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Classical Gauss-Green formula

Theorem
Let E ⊂ Ω be an open regular set; that is, int(Ē ) = E and ∂E is a C 1

(n − 1)-manifold in Ω. Then ∀φ ∈ C 1
c (Ω;Rn)∫

E
divφ dx = −

∫
∂E
φ · νE dH n−1,

where νE is the interior unit normal to ∂E.
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BV theory

u : Ω ⊂ Rn → R is a function of bounded variation in Ω, u ∈ BV (Ω), if
u ∈ L1(Ω) and the distributional gradient Du is a finite Radon measure; that
is, a vector valued Borel measure with finite total variation on Ω.
A set E of (locally) finite perimeter in Ω is a set whose characteristic
function χE is a (locally) BV function in Ω. By the polar decomposition of
Radon measures, DχE = νE |DχE |, for some Borel function νE with norm 1
|DχE |-a.e.
Relevant subsets of the topological boundary of E :

the reduced boundary, (De Giorgi)
∂∗E := {x ∈ Ω : ∃ limr→0

DχE (B(x,r))
|DχE |(B(x,r)) = νE (x) ∈ Sn−1}, on which the unit

vector νE is well defined and called measure theoretic interior unit normal,
since we have the blow-up property (E − x)/r → {(y − x) · νE ≥ 0} =: H+

νE (x)
in measure as r → 0 for any x ∈ ∂∗E ;
the measure theoretic boundary, (Federer) ∂mE := Ω \ (E 0 ∪ E 1), where
E d := {x ∈ Rn : limr→0

|E∩B(x,r)|
|B(x,r)| = d}, which satisfies ∂mE ⊃ ∂∗E and

H n−1(∂mE \ ∂∗E) = 0. Hence, we can integrate on ∂mE or ∂∗E with respect
to H n−1 indifferently.

|DχE | = H n−1 ∂∗E (De Giorgi’s theorem).
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Gauss-Green formula for sets of finite
perimeter
We just need to apply the definition of distributional derivative∫

Ω
χE divφ dx = −

∫
Ω
φ · dDχE = −

∫
Ω
φ · νE d |DχE |

and then De Giorgi’s theorem.

Theorem (De Giorgi and Federer)
Let E ⊂ Ω be a set of locally finite perimeter. Then ∀φ ∈ C 1

c (Ω;Rn)∫
E

divφ dx = −
∫
∂∗E

φ · νE dH n−1.

Aim: to weaken the regularity hypotheses on the vector fields.
Strategy: to characterize the divergence in a weak sense (as a Radon
measure) and the trace as an approximate limit or the density of a Radon
measure.
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Fine properties of BV functions

Important properties of BV functions:
if u ∈ BV (Ω), then |Du| �H n−1;
precise representative: any BV function u admits a representative u∗ well
defined H n−1-a.e. which satisfies u∗(x) = limε→0(u ? ρε)(x) H n−1-a.e. for
any mollification of u. In particular, if E is a set of finite perimeter,

χ∗E = χE 1 + 1
2χ∂

∗E ;

if u ∈ BV (Ω) and supp(u) b Ω, then Du(Ω) = 0;
Leibniz rule: if u, v ∈ BV (Ω) ∩ L∞(Ω), then uv ∈ BV (Ω) ∩ L∞(Ω) and

D(uv) = u∗Dv + v∗Du.
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Gauss-Green formula for BV vector fields

Theorem (Vol’pert)
Let u ∈ BV (Ω;Rn) ∩ L∞(Ω;Rn) and E b Ω be a set of finite perimeter, then∫

E 1
d div(u) = divu(E 1) = −

∫
∂∗E

uνE · νE dHn−1,∫
E 1∪∂∗E

d div(u) = divu(E 1 ∪ ∂∗E ) = −
∫
∂∗E

u−νE · νE dHn−1,

where E 1 is the measure theoretic interior of E and u±νE are respectively the
interior and the exterior trace; that is, the approximate limits of u in H n−1-a.e.
x ∈ ∂∗E restricted to H±νE

(x) := {y ∈ Rn : (y − x) · (±νE (x)) ≥ 0}.

The boundedness assumption on u can be removed, if we assume
u±νE ∈ L1(∂∗E ,H n−1), as shown by Maz’ya and Ambrosio-Fusco-Pallara.
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Divergence-measure fields: definition

Definition
A vector field F ∈ Lp(Ω;Rn), 1 ≤ p ≤ ∞ is said to be a divergence-measure
field, and we write F ∈ DMp(Ω), if divF is a finite Radon measure on Ω.
A vector field F is a locally divergence-measure field, and we write
F ∈ DMp

loc(Ω), if F ∈ DMp(W ) for any open set W b Ω.
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Brief history

Anzellotti (1983) was the first to study divergence-measure fields, even though he
considered the special case p =∞. Then, these new function spaces were
introduced in the early 2000s by many authors for different purposes.

1 Chen and Frid were interested in the applications to the theory of systems of
conservation laws with the Lax entropy condition and obtained a Gauss-Green
formula for divergence-measure fields on open bounded sets with Lipschitz
deformable boundary. Later, Chen, Torres and Ziemer extended this result to
sets of finite perimeter in the case p =∞.

2 Degiovanni, Marzocchi, Musesti, Šilhavý and Schuricht wanted to prove the
existence of a normal trace under weak regularity hypotheses, in order to
achieve a representation formula for Cauchy fluxes, contact interactions and
forces in the context of continuum mechanics.

3 Ambrosio, Crippa and Maniglia studied a class of these vector fields induced
by functions of bounded deformation, with the aim of extending
theDiPerna-Lions theory of the transport equation.
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A few recent applications

1 Phuc-Torres studied the existence of solutions to

divF = µ,

finding sufficient and necessary condition for a nonnegative measure µ on Rn

in the case F ∈ Lp(Rn;Rn) and F continuous, and for a signed Radon
measure in the case p =∞; moreover, this problem is also related to the
characterization of the dual of the space BV .

2 Frid unified the theory of Chen-Frid and Šilhavý for extended
divergence-measure fields and showed well-posedness of entropy solutions to
conservation laws with suitable boundary conditions.

3 Schuricht, Kawohl, Scheven, Schmidt and many others rediscovered the
techniques of Anzellotti, and applied the theory of divergence-measure fields
to the study of 1-Laplace and minimal surface type equations, looking for
super and subsolutions and dual formulations.
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Comparison with BV (Ω;Rn) and absolute
continuity

BV (Ω;Rn) ∩ Lp(Ω;Rn) ⊂ DMp(Ω). Indeed if F = (F1, ...,Fn) ∈ Lp(Ω;Rn)
with Fj ∈ BV (Ω) for j = 1, ...n, then it is clear that Di Fj are finite Radon
measures for each i , j and so divF =

∑n
j=1 DjFj is also a finite Radon

measure.
The condition divF = µ, with µ Radon measure, allows for cancellations;
hence, for n ≥ 2, the inclusion is strict. For example (Chen-Frid, 1999),

F (x , y) = sin
(

1
x − y

)
(1, 1)

satisfies
F ∈ DM∞(R2) \ BVloc(R2;R2).
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Absolute continuity and Leibniz rule

(Šilahvý, 2005, Chen-Torres-Ziemer, 2009, and Phuc-Torres, 2008)
If n ≥ 2 and F ∈ DMp

loc(Ω) for n
n−1 ≤ p ≤ ∞, then we have

|divF | �H n−q, where q := p
p−1 is the conjugate exponent of p.

This result is sharp: if 1 ≤ p < n
n−1 , then for any arbitrary signed Radon

measure µ with compact support inside Ω there exists F ∈ DMp
loc(Ω) such

that divF = µ. On the other hand, if n
n−1 ≤ p ≤ ∞, then for any s > n − q

there exists a field F ∈ DMp
loc(Ω) such that |divF | is not H s absolutely

continuous.
Therefore, if F ∈ DM∞(Ω), then |divF | �H n−1.
(Chen-Frid, 1999) If g ∈ BV (Ω) ∩ L∞(Ω) and F ∈ DM∞(Ω), we have
gF ∈ DM∞(Ω) and

div(gF ) = g∗divF + F · Dg ,

where g∗ is the precise representative of g and F · Dg is the weak-star limit
of F · ∇(g ∗ ρδ) as δ → 0, which satisfies |F · Dg | � |Dg |. Hence, it is in
particular possible to use this formula in the case g = χE with E b Ω of
finite perimeter.
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Anzellotti’s first investigations

Anzellotti (1983) was the first to define the space DM∞(Ω), which he denoted by
Xµ(Ω). He considered the pairing between F and u ∈W 1,1(Ω) ∩ L∞(Ω) ∩ C 0(Ω)
(which we now call normal trace functional on the Lipschitz boundary ∂Ω):

〈F , u〉∂Ω :=
∫

Ω
u ddivF +

∫
Ω

F · ∇u dx

Theorem (Anzellotti, 1983)
Let Ω be a bounded open set with Lipschitz boundary, F ∈ DM∞(Ω) and
u ∈ BV (Ω) ∩ L∞(Ω) ∩ C 0(Ω). Then 〈F , ·〉∂Ω is a Radon measure on ∂Ω,
satisfying 〈F , ·〉∂Ω = [F · νΩ]H n−1 ∂Ω. In addition, there exists a suitable
Radon measure (F ,Du) such that the following Gauss-Green formula holds:∫

Ω
u ddivF +

∫
Ω

d(F ,Du) = −
∫
∂Ω

u [F · νΩ] dH n−1,

with (F ,Du) = F · ∇u dx if u ∈W 1,1(Ω).
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Chen-Frid: Lipschitz deformable boundaries

Definition
Let Ω be an open set in Rn. We say that ∂Ω is a deformable Lipschitz boundary if
Ω has Lipschitz boundary and there exists a Lipschitz deformation of the
boundary; that is, a map Ψ : ∂Ω× [0, 1]→ Ω such that Ψ is a bi-Lipschitz
homeomorphism onto its image and Ψ(·, 0) = Id on ∂Ω. We define
∂Ωs := Ψ(∂Ω× {s}), s ∈ [0, 1] and we set Ωs to be the open subset of Ω whose
boundary is ∂Ωs .
The Lipschitz deformation is regular if

lim
τ→0+

J∂ΩΨτ = 1 in L1(∂Ω; H n−1),

where Ψτ (x) = Ψ(x , τ).
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Chen-Frid: The Gauss-Green formula on
Lipschitz deformable open sets

Theorem (Chen-Frid, 1999, 2003)
Let F ∈ DMp(Ω) and Ω be a bounded open set with deformable Lipschitz
boundary with deformation Ψ. Then, for any φ ∈ Lip(Ω) ∩ L∞(Ω), we have∫

Ω
φ ddivF +

∫
Ω

F · ∇φ dx = − ess lim
s→0

∫
∂Ωs

φF · νΩs dH n−1

= − ess lim
s→0

∫
∂Ω

(φF · νΩs ) ◦Ψs J∂ΩΨs dH n−1.

If p =∞ and the deformation is regular, then the functional normal trace is
represented by a function Fi · νΩ ∈ L∞(∂Ω; H n−1) such that
‖Fi · νΩ‖L∞(∂Ω;dH n−1) ≤ ‖F‖L∞(Ω;Rn) and, for any φ ∈ Lip(∂Ω),

ess lim
s→0

∫
∂Ω

(F · νΩs ) ◦Ψs φ dH n−1 =
∫
∂Ω

(Fi · νΩ)φ dH n−1. (1)
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Šilhavý: classification of the normal trace
functionals

Theorem (Šilhavý, 2005)
Let F ∈ DM1

loc(Rn) and E be a set of finite perimeter, then there exists a linear
functional NE (F , ·) : Lipc(∂∗E )→ R such that

NE (F , φ|∂∗E ) =
∫

E 1
φ ddivF +

∫
E

F · ∇φ dx , (2)

for any φ ∈ Lipc(Rn).
If F is weakly dominated on ∂∗E; that is,
lim inf

r→0

∫
∂∗E

∫
B(x ,r)

|F (y) · νE (x)| dy dH n−1(x) <∞, then NE (F , ·) is a measure

supported on ∂∗E.
If F ∈ DM∞(Rn), then NE (F , φ|∂∗E ) = −

∫
∂∗E φ (Fi · νE ) dH n−1 for some

function (Fi · νE ) ∈ L∞(∂∗E ; H n−1). Also, for H n−1-a.e. x ∈ ∂∗E, we have

(Fi · νE )(x) = lim
r→0

n
ωn−1r n

∫
B(x ,r)∩H+

νE (x)
F (y) · y − x

|y − x | dH n−1.
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Degiovanni-Marzocchi-Musesti and Schuricht:
families of admissible sets of finite perimeter

For the purpose of applications to the foundations of continuum mechanics, some
more conditions are imposed on the admissible sets of finite perimeter: given
F ∈ DM1

loc(Ω), we consider sets of finite perimeter E such that

|divF |(∂∗E ) = 0 and
∫
∂∗E

h dH n−1 <∞. (3)

where h ∈ L1
loc(Ω) is a nonnegative function such that one can extract a

subsequence {Fk}k∈N of the canonical mollification Fk := F ∗ ρεk of
F ∈ L1

loc(Ω;Rn) satisfying 1

Fk → F in L1
loc(Ω;Rn) (4)

Fk(x)→ F (x) for each x ∈ Ω such that h(x) < +∞ (5)

|Fk(x)| ≤ h(x) for each x ∈ Ω and k ∈ N. (6)

1Here and below we will still denote by F the particular representative which is the limit of
the sequence Fk in the sense (5).
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The Gauss-Green formula in DM1
loc for an

admissible set of finite perimeter

Theorem (Degiovanni-Marzocchi-Musesti, 1999,
Schuricht, 2007)
Given F ∈ DM1

loc(Ω), E a set of finite perimeter admissible for F and
φ ∈ Liploc(Ω) such that χEφ has compact support in Ω, we have∫

E 1
φ ddivF = −

∫
∂∗E

φF · νE dH n−1 −
∫

E
F · ∇φ dx .

As a consequence, Schuricht (2007) proved the following Leibniz formula for χE
and the particular representation of F described in (5):

div(χE F ) = gE divF + F · νEH n−1 ∂∗E ,

where gE ∈ L∞(Ω; |divF |) satisfies 0 ≤ gE ≤ 1 and gE (x) = χ∗E (x) at each x for
which the Lebesgue density exists.
In addition, C.-Payne (2017) showed that, if F ∈ DM∞loc(Ω) and E is admissible,
by passing to the limit in the boundary terms thanks to (5) and (6) we obtain
Fi · νE = Fe · νE = F · νE H n−1-a.e. on ∂∗E .
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Smooth approximation of sets of finite
perimeter

For any bounded set E of finite perimeter in Rn, we consider the mollification of
its characteristic function uk := χE ∗ ρεk and, for any t ∈ (0, 1), we define

Ak;t := {uk > t}.

By Sard’s theorem, ∂Ak;t is smooth for L 1-a.e. t and for any k; and clearly

|E∆Ak;t | → 0

as k → +∞. It is also well known that

H n−1(∂Ak;t)→H n−1(∂∗E )

for L 1-a.e. t ∈ (0, 1) (Ambrosio-Fusco-Pallara, 2000, Maggi, 2012).
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One-sided interior and exterior
approximation of sets of finite perimeter

Theorem (Chen-Torres-Ziemer, 2009, C.-Torres, 2017)
Let µ be a Radon measure such that µ << H n−1. Then:
(a) |µ|(E 1∆Ak;t)→ 0, for 1

2 < t < 1;
(b) |µ|((E 1 ∪ ∂∗E )∆Ak;t)→ 0, for 0 < t < 1

2 .
In addition, there exists a sequence εk converging to 0 such that

lim
k→+∞

H n−1(∂Ak;t \ E 1) = 0 (7)

for L 1-a.e. t ∈ ( 1
2 , 1), and

lim
k→+∞

H n−1(∂Ak;t \ E 0) = 0 (8)

for L 1-a.e. t ∈ (0, 1
2 ).
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Sketch of the proof
Points (a) and (b) follow from the fact that uk(x)→ χ∗E (x) H n−1-a.e., and so
uk → χ∗E in L1(Rn, |µ|). Then, for any ε > 0, there exists k large enough such that

ε > ‖uk − χ∗E‖L1(Rn,|µ|) ≥ min{t − 1/2, 1− t}|µ|(E 1∆Ak;t),

for any t ∈ (1/2, 1). For 0 < t < 1/2, we argue similarly.
As for the second part, we use the coarea formula and the properties of
convolution to show that∫ 1

t
H n−1(u−1

k (s) \ E 1) ds =
∫

Ak;t\E 1
|∇uk | dx ≤

∫
∂∗E

(ρεk ∗ χAk;t\E ) dH n−1,

and then, by a blow-up procedure, we prove that
lim

k→+∞
uk(x + εkz) =: v(x , z) ≤ 1

2 for any x ∈ ∂∗E and z ∈ H−νE
(x), and

(ρεk ∗ χAk;t\E )(x)→
∫

B(0,1)
ρ(z)χ{v(x ,z)>t}(z)χH−νE (x)(z) dz .

Since t > 1/2, we can conclude. The case 0 < t < 1/2 is treated analogously.
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Gauss-Green formula for DM∞
loc fields on

bounded sets of finite perimeter

Theorem (Chen-Torres-Ziemer, 2009)
Let F ∈ DM∞loc(Ω) and E b Ω be a set of finite perimeter.
Then there exists interior and exterior normal traces (Fi · νE ), (Fe · νE ) of F such
that:

1

∫
E 1

d divF = −
∫
∂∗E

(Fi · νE )(x) dH n−1(x);

2 (2F · ∇uk)χE
∗
⇀ (Fi · νE )H n−1x∂∗E in M(Ω);

3 ‖Fi · νE‖L∞(∂∗E ;H n−1) ≤ ‖F‖L∞(E).

4

∫
E 1∪∂∗E

d divF = −
∫
∂∗E

(Fe · νE )(x) dH n−1(x);

5 (2F · ∇uk)χΩ\E
∗
⇀ (Fe · νE )H n−1x∂∗E in M(Ω);

6 ‖Fe · νE‖L∞(∂∗E ;H n−1) ≤ ‖F‖L∞(Ω\E).
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Sketch of the proof (1)
The proof relies on the smooth interior (resp. exterior) approximation of E and on
the following lemma.

Lemma (Chen-Torres-Ziemer, 2009)
Let F ∈ DM∞loc(Ω), Fε be a mollification of F and E b Ω be a set of finite
perimeter. Then, if in addition we assume that

1 Fε → F H n−1-a.e. on ∂∗E,
2 |divF |(∂∗E ) = 0,

then
divF (E 1 ∪ ∂∗E ) = divF (E 1) = −

∫
∂∗E

F · νE dH n−1.

For L 1-a.e. t ∈ (0, 1), we have that ∂Ak;t is smooth, |divF |(∂Ak;t) = 0 and
Fε → F H n−1-a.e. (this is a consequence of the co-area formula).
Hence, for such t we define the Radon measure

σk;t(B) :=
∫

B∩∂Ak;t

F · νAk;t dH n−1.
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Sketch of the proof (2)
By the lemma, we have divF (Ak;t) = −σk;t(Ω) for any k and L 1-a.e. t.
We know that, since |divF | �H n−1, then divF (Ak;t)→ divF (E 1) for L 1-a.e.
t ∈ ( 1

2 , 1); and divF (Ak;t)→ divF (E 1 ∪ ∂∗E ) for L 1-a.e. t ∈ (0, 1
2 ).

Hence, the weak limit of σk;t , which exists for L 1-a.e. t, up to subsequences,
must be independent of t ∈ (1/2, 1) or (0, 1/2); thus there exists two signed
measures σi , σe such that σk;t

∗
⇀ σi for L 1-a.e. 1/2 < t < 1, and σk;t

∗
⇀ σe , for

L 1-a.e. 0 < t < 1/2.
Then, one shows that |σi | � |DχE | and limk→+∞ |σk;t |(E 0 ∪ ∂∗E ) = 0 for
L 1-a.e. 1/2 < t < 1, and analogously |σe | � |DχE | and
limk→+∞ |σk;t |(Ω \ E 0) = 0 for L 1-a.e. 0 < t < 1/2. All in all, we have

divF (E 1) = −σi (∂∗E ),
divF (E 1 ∪ ∂∗E ) = −σe(∂∗E ),

and Radon-Nikodym theorem allows us to conclude. The estimates follows from
Lebesgue’s differentiation theorem. As for the limits, they follow from the identity∫

E
F · ∇uk dx =

∫ 1

0

∫
E∩∂Ak;t

F · νAk;t dH n−1 dt.
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Jump component of the divergence

We have the following representation formula for the jump component of the
divergence of F ; that is, for any set of finite perimeter E b Ω we have

χ∂∗E divF = (Fi · νE −Fe · νE ) H n−1 ∂∗E

in the sense of Radon measures on Ω. Hence, we obtain also

|divF |(∂∗E ) =
∫
∂∗E
|Fi · νE −Fe · νE | dH n−1

and, for any Borel set B ⊂ ∂∗E ,

divF (B) =
∫

B
(Fi · νE −Fe · νE ) dH n−1.

If F is continuous, interior and exterior normal traces coincide on ∂∗E as
functions in L∞(∂∗E ; H n−1), and they admit a representative which is the
classical scalar product F · νE . Therefore, the divergence of a continuous
vector field does not have jump component (|divF |(∂∗E ) = 0).
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Integration by parts formulas

Theorem (Chen-Torres-Ziemer, 2009, C.-Payne, 2017)
Let F ∈ DM∞loc(Ω) and let E ⊂ Ω be a set of locally finite perimeter. Then, there
are well defined interior and exterior normal traces of F on ∂∗E satisfying
(Fi · νE ), (Fe · νE ) ∈ L∞loc(∂∗E ; H n−1) such that for any φ ∈ Lipc(Ω) we have∫

E 1
φ ddivF = −

∫
∂∗E

φ(Fi · νE ) dH n−1 −
∫

E
F · ∇φ dx (9)

and ∫
E 1∪∂∗E

φ ddivF = −
∫
∂∗E

φ(Fe · νE ) dH n−1 −
∫

E
F · ∇φ dx . (10)

In addition, for any compact K and open set U such that K ⊂ U ⊂⊂ Ω one has
the estimates

||Fi · νE ||L∞((∂∗E)∩K ;H n−1) ≤ ||F ||L∞(E∩U;Rn) (11)

and
||Fe · νE ||L∞((∂∗E)∩K ;H n−1) ≤ ||F ||L∞((Ω\E)∩U;Rn). (12)
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Ambrosio-Crippa-Maniglia: foliation results

In general, if F ∈ DM∞loc(Ω), Fi · νE 6= F · νE and Fe · νE 6= F · νE H n−1-a.e., for
a set of finite perimeter E ⊂ Ω.
However, roughly speaking, the normal traces coincide with the classical one on
almost every surface. Let I ⊂ R be an open interval and let {Σt}t∈I be a family of
oriented hypersurfaces in Ω such that there exists Ω′ b Ω, Φ ∈ C 1(Ω′) and a
family of open set Ωt b Ω′, t ∈ I, with Φ(Ω′) = I, {Φ = t} = Σt = ∂Ωt for any
t ∈ I, |∇Φ| > 0 in Ω′ and Σt is oriented by ∇Φ/|∇Φ|. Then, we have

Fi · νΩt = Fe · νΩt = F · νΩt H n−1-a.e. on Σt , for L 1-a.e. t ∈ I.
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Normal traces and orientation of the
reduced boundary
By generalizing an argument developed by Ambrosio-Crippa-Maniglia in the case
of open bounded sets with C 1 boundary, we find that the normal traces are
determined by ∂∗E and its orientation.

Proposition (C.-Payne)
Let F ∈ DM∞loc(Ω) and let E1,E2 be sets of locally finite perimeter in Ω such that
H n−1(∂∗E1 ∩ ∂∗E2) 6= 0. Then one has

Fi · νE1 = Fi · νE2 and Fe · νE1 = Fe · νE2 (13)

for H n−1-a.e. x ∈ {y ∈ ∂∗E1 ∩ ∂∗E2 : νE1 (y) = νE2 (y)} and

Fi · νE1 = −Fe · νE2 and Fe · νE1 = −Fi · νE2 (14)

for H n−1-a.e. x ∈ {y ∈ ∂∗E1 ∩ ∂∗E2 : νE1 (y) = −νE2 (y)}.

In the case E1 = E and E2 = Ω \ E , we obtain Fi · νE = −Fe · νΩ\E and
Fe · νE = −Fi · νΩ\E .
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Gluing and extension theorems
As a consequence of the Gauss-Green formula we obtain gluing and extension
theorems.

Theorem (Chen-Torres, 2005, C.-Payne, 2017)
Let W b E◦ ⊂ E b U ⊂ Ω, where Ω,U and W are open sets and E is a set of
finite perimeter in Ω. Let F1 ∈ DM∞(U) and F2 ∈ DM∞(Ω \W ). Then

F (x) =
{

F1(x) if x ∈ E
F2(x) if x ∈ Ω \ E

belongs to DM∞(Ω), and

divF = χE 1divF1 + χE 0divF2 + (Fi,1 · νE −Fe,2 · νE )H n−1 ∂∗E (15)

where Fi,1 · νE is the interior normal trace of F1 over ∂∗E and Fe,2 · νE is the
exterior normal trace of F2 over ∂∗E, which in particular implies the following
representation for the jump component:

χ∂∗E divF = (Fi,1 · νE −Fe,2 · νE )H n−1 ∂∗E . (16)
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Gluing and extensions theorems

Theorem (Chen-Torres-Ziemer, 2009, C.-Payne, 2017)
Let U b Ω be open sets with H n−1(∂U) <∞, F1 ∈ DM∞(U) and
F2 ∈ DM∞(Ω \ U). Then, if we set

F (x) =
{

F1(x) if x ∈ U
F2(x) if x ∈ Ω \ U

,

we have F ∈ DM∞(Ω) and we obtain

divF = χU1divF̂1 + χU0divF̂2 + ((F̂1,i · νU)− (F̂2,e · νU))H n−1 ∂∗U, (17)

where (F̂1,i · νU) is the interior normal trace on ∂∗U of the zero extension F̂1 and
(F̂2,e · νU) is the exterior normal trace in ∂∗U of F̂2. In particular,

χ∂∗UdivF = ((F̂1,i · νU)− (F̂2,e · νU))H n−1 ∂∗U. (18)
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The Gauss-Green formula up to the boundary
of the definition domain

Corollary (C.-Payne, 2017)
If Ω is a bounded open set with Lipschitz boundary and F ∈ DM∞(Ω), then its
zero extension F̂ to Rn belongs to DM∞(Rn) and there exists the interior normal
trace (F̂i · νΩ) on ∂Ω, while the exterior normal trace is zero. In addition, for any
φ ∈ Liploc(Rn), we have∫

Ω
φ ddivF = −

∫
∂Ω
φ(F̂i · νΩ) dH n−1 −

∫
Ω

F · ∇φ dx .
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Šilhavý: general open sets

Theorem (Šilhavý, 2009)
Let F ∈ DMp(Ω), 1 ≤ p ≤ ∞, m ∈ Lipc(Ω), m > 0 in Ω, and, for each ε > 0,
Lε := {x ∈ Ω : m(x) < ε}. Then, for any φ ∈ Lip(Ω) ∩ L∞(Ω), we have

NΩ(F , φ) = − lim
ε→0

1
ε

∫
Lε
φF · ∇m dx .

In addition, if lim infε→0 ε
−1 ∫

Lε |F · ∇m| dx <∞, then NΩ(F , φ) is a measure on
∂Ω.

A typical example is m(x) = dist(x , ∂Ω), for which Lε = Ω \ Ωε, where
Ωε := {x ∈ Ω : dist(x , ∂Ω) > ε}.
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Example of a normal trace which is not a
measure
Let Ω = B(0, 1) ∩ {x2 < 0} in R2 and

F (x1, x2) = 1
|x |α (x2,−x1), α ∈ [1, 3).

Then, we clearly have divF = 0 and F ∈ DMp(Ω) for any 1 ≤ p < 2/(α− 1) if
α > 1, and 1 ≤ p ≤ ∞ if α = 1. If φ ∈ Lip(R2) ∩ L∞(R2) is such that φ ≡ 0 in a
neighborhood of {x2 < 0} ∩ ∂B(0, 1), we can just take m(x) = −x2 near
{x2 = 0}, so that we have

NU(F , φ) = lim
ε→0

1
ε

∫ ε

0

∫ 1

−1
φ(t, s) t

(t2 + s2)α2
dt ds.

This implies

NU(F , φ) =
∫ 1

−1
φ(t, 0) sgn(t)|t|1−α dt if 1 ≤ α < 2,

NU(F , φ) = p.v.
∫ 1

−1
φ(t, 0) sgn(t)|t|1−α dt if 2 ≤ α < 3,

which is not a measure, being a principal value.
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Approximation of compact sets

Given F ∈ DM1
loc(Ω) and K ⊂ Ω compact, by choosing the Lipschitz test

functions

ϕεK (x) :=


1 if x ∈ K
1− 1

εdist(x ,K ) if x ∈ Kε \ K
0 if x /∈ Kε

,

Schuricht (2007) showed that

divF (K ) = lim
ε→0

1
ε

∫
Kε\K

F · νd
K dx , (19)

where Kε = {x ∈ Ω : dist(x ,K ) ≤ ε} and νd
K (x) = ∇dist(x ,K ) is a unit vector

for L n-a.e. x ∈ Ω \ K .

G. E. Comi (SNS) Divergence-measure fields June, 8, 2017 35 / 38



Smooth approximations of the normal trace
For any open set U, we define the signed distance from ∂U to be
d(x) = dist(x ,Rn \ U)− dist(x ,U), and, for any ε > 0,

Uε := {x ∈ Rn : d(x) > ε}, Uε := {x ∈ Rn : d(x) > −ε}.

Theorem (Chen-C.-Torres, 2017)
Let U b Ω be an open set and F ∈ DMp(Ω). Then, for any φ ∈ C 0(Ω) ∩ L∞(Ω)
with ∇φ ∈ Lp′(Ω;Rn), there exists a set N with L1(N ) = 0 such that, for every
sequence {εk} satisfying εk → 0 and εk /∈ N , we have∫

U
φ ddivF +

∫
U

F · ∇φ dx = − lim
k→+∞

∫
∂∗Uεk

φF · νUεk dH n−1, (20)∫
U
φ ddivF +

∫
U

F · ∇φ dx = − lim
k→+∞

∫
∂∗Uεk

φF · νUεk
dH n−1, (21)

In particular, if U has C 0 boundary, then one can obtain an analogous result using
the regularized distance ρ (Lieberman, 1985,Ball-Zarnescu, 2017) and the smooth
sets

Uε,ρ := {x ∈ Rn : ρ(x) > ε}, Uε,ρ := {x ∈ Rn : ρ(x) > −ε}.
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Lipschitz implies Lipschitz deformable

Theorem (Nečas, 1962, Verchota, 1982)
Let U be a bounded Lipschitz domain. Then the following statements hold:

1 there exists a sequence of open sets Uk satisfying ∂Uk is of class C∞,
Uk b Uk+1 b U and

⋃
k Uk = U;

2 there exists a covering of ∂U by coordinate cylinders such that, for any
coordinate pair (Z , ϕ), with ϕ ∈ Lipc(Rn−1), Z∗ ∩ ∂Uk is the graph of a
function ϕk ∈ C∞c (Rn−1) satisfying ϕk → ϕ uniformly,
‖∇ϕk‖L∞(Rn−1;Rn−1) ≤ ‖∇ϕ‖L∞(Rn−1;Rn−1), ∇ϕk → ∇ϕ L n−1-a.e. and in
Lq(Rn−1;Rn−1) for any 1 ≤ q <∞;

3 there exists a sequence of Lipschitz diffeomorphisms fk : Rn → Rn such that
fk(∂U) = ∂Uk , the Lipschitz constants are uniformly bounded in k, fk → Id
uniformly on ∂U and J∂Ωfk → 1 in Lq(∂U; H n−1), for any 1 ≤ q <∞.

Therefore, there exists a regular Lipschitz deformation for U: it is enough to set

Ψ(x , t) := (k + 1− k(k + 1)t)fk+1(x) + (k(k + 1)t − k)fk(x) if t ∈
( 1

k + 1 ,
1
k

]
.
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Thank you for your attention!
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