . FOR AN
ADMISSIBLE SET OF FINITE PERIMETER

THEOREM (DEGIOVANNI-MARZOCCHI-MUSESTI, 1999,
SCHURICHT, 2007)

Given F € DML (), E a set of finite perimeter admissible for F and

loc

¢ € Lipy,.(Q) such that xg¢ has compact support in L, we have

/ qudivF:—/ qu-uEd%”‘l—/F-V(bdx.
E?l O*E 5

As a consequence, Schuricht (2007) proved the following Leibniz formula for xg
and the particular representation of F described in (5):

div(xeF) = gedivF + F - ve " L O*E,

where gg € L>°(Q; |divF]|) satisfies 0 < g¢ < 1 and ge(x) = x£(x) at each x for
which the Lebesgue density exists.

In addition, C.-Payne (2017) showed that, if F € DM2 (2) and E is admissible,
by passing to the limit in the boundary terms thanks to (5) and (6) we obtain
Fi-ve=Fo-vg=F -vg #" -ae. on O*E.
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SMOOTH APPROXIMATION OF SETS OF FINITE

PERIMETER

For any bounded set E of finite perimeter in R", we consider the mollification of
its characteristic function uy := xg * pe, and, for any t € (0,1), we define

Akt = {ug > t}.
By Sard's theorem, OA.; is smooth for Z!-a.e. t and for any k; and clearly
|[EAAg:| — 0
as k — 4o0. It is also well known that
A" HOAKt) — A"HOTE)

for #1-ae. t € (0,1) (Ambrosio-Fusco-Pallara, 2000, Maggi, 2012).
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ONE-SIDED INTERIOR AND EXTERIOR
APPROXIMATION OF SETS OF FINITE PERIMETER

THEOREM (Chen-Torres-Ziemer, 2009, C.-Torres, 2017)

Let y1 be a Radon measure such that yu << #"~*. Then:

(@) [Ll(E*AAk:) =0, for k <t <1;

(b) |ul((E*UO*E)AAk:) — 0, for 0 < t < 3.

In addition, there exists a sequence € converging to O such that

lim 2" Y (0A: \ EY) =0

k—+o00

for #'-ae. t € (3,1), and

lim " Y(0Ak: \ E®) =0

k—+o0

for £*-a.e. t € (0,3).

(7)

(8)
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SKETCH OF THE PROOF

Points (a) and (b) follow from the fact that ux(x) — xk(x) " '-a.e., and so
uk — x5 in LY(R", |u|). Then, for any £ > 0, there exists k large enough such that

e > |Juk — XEl e,y = min{t — 1/2,1 — t}u|(E' AAx,),

for any t € (1/2,1). For 0 < t < 1/2, we argue similarly.
As for the second part, we use the coarea formula and the properties of
convolution to show that

/ A g (5)\ Y ds = /

Var b < [ () d"
Ak;t\El O*E

and then, by a blow-up procedure, we prove that

lim  ux(x +exz) =: v(x,z) < = for any x € O*E and z € H,_(x), and
k—+o00 2 £

(e xae)) = | 0 A X010 (2) o 2)

Since t > 1/2, we can conclude. The case 0 < t < 1/2 is treated analogously.
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GAUSS-GREEN FORMULA FOR DMS. FIELDS ON
BOUNDED SETS OF FINITE PERIMETER

THEOREM (CHEN-TORRES-ZIEMER, 2009)

Let F € DM{S.(Q) and E € Q be a set of finite perimeter.

Then there exists interior and exterior normal traces (F; - vg), (Fe - vg) of F such
that:

o [ daivr- —/ (F - ve)(x) dA"1(x);

Q (2F Vu)xe = (F; - ve) A" *LO*E in M(Q);
Q || Fi - velle(a-Eioen—1y < ||Flloe(e)-

° A = — / (Fo - ve)(x) dA#"1(x);
E'UO*E
Q@ (2F- Vuk)XQ\E (Fe - ve)H#"~1LO*E in M(Q);

Q || Fe - vell=(og:7n-1) < |Flle(a\£)-
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SKETCH OF THE PROOF (1)

The proof relies on the smooth interior (resp. exterior) approximation of E and on
the following lemma.

LEMMA (CHEN-TORRES-ZIEMER, 2009)
Let F € DM{S.(Q2), Fe be a mollification of F and E € Q be a set of finite
perimeter. Then, if in addition we assume that
Q@ F. > F s#"ae ondE,
Q |divF|(0*E) =0
then

divF(Elua*E):divF(El):—/ F-vgdsmt.
*E

For #'-ae. t € (0,1), we have that DAy, is smooth, |divF|(OAk:) = 0 and
F. — F 2#"l-a.e. (this is a consequence of the co-area formula).
Hence, for such t we define the Radon measure

okt(B) ::/B oa F-va,, ds#" 1
NOAK;t
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SKETCH OF THE PROOF (2)

By the lemma, we have divF(Ak.;) = —0k.+(Q) for any k and £*-ae. t.

We know that, since |divF| < "1, then divF(Ak.) — divF(E!) for #'-a.e.
t € (3,1); and divF(Ax:) = divF(E' U*E) for L -ae. t € (0,1).

Hence, the weak limit of o.;, which exists for .#*-a.e. t, up to subsequences,
must be independent of t € (1/2,1) or (0,1/2); thus there exists two signed
measures o;, 0 such that oy A g for Ll-ae. 1/2 <t <1, and ot X g, for
Llae 0<t<1/2.

Then, one shows that |o;| < |Dxe| and limy_s oo |0kt |(E® UD*E) = 0 for
Ltae 1/2 <t <1, and analogously |o.| < |Dxg| and

limk—s 100 [kt |(Q\ E?) = 0 for £Lt-ae. 0 <t <1/2. Allin all, we have

divF(E') = —0,(0*E),
divF(E* UJ*E) = —0.(0*E),

and Radon-Nikodym theorem allows us to conclude. The estimates follows from
Lebesgue's differentiation theorem. As for the limits, they follow from the identity

1
/ F-Vucdx = / / F.va, d#" " dt.
E 0 JENOAL: '
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JUMP COMPONENT OF THE DIVERGENCE

@ We have the following representation formula for the jump component of the
divergence of F; that is, for any set of finite perimeter E € Q we have

Xo-edivF = (Fi - ve — Fe-vg) A" 1LO*E
in the sense of Radon measures on Q. Hence, we obtain also
\divF|(9"E) :/ \Fs - ve — Fo - ve| dotn
o*E
and, for any Borel set B C 0*E,
divF(B) = /(]:, Vg — Fe-vE)da" L.
B

e If F is continuous, interior and exterior normal traces coincide on 0*E as
functions in L°(9*E; 7"~ 1), and they admit a representative which is the
classical scalar product F - vg. Therefore, the divergence of a continuous
vector field does not have jump component (|divF|(0*E) = 0).
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INTEGRATION BY PARTS FORMULAS

THEOREM (CHEN-TORRES-ZIEMER, 2009, C.-PAYNE, 2017)

Let F € DM{S.(2) and let E C Q be a set of locally finite perimeter. Then, there
are well defined interior and exterior normal traces of F on O*E satisfying
(Fi - ve), (Fe - vE) € L2 (O*E; 7"~ 1) such that for any ¢ € Lip (Q) we have

loc

/ ¢ ddivF = — O(F; - ve) do#" —/ F.V¢dx (9)
El O*E E

and

/ ¢ddivF = — | ¢(F.-ve)doa"? —/ F-Vedx.  (10)
E'UO*E O*E E

In addition, for any compact K and open set U such that K C U CC £ one has
the estimates

| Fi - vEl| oo (0 Eynk:oen—1) < Il (Enurn (11)
and
|| Fe - VEll o= (9 E)nk;oen—1y < IF Lo ((@\E)nUiRe)- (12)

4
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AMBROSIO-CRIPPA-MANIGLIA: FOLIATION RESULTS

In general, if F € DM (Q), Fi-ve # F-ve and Fo-vg # F-vg A" -ae., for
a set of finite perimeter E C €.

However, roughly speaking, the normal traces coincide with the classical one on
almost every surface. Let | C R be an open interval and let {¥;};c; be a family of
oriented hypersurfaces in Q such that there exists Q' € Q, ® € C}(?’) and a
family of open set Q; € ', t € [, with ®(Q') = I, {® =t} = £, = 9Q; for any
te VP >0in Q and X, is oriented by V& /|V®|. Then, we have

Fi-vg, =Fe-vo, =F - vq, " ae. on Xy, for Llae tel.
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NORMAL TRACES AND ORIENTATION OF THE

REDUCED BOUNDARY

By generalizing an argument developed by Ambrosio-Crippa-Maniglia in the case
of open bounded sets with C! boundary, we find that the normal traces are
determined by 9*E and its orientation.

PROPOSITION (C.-PAYNE)

Let F € DM{S.(Q) and let Eq, E; be sets of locally finite perimeter in Q such that
A" Y(0*Ey N O*Ey) # 0. Then one has

Fi-ve =Fi-vg, and  Fe-ve = Fe- VK (13)
for #" '-ae. x e {y € 0*E1NO*E; : vg, (v) = vg,(y)} and
Fi-vep=—Fe-vg, and Fe-vg =—Fi Vg (14)

for #" lae x€{y € 0*ELNI*E : vg (y) = —vg(y)}-

In the case E; = E and E; = Q\ E, we obtain F; - vg = —F, - vg\g and
Fe-ve=—Fi-vo\E-
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(GLUING AND EXTENSION THEOREMS

As a consequence of the Gauss-Green formula we obtain gluing and extension
theorems.

THEOREM (CHEN-TORRES, 2005, C.-PAYNE, 2017)

Let W€ E° C E € UCX, where Q,U and W are open sets and E is a set of
finite perimeter in Q. Let F; € DM®>(U) and F, € DM>(Q2\ W). Then

F(x) = Fi(x) /.f x€eE
Fa(x) if xeQ\E
belongs to DM*(Q2), and
divF = xgdivFy + xgodivFo + (Fiq1 - vE — Fe - ve) A" OYE (15)

where Fj 1 - Vg is the interior normal trace of Fy over 0*E and F. 5 - vg is the
exterior normal trace of F, over 0*E, which in particular implies the following
representation for the jump component:

Xo-edivF = (Fi1-vE — Fep - ve)#" 'LO*E. (16)
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(GLUING AND EXTENSIONS THEOREMS

THEOREM (CHEN-TORRES-ZIEMER, 2009, C.-PAYNE, 2017)

Let U € Q be open sets with 7" *(9U) < oo, F; € DM>(U) and
F> € DM>(Q\ U). Then, if we set

. Fl(X) If X € U
Fi) = {Fz(x) if xeQ\U’

we have F € DM () and we obtain
divF = xudivFy + xpodivFs + ((Fri - vu) — (Fae - v0)) 2" LLO*U,  (17)

where (]:"1,,- - vy) is the interior normal trace on 0*U of the zero extension Fy and
(.7}2,6 - vy) is the exterior normal trace in 0*U of F,. In particular,

Xa*udiVF = ((./—:.1,,' . Vu) — (ﬁg’e . Vu))%ﬂn_ll_a* U. (18)
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THE GAUSS-GREEN FORMULA UP TO THE BOUNDARY
OF THE DEFINITION DOMAIN

COROLLARY (C.-PAYNE, 2017)

If Q is a bounded open set with Lipschitz boundary and F € DM>(Q), then its
zero extension F to R" belongs to DM (R") and there exists the interior normal

trace (F; - vq) on O, while the exterior normal trace is zero. In addition, for any
¢ € Lip;,.(R"), we have

/Q¢ddiVF=—/m¢(ﬁ;-l/sz)d%”_l—/QF~V¢dx.
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SILHAVY: GENERAL OPEN SETS

THEOREM (SILHAVY, 2009)

Let F € DMP(Q), 1 < p < oo, m € Lip.(Q), m > 0 in Q, and, for each ¢ > 0,
L. :={x € Q:m(x) <e}. Then, for any ¢ € Lip(Q) N L>(2), we have

e—=0 ¢

NE(F,$) = — lim -/ ¢ F - Vmdx.
In addition, if liminf._ge~! fLE |F - Vm|dx < oo, then N%(F, ) is a measure on
o9Q.

A typical example is m(x) = dist(x, 9), for which L. = Q\ Q., where
Q. = {x € Q: dist(x,00) > e}.

4
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EXAMPLE OF A NORMAL TRACE WHICH IS NOT A

MEASURE

Let Q = B(0,1) N {x» < 0} in R? and
1

[x]

F(Xl,Xg) (X27 1), [OAS [1,3)

Then, we clearly have divF =0 and F € DMP(Q) forany 1 < p < 2/(a — 1) if
a>1and 1 <p<ooifa=1 If¢e Lip(R?)NL®(R?) is such that p=01in a

neighborhood of {x, < 0} N &B(0,1), we can just take m(x) = —x near
{x2 = 0}, so that we have

F¢—!%€//¢t5 ) dt ds.

This implies

1
NY(F,¢) = / o(t,0)sgn(t)[t|' @ dt if 1<a <2,
—1

1
NY(F, ) = p.V./ 6(£,0) sen(8)| £ dt if 2<a <3,
-1

which is not a measure, being a principal value.
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APPROXIMATION OF COMPACT SETS

Given F € DM} () and K C Q compact, by choosing the Lipschitz test
functions

1 if xe K
Pik(x) = ¢ 1= Ldist(x, K) ifxe K.\ K,
0 if x ¢ K.

Schuricht (2007) showed that

1
divF(K) :!@Oe/K\KF-V,% dx, (19)

where K. = {x € Q : dist(x, K) < ¢} and v&(x) = Vdist(x, K) is a unit vector
for Z"-ae. x € Q\ K.
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SMOOTH APPROXIMATIONS OF THE NORMAL TRACE

For any open set U, we define the signed distance from QU to be
d(x) = dist(x,R" \ U) — dist(x, U), and, for any ¢ > 0,

Us={xeR":d(x) >¢e}, U.:={xeR":d(x)> —c}.

THEOREM (CHEN-C.-TORRES, 2017)

Let U € Q be an open set and F € DMP(Q). Then, for any ¢ € C°(Q) N L>=(Q)
with V¢ € LP (Q;R"), there exists a set N with L}(N') = 0 such that, for every
sequence {ex } satisfying e, — 0 and e ¢ N, we have

/¢ddivF+/F.V¢dx:— lim / OF -vy= d"L, (20)
U U k—~+o00 9* Usk
/gbddivF—i—/Pqudx:— lim / OF -vy,, dA"t, (21)
T U k—+o0 9*Us, L

v

In particular, if U has C° boundary, then one can obtain an analogous result using
the regularized distance p (Lieberman, 1985,Ball-Zarnescu, 2017) and the smooth

sets
UsP ={xeR":p(x) >e}, U, ={xeR":p(x) > —c}
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LIPSCHITZ IMPLIES LIPSCHITZ DEFORMABLE

THEOREM (NECAS, 1962, VERCHOTA, 1982)
Let U be a bounded Lipschitz domain. Then the following statements hold:

@ there exists a sequence of open sets Uy satisfying OUy is of class C°,
U, € Uk+1 € U and Uk U= U;

@ there exists a covering of OU by coordinate cylinders such that, for any
coordinate pair (Z, ), with ¢ € Lip (R""1), Z* N QU is the graph of a
function @, € C°(R"~Y) satisfying px — ¢ uniformly,

V| oo (Rr-1,R0-1) < (V|| 130 (Rr-1,R0-1), Vipk = Vo L -a.e. and in
LI(R"~L,R"™1) forany 1 < g < o0;

@ there exists a sequence of Lipschitz diffeomorphisms f; : R” — R" such that
f(OU) = U, the Lipschitz constants are uniformly bounded in k, f, — Id
uniformly on U and J?*f, — 1 in L9(OU; #"1), for any 1 < q < c0.

Therefore, there exists a regular Lipschitz deformation for U: it is enough to set
1 1
W(x, t) = (k+1— k(k + 1)) fir(x) + (k(k + 1)t — K)f(x) if t € (m ;].
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Thank you for your attention!
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