Spaces with curvature bounded below

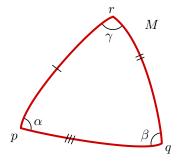
Vitali Kapovitch

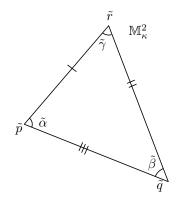
University of Toronto

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Theorem (Toponogov comparison)

Let (M^n, g) be a complete Riemannian manifold of $K_{sec} \geq \kappa$. Let Δpqr be a geodesic triangle in M and let $\Delta \tilde{p}\tilde{q}\tilde{r} = \tilde{\Delta}^{\kappa}pqr$ be a comparison triangle in \mathbb{M}_{κ}^n Then $\alpha \geq \tilde{\alpha}, \beta \geq \tilde{\beta}, \gamma \geq \tilde{\gamma}$.





Equivalent formulations

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

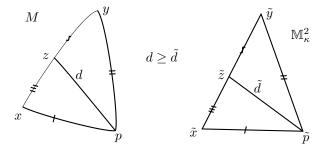
Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions • Point-on-a-side comparison. For any geodesic [xy] and $z \in]xy[$, we have $|pz| \ge |\tilde{p}\tilde{z}|$

where
$$\Delta \tilde{p} \tilde{x} \tilde{y} = \tilde{\Delta}^{\kappa} p x y$$
 and $|xz| = |\tilde{x} \tilde{z}|$.

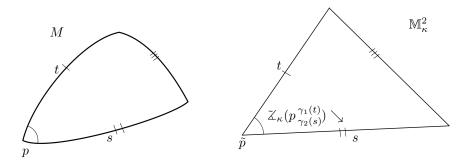


イロト イポト イヨト イヨト

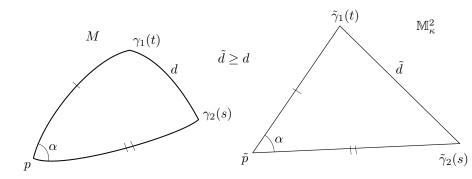
э

• Comparison angles are monotone.

Given two shortest unit speed geodesics $\gamma_1(t), \gamma_2(s)$ with $p = \gamma_1(0), \gamma_2(0)$ in M the function $(t, s) \mapsto \mathcal{Z}_{\kappa}(p \gamma_1(t)) \gamma_2(s)$ is monotone non-increasing in both t and s.

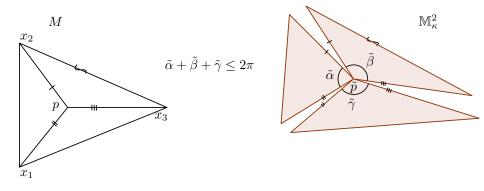


• Hinge comparison Given two shortest unit speed geodesics $\gamma_1(t), \gamma_2(s)$ with $p = \gamma_1(0), \gamma_2(0)$ in M let $\tilde{\gamma}_1, \tilde{\gamma}_2$ be two geodesics in \mathbb{M}^2_{κ} with $\tilde{p} = \tilde{\gamma}_1(0) = \tilde{\gamma}_2(0)$ and $\angle \gamma'_1(0)\gamma'_2(0) = \angle \tilde{\gamma}'_1(0)\tilde{\gamma}'_2(0)$. Then $|\gamma_1(t), \gamma_2(s)| \le |\tilde{\gamma}_1(t), \tilde{\gamma}_2(s)|$.



• (1+3)-comparison For any $p, x_1, x_2, x_3 \in M$ we have

$$\widetilde{\measuredangle}_{\kappa}(p_{x^{2}}^{x^{1}}) + \widetilde{\measuredangle}_{\kappa}(p_{x^{3}}^{x^{2}}) + \widetilde{\measuredangle}_{\kappa}(p_{x^{1}}^{x^{3}}) \leq 2\pi$$



▲□▶ ▲□▶ ★臣▶ ★臣▶ 臣 の�?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Rauch Comparison implies that it holds locally i.e. for every point in M with $\sec \geq \kappa$ there is a small neighbourhood where Toponogov comparison (in any of its equivalent formulations) holds.

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Rauch Comparison implies that it holds locally i.e. for every point in M with $\sec\geq\kappa$ there is a small neighbourhood where Toponogov comparison (in any of its equivalent formulations) holds. Globalization theorem implies that if comparison holds locally then it holds globally .

- 4 同 6 4 日 6 4 日 6

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A complete intrinsic metric space \mathcal{L} is called an Alexandrov space with curvature $\geq \kappa$ (briefly, $\mathcal{L} \in CBB_{\kappa}$) if any quadruple $p, x^1, x^2, x^3 \in \mathcal{L}$ satisfies (1+3)-point comparison.

э

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A complete intrinsic metric space \mathcal{L} is called an Alexandrov space with curvature $\geq \kappa$ (briefly, $\mathcal{L} \in CBB_{\kappa}$) if any quadruple $p, x^1, x^2, x^3 \in \mathcal{L}$ satisfies (1+3)-point comparison.

Theorem (Globalization Theorem)

Let \mathcal{L} be a complete intrinsic metric space such that for any point p there exists R > 0 such that (1+3)-comparison with respect to κ holds for any $x_1, x_2, x_3, x_4 \in B(p, R)$.

(4回) (4回) (4回)

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A complete intrinsic metric space \mathcal{L} is called an Alexandrov space with curvature $\geq \kappa$ (briefly, $\mathcal{L} \in CBB_{\kappa}$) if any quadruple $p, x^1, x^2, x^3 \in \mathcal{L}$ satisfies (1+3)-point comparison.

Theorem (Globalization Theorem)

Let \mathcal{L} be a complete intrinsic metric space such that for any point p there exists R > 0 such that (1+3)-comparison with respect to κ holds for any $x_1, x_2, x_3, x_4 \in B(p, R)$. Then $\mathcal{L} \in CBB_{\kappa}$.

(4回) (4回) (4回)

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A complete intrinsic metric space \mathcal{L} is called an Alexandrov space with curvature $\geq \kappa$ (briefly, $\mathcal{L} \in CBB_{\kappa}$) if any quadruple $p, x^1, x^2, x^3 \in \mathcal{L}$ satisfies (1+3)-point comparison.

Theorem (Globalization Theorem)

Let \mathcal{L} be a complete intrinsic metric space such that for any point p there exists R > 0 such that (1+3)-comparison with respect to κ holds for any $x_1, x_2, x_3, x_4 \in B(p, R)$. Then $\mathcal{L} \in CBB_{\kappa}$.

We will only consider finite dimensional Alexandrov spaces. They are proper and in particular geodesic.

(4回) (4回) (4回)

Definition

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

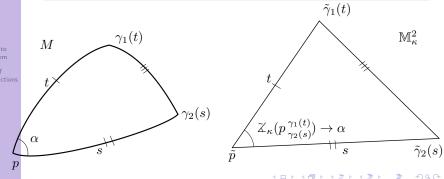
First Order Structure

Application to Erdos problem

Concavity of distance functions

Let $\mathcal{L} \in \text{CBB}_{\kappa}$ and let $\gamma_1(t), \gamma_2(s)$ be geodesics with $\gamma_1(0) = \gamma_2(0) = p$. Then the angle α between them is defined as

$$\alpha :\stackrel{def}{=} \lim_{t,s\to 0} \mathcal{Z}_{\kappa}(p_{\gamma_2(s)}^{\gamma_1(t)})$$



Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

• If M^n is a complete Riemannian manifold with $\sec \ge \kappa$ then $M \in \operatorname{CBB}_{\kappa}$.

э

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

- If M^n is a complete Riemannian manifold with $\sec \ge \kappa$ then $M \in \operatorname{CBB}_{\kappa}$.
- If $\mathcal{L} \in \operatorname{CBB}_{\kappa}$ and $U \subset \mathcal{L}$ is a closed convex subset then $U \in \operatorname{CBB}_{\kappa}$

3

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

- If M^n is a complete Riemannian manifold with $\sec \ge \kappa$ then $M \in \operatorname{CBB}_{\kappa}$.
- If $\mathcal{L} \in \operatorname{CBB}_{\kappa}$ and $U \subset \mathcal{L}$ is a closed convex subset then $U \in \operatorname{CBB}_{\kappa}$
- If $(X, d_X), (Y, d_Y)$ are in CBB_{κ} with $\kappa \leq 0$ then $(X \times Y, d) \in CBB_{\kappa}$ where $d((x, y), (x', y')) = \sqrt{d_Y^2(x, x') + d_V^2(y, y')}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

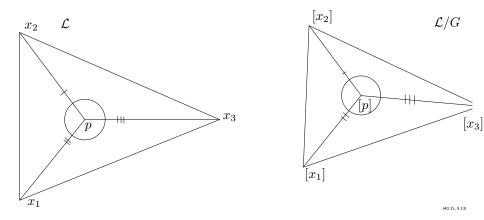
Application to Erdos problem

Concavity of distance functions

- If M^n is a complete Riemannian manifold with $\sec \ge \kappa$ then $M \in \operatorname{CBB}_{\kappa}$.
- If $\mathcal{L} \in \operatorname{CBB}_{\kappa}$ and $U \subset \mathcal{L}$ is a closed convex subset then $U \in \operatorname{CBB}_{\kappa}$
- If $(X, d_X), (Y, d_Y)$ are in CBB_{κ} with $\kappa \leq 0$ then $(X \times Y, d) \in CBB_{\kappa}$ where $d((x, y), (x', y')) = \sqrt{d_X^2(x, x') + d_Y^2(y, y')}$
- If Σ has $curv \ge 1$ then $C(\Sigma)$ the Euclidean cone over Σ has $curv \ge 0$. Here $d((t, v), (s, u)) := \sqrt{t^2 + s^2 2ts \cos d_{\Sigma}(u, v)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

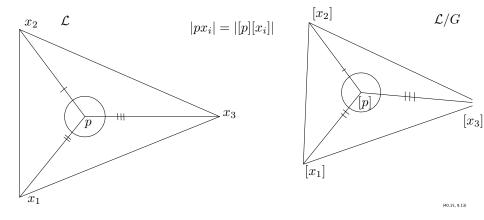
• Let $\mathcal{L} \in CBB_{\kappa}$ and let G be a compact group acting on \mathcal{L} by isometries. Then \mathcal{L}/G is in CBB_{κ} too.



<ロト (四) (三) (三) (三)

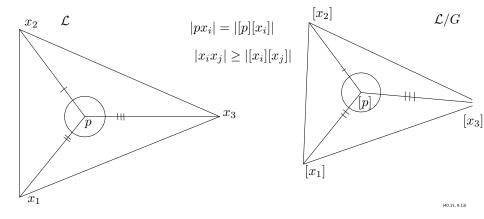
- E

• Let $\mathcal{L} \in CBB_{\kappa}$ and let G be a compact group acting on \mathcal{L} by isometries. Then \mathcal{L}/G is in CBB_{κ} too.



▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - の久で

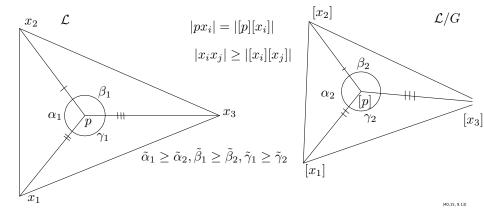
• Let $\mathcal{L} \in CBB_{\kappa}$ and let G be a compact group acting on \mathcal{L} by isometries. Then \mathcal{L}/G is in CBB_{κ} too.



<ロト (四) (三) (三) (三)

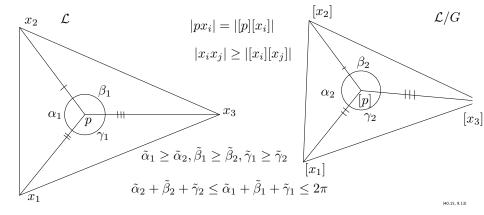
- E

• Let $\mathcal{L} \in CBB_{\kappa}$ and let G be a compact group acting on \mathcal{L} by isometries. Then \mathcal{L}/G is in CBB_{κ} too.



▲ロト ▲園ト ▲画ト ▲画ト 三直 - のんで

• Let $\mathcal{L} \in CBB_{\kappa}$ and let G be a compact group acting on \mathcal{L} by isometries. Then \mathcal{L}/G is in CBB_{κ} too.



<ロト (四) (三) (三) (三)

æ

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let X,Y be two compact inner metric spaces. A map $f\colon X\to Y$ is called an $\epsilon\text{-Hausdorff}$ approximation if

• $||f(p)f(q)| - |pq|| \le \epsilon$ for any $p, q \in X$;

• For any $y \in Y$ there exists $p \in X$ such that $|f(p)y| \le \epsilon$

We define the Gromov-Hausdorff distance between X and Y as $d_{G-H}(X,Y) = \inf \epsilon$ such that there exist ϵ -Hausdorff approximation from X to Y.

- 4 回 ト - 4 回 ト

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let X,Y be two compact inner metric spaces. A map $f\colon X\to Y$ is called an $\epsilon\text{-Hausdorff}$ approximation if

• $||f(p)f(q)| - |pq|| \le \epsilon$ for any $p, q \in X$;

• For any $y \in Y$ there exists $p \in X$ such that $|f(p)y| \le \epsilon$

We define the Gromov-Hausdorff distance between X and Y as $d_{G-H}(X,Y) = \inf \epsilon$ such that there exist ϵ -Hausdorff approximation from X to Y.

Gromov-Hausdorff distance (symmetrized) turns out to be a distance on the set of isometry classes of compact inner metric spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let X,Y be two compact inner metric spaces. A map $f\colon X\to Y$ is called an $\epsilon\text{-Hausdorff}$ approximation if

• $||f(p)f(q)| - |pq|| \le \epsilon$ for any $p, q \in X$;

• For any $y \in Y$ there exists $p \in X$ such that $|f(p)y| \leq \epsilon$

We define the Gromov-Hausdorff distance between X and Y as $d_{G-H}(X,Y) = \inf \epsilon$ such that there exist ϵ -Hausdorff approximation from X to Y.

Gromov-Hausdorff distance (symmetrized) turns out to be a distance on the set of isometry classes of compact inner metric spaces.

Remark

If $f: X \to Y$ is an ϵ -Hausdorff approximation then there exist $g: Y \to X$ which is a 2ϵ -Hausdorff approximation.

Spaces with curvature bounded below

Vitali Kapovitch

Example

Toponogov comparison

Examples

Gromov-Hausdorff convergence

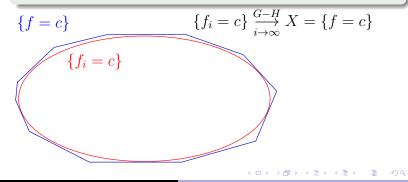
Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Let $\sec N \ge \kappa$ and let $f: N \to \mathbb{R}$ be convex. Let $f_i: N \to \mathbb{R}$ be smooth convex functions converging to f. Let c be any value in the range of f different from max f. Then $\{f_i = c\}$ is a smooth manifold of $\sec \ge \kappa$ and $\{f_i = c\}$ Gromov-Hausdorff converges to $\{f = c\}$ with respect to the intrinsic metrics. (This is not obvious). In particular $\{f = c\}$ is in $\operatorname{CBB}_{\kappa}$.



Spaces with curvature bounded below

Vitali Kapovitch

Example

Toponogov comparison

Examples

Gromov-Hausdorff convergence

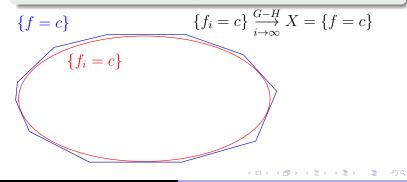
Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Let $\sec N \ge \kappa$ and let $f: N \to \mathbb{R}$ be convex. Let $f_i: N \to \mathbb{R}$ be smooth convex functions converging to f. Let c be any value in the range of f different from max f. Then $\{f_i = c\}$ is a smooth manifold of $\sec \ge \kappa$ and $\{f_i = c\}$ Gromov-Hausdorff converges to $\{f = c\}$ with respect to the intrinsic metrics. (This is not obvious). In particular $\{f = c\}$ is in CBB_{κ} .



Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

• If
$$\mathcal{L}_i \xrightarrow[i \to \infty]{G-H} \mathcal{L}$$
 and $\mathcal{L}_i \in \operatorname{CBB}_{\kappa}$ for all i then $\mathcal{L} \in \operatorname{CBB}_{\kappa}$ too.

・ロン ・四 と ・ ヨ と ・ ヨ と …

э

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

• If
$$\mathcal{L}_i \xrightarrow[i \to \infty]{G-H} \mathcal{L}$$
 and $\mathcal{L}_i \in \text{CBB}_{\kappa}$ for all i then $\mathcal{L} \in \text{CBB}_{\kappa}$ too.

Exercise

Let $f_i: [0,1] \to \mathbb{R}$ be a sequence of convex functions converging to a convex function f. Then the lengths of the graphs also converge, i.e.

 $L(\Gamma_{f_i}) \to L(\Gamma_f)$

(日) (同) (三) (三)

Gromov precompactness criterion

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Gromov)

Let \mathfrak{M} be a class of compact (inner) metric spaces satisfying the following property. There exists a function $N: (0, \infty) \to (0, \infty)$ such that for any $\delta > 0$ and any $X \in \mathfrak{M}$ there are at most $N(\delta)$ points in X

with pairwise distances $\geq \delta$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gromov precompactness criterion

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Gromov)

Let \mathfrak{M} be a class of compact (inner) metric spaces satisfying the following property. There exists a function $N: (0, \infty) \to (0, \infty)$ such that

for any $\delta > 0$ and any $X \in \mathfrak{M}$ there are at most $N(\delta)$ points in X with pairwise distances $\geq \delta$.

Then \mathfrak{M} is precompact in the Gromov-Hausdorff topology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Gromov precompactness criterion

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Gromov)

Let \mathfrak{M} be a class of compact (inner) metric spaces satisfying the following property. There exists a function $N: (0, \infty) \to (0, \infty)$ such that for any $\delta > 0$ and any $X \in \mathfrak{M}$ there are at most $N(\delta)$ points in X

for any $\delta > 0$ and any $X \in \mathfrak{M}$ there are at most $N(\delta)$ points in X with pairwise distances $\geq \delta$.

Then \mathfrak{M} is precompact in the Gromov-Hausdorff topology.

Corollary

The class $\mathfrak{M}_{sec}(n, \kappa, D)$ of complete n-manifolds with $sec \geq \kappa$, diam $\leq D$ is precompact in the the Gromov-Hausdorff topology.

3

Bishop-Gromov volume comparison

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Bishop-Gromov's Relative Volume Comparison)

Suppose
$$M^n$$
 has $\operatorname{Ric}_M \ge (n-1)k$. Then

1)
$$\frac{\operatorname{Vol}(\partial B_r(p))}{\operatorname{Vol}(\partial B_r^k(0))}$$
 and $\frac{\operatorname{Vol}(B_r(p))}{\operatorname{Vol}(B_r^k(0))}$ are nonincreasing in r .

In particular,

(2

$$\begin{aligned} \operatorname{Vol}\left(B_{r}(p)\right) &\leq \operatorname{Vol}\left(B_{r}^{k}(0)\right) \quad \text{for all } r > 0, \\ \frac{\operatorname{Vol}\left(B_{r}(p)\right)}{\operatorname{Vol}\left(B_{R}(p)\right)} &\geq \frac{\operatorname{Vol}\left(B_{r}^{k}(0)\right)}{\operatorname{Vol}\left(B_{R}^{k}(0)\right)} \quad \text{for all } 0 < r \leq R, \end{aligned}$$

Here $B_r^k(0)$ is the ball of radius r in the n-dimensional simply connected space of constant curvature k.

→ ∃ → → ∃ →

A 10

Bishop-Gromov volume comparison

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Bishop-Gromov's Relative Volume Comparison)

Suppose
$$M^n$$
 has $\operatorname{Ric}_M \ge (n-1)k$. Then

1)
$$\frac{\operatorname{Vol}(\partial B_r(p))}{\operatorname{Vol}(\partial B_r^k(0))}$$
 and $\frac{\operatorname{Vol}(B_r(p))}{\operatorname{Vol}(B_r^k(0))}$ are nonincreasing in r .

In particular,

(2

$$\begin{aligned} & \operatorname{Vol}\left(B_r(p)\right) \le \operatorname{Vol}(B_r^k(0)) \quad \text{for all } r > 0, \\ & \operatorname{Vol}\left(B_r(p)\right) \\ & \operatorname{Vol}\left(B_R(p)\right) \ge \frac{\operatorname{Vol}(B_r^k(0))}{\operatorname{Vol}(B_R^k(0))} \quad \text{for all } 0 < r \le R, \end{aligned}$$

Here $B_r^k(0)$ is the ball of radius r in the n-dimensional simply connected space of constant curvature k.

Note that this implies that if the volume of a big ball has a lower bound, then all smaller balls also have lower volume bounds

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of the proof for $K_{\rm sec} \ge 0$

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Consider the following contraction map $f: B_R(p) \to B_r(p)$. Given $x \in B_R(p)$ let $\gamma: [0,1] \to M$ be a shortest geodesic from p to x. Define $f(x) = \gamma(\frac{r}{R})$. At points where the geodesics are not unique we choose any one. By Toponogov comparison we have that

$$|f(x)f(y)| \ge \frac{r}{R}|xy|$$

Therefore

$$\operatorname{Vol}B_r(p) \ge \operatorname{Vol}f(B_R(p)) \ge (\frac{r}{R})^n \operatorname{Vol}B_R(p)$$

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

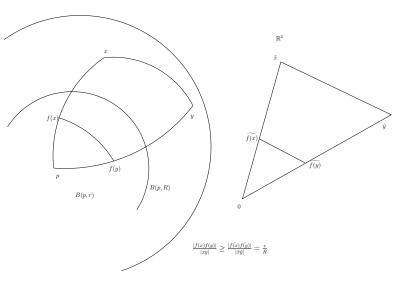
Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions



・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Corollary (δ -separated net bound)

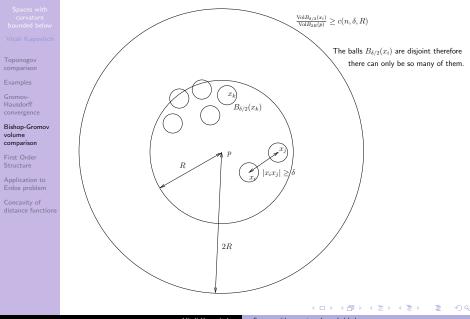
Let (M^n, g) have $\operatorname{Ric} \geq \kappa(n-1)$. Let $p \in M, 0 < \delta < R/2$. Suppose $x_1, \ldots x_N$ is a δ -separated net in $B_R(p)$. Then

 $N \le C(n, R, \delta)$

Proof.

By Bishop-Gromov we have $\operatorname{Vol}B_{\delta/2}(x_i) \ge c(n, R, \delta)\operatorname{Vol}B_{2R}(p)$. Since the balls $B_{\delta/2}(x_i)$ are disjoint we have $\operatorname{Vol}B_{2R}(p) \ge \sum_i \operatorname{Vol}B_{\delta/2}(x_i) \ge N \cdot c(n, R, \kappa, \delta)\operatorname{Vol}B_{2R}(p)$ and the result follows.

(4回) (4回) (4回)



Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let G be a compact connected Lie group with a biinvariant Riemannian metric g_{bi} . It has $\sec \geq 0$.

イロト イポト イヨト イヨト

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let G be a compact connected Lie group with a biinvariant Riemannian metric g_{bi} . It has $\sec \geq 0$. Suppose G acts isometrically on a manifold (M^n,g) with $\sec \geq \kappa$ with $\kappa \leq 0$. Let $M_{\varepsilon} = (G, \varepsilon g_{bi}) \times (M,g))/G$ with the induced Riemannian metric g_{ε} .

Example

let $G = S^1, M = S^3$. For the action $\lambda(z_1, z_2) = (\lambda z_1, z_2)$ we have that (S^3, g_{ε}) has $\sec \ge 0$ and $(S^3, g_{\varepsilon}) \to S^2_+$. For the diagonal Hopf action $\lambda(z_1, z_2) = (\lambda z_1, z_2)$ we have that (S^3, g_{ε}) converges to S^2 .

イロン 不同 とくほう イヨン

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let G be a compact connected Lie group with a biinvariant Riemannian metric g_{bi} . It has $\sec \geq 0$. Suppose G acts isometrically on a manifold (M^n, g) with $\sec \geq \kappa$ with $\kappa \leq 0$. Let $M_{\varepsilon} = (G, \varepsilon g_{bi}) \times (M, g))/G$ with the induced Riemannian metric g_{ε} .

Then $\operatorname{sec}(M_{\varepsilon}) \geq \kappa$ and $M_{\varepsilon} \to M/G$ as $\varepsilon \to 0$.

Example

let $G = S^1, M = S^3$. For the action $\lambda(z_1, z_2) = (\lambda z_1, z_2)$ we have that (S^3, g_{ε}) has $\sec \ge 0$ and $(S^3, g_{\varepsilon}) \to S^2_+$. For the diagonal Hopf action $\lambda(z_1, z_2) = (\lambda z_1, z_2)$ we have that (S^3, g_{ε}) converges to S^2 .

イロン 不同 とくほう イヨン

Vitali Kapovitch

Theorem (Yamaguchi)

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Let $M_i^n \to N^m$ as $i \to \infty$ in Gromov-Hausdorff topology. where $\sec(M_i^n) \ge k$ and N is a smooth manifold. Then for all large i there exists a fiber bundle $F_i \to M_i^n \to N$.

イロン 不同 とくほう イヨン

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Yamaguchi)

Let $M_i^n \to N^m$ as $i \to \infty$ in Gromov-Hausdorff topology. where $\sec(M_i^n) \ge k$ and N is a smooth manifold. Then for all large i there exists a fiber bundle $F_i \to M_i^n \to N$.

Theorem (Perelman's stability theorem)

Let \mathcal{X}_i^n be a sequence of *n*-dimensional Alexandrov spaces with $curv \geq \kappa$ Gromov-Hausdorff converging to \mathcal{X} where $\dim \mathcal{X} = n$.

イロン 不同 とくほう イヨン

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Yamaguchi)

Let $M_i^n \to N^m$ as $i \to \infty$ in Gromov-Hausdorff topology. where $\sec(M_i^n) \ge k$ and N is a smooth manifold. Then for all large i there exists a fiber bundle $F_i \to M_i^n \to N$.

Theorem (Perelman's stability theorem)

Let \mathcal{X}_i^n be a sequence of *n*-dimensional Alexandrov spaces with $curv \geq \kappa$ Gromov-Hausdorff converging to \mathcal{X} where dim $\mathcal{X} = n$. Then \mathcal{X}_i is homeomorphic to \mathcal{X} for all large *i*.

イロン 不同 とくほう イヨン

Space of directions

Definition

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Let $X \in CBB_{\kappa}^{n}$ and $p \in X$ be a point. Let $S_{p}X$ be the space of directions of geodesics starting at p with angle as the distance on $S_{p}X$. We define the space of directions to X at p as the metric completion of $S_{p}X$

$$\Sigma_p X :\stackrel{def}{=} \bar{S}_p X$$

• For a smooth manifold M^n with $\sec \ge k$ we have that $S_pM = \Sigma_pM \cong \mathbb{S}^{n-1}$ for any $p \in M$.

< ロ > < 同 > < 回 > < 回 > :

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

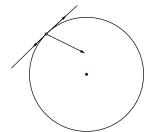
Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions • If $\mathcal{X} = \bar{B}(0,1) \subset \mathbb{R}^2$. then for any $p \in \partial B(0,1)$ we have that

 $S_p \mathcal{X} \cong (0, \pi) \qquad \Sigma_p \mathcal{X} \cong [0, \pi]$



イロン 不同 とくほう イヨン

э

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions • If G is a compact Lie group acting isometrically on M^n and $\mathcal{X}=M/G$ then for any $p\in M$

$$\Sigma_{[p]} X \cong \mathbb{S}^{k-1}/G_p$$

where k is the codimension of the orbit Gp in M and G_p is the isotropy subgroup of p.

< 🗇 🕨

A B + A B +

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions • If G is a compact Lie group acting isometrically on M^n and $\mathcal{X}=M/G$ then for any $p\in M$

$$\Sigma_{[p]} X \cong \mathbb{S}^{k-1}/G_p$$

where k is the codimension of the orbit Gp in M and G_p is the isotropy subgroup of p. In particular, Let Z_2 act on \mathbb{R}^n by reflection in the origin. Then $X = \mathbb{R}^n/G = C(\mathbb{R}\mathbb{P}^{n-1})$ and $\Sigma_{[0]}\mathcal{X} \cong \mathbb{R}\mathbb{P}^{n-1}$

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions • If G is a compact Lie group acting isometrically on M^n and $\mathcal{X}=M/G$ then for any $p\in M$

$$\Sigma_{[p]}X\cong \mathbb{S}^{k-1}/G_p$$

where k is the codimension of the orbit Gp in M and G_p is the isotropy subgroup of p. In particular, Let Z_2 act on \mathbb{R}^n by reflection in the origin. Then $X = \mathbb{R}^n/G = C(\mathbb{R}\mathbb{P}^{n-1})$ and $\Sigma_{[0]}\mathcal{X} \cong \mathbb{R}\mathbb{P}^{n-1}$

Theorem

Let $X \in \operatorname{CBB}_{\kappa}^{n}$ and $p \in X$ be a point. Then $(\lambda X, p) \to C(\Sigma_{p} \mathcal{X})$ as $\lambda \to \infty$. In particular, $C(\Sigma_{p} \mathcal{X})$ has $curv \ge 0$ and hence Σ has $curv \ge 1$.

$$T_p \mathcal{X} \stackrel{def}{=} C(\Sigma_p \mathcal{X})$$

is called the tangent space to \mathcal{X} at p.

★ Ξ ► ★ Ξ ►

< 17 ▶

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Perelman)

Let $\mathcal{X} \in CBB_{\kappa}^{n}$. Then for any $p \in \mathcal{X}$ there is a small neighbourhood of p homeomorphic to $T_{p}\mathcal{X}$.

э

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Perelman)

Let $\mathcal{X} \in \operatorname{CBB}_{\kappa}^{n}$. Then for any $p \in \mathcal{X}$ there is a small neighbourhood of p homeomorphic to $T_{p}\mathcal{X}$. By induction on dimension this implies that X is a stratified manifold.

First Variation Formula

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Let $X \in \operatorname{CBB}_{\kappa}^{n}$ and $p \in X$ be a point. Let f(x) = |xp|. Then f has directional derivatives at every pout $q \in p$ given by the following formula. Let $\Uparrow_{q}^{p} = \{u \in \Sigma_{q} \mathcal{X} | \text{ such that } u \text{ is a direction of a shortest geodesic from } q \text{ to } p\}$. Then

$$D_v f(q) = -\cos \alpha$$
 where $\alpha = \inf_{u \in \Uparrow_q^p} \angle uv$

First Variation Formula

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

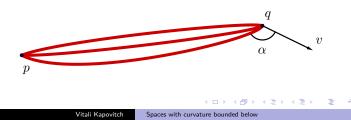
First Order Structure

Application to Erdos problem

Concavity of distance functions Let $X \in \operatorname{CBB}_{\kappa}^{n}$ and $p \in X$ be a point. Let f(x) = |xp|. Then f has directional derivatives at every pout $q \in p$ given by the following formula. Let $\Uparrow_{q}^{p} = \{u \in \Sigma_{q} \mathcal{X} | \text{ such that } u \text{ is a direction of a shortest geodesic from } q \text{ to } p\}$. Then

$$D_v f(q) = -\cos \alpha$$
 where $\alpha = \inf_{u \in \Uparrow_q^p} \angle uv$

$$D_v f(q) = \inf_{u \in \uparrow_q^p} \langle u, v \rangle$$



Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of \mathbb{R}^n . Then Γ has no more than 2^n isolated singular orbits.

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of \mathbb{R}^n . Then Γ has no more than 2^n isolated singular orbits.

Let $\mathcal{X} = \mathbb{R}^n / \Gamma$. Then isolated singular orbits project to points p_i in \mathcal{X} such that $\Sigma_{p_i} \mathcal{X}$ has diameter $\leq \pi/2$ (exercise). Now the above result follows from

・ 同 ト ・ ヨ ト ・ ヨ ト

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of \mathbb{R}^n . Then Γ has no more than 2^n isolated singular orbits.

Let $\mathcal{X} = \mathbb{R}^n / \Gamma$. Then isolated singular orbits project to points p_i in \mathcal{X} such that $\Sigma_{p_i} \mathcal{X}$ has diameter $\leq \pi/2$ (exercise). Now the above result follows from

Theorem (Perelman)

Let $\mathcal{X} \in \text{CBB}_0^n$. Let $p_1, \ldots p_N \in \mathcal{X}$ satisfy diam $\Sigma_{p_i} \leq \pi/2$. Then $N \leq 2^n$.

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of \mathbb{R}^n . Then Γ has no more than 2^n isolated singular orbits.

Let $\mathcal{X} = \mathbb{R}^n / \Gamma$. Then isolated singular orbits project to points p_i in \mathcal{X} such that $\Sigma_{p_i} \mathcal{X}$ has diameter $\leq \pi/2$ (exercise). Now the above result follows from

Theorem (Perelman)

Let $\mathcal{X} \in \text{CBB}_0^n$. Let $p_1, \ldots p_N \in \mathcal{X}$ satisfy diam $\Sigma_{p_i} \leq \pi/2$. Then $N \leq 2^n$.

This bound is sharp (e.g. for a cube).

イロン 不同 とくほう イヨン

Proof

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Assume \mathcal{X} is compact. Consider the Voronoi cells $V_i = \{x \in \mathcal{X} | \text{ such that } |xp_i| \leq |xp_j| \text{ for all } j \neq i\}.$ For any i and let $U_i = \{x \in \mathcal{X} | \text{ such that } x \text{ is the middle of a }$

shortest geodesic [py(x)] for some (necessarily uniquely defined) y(x). Look at the map $f_i: U_i \to \mathcal{X}$ given by $x \mapsto y(x)$.

Then f is onto and, by Toponogov comparison, f is 2-Lipschitz. therefore,

 $\operatorname{Vol} U_i \ge \frac{1}{2^n} \operatorname{Vol} \mathcal{X}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Claim:

$$U_i \subset V_i$$

Let $x \in U_i$. then there is y such that x is the midpoint of $[p_iy]$. Let $a = |p_ix| = |xy| = \frac{1}{2}|p_iy|$. Let $j \neq i$. We have $\alpha \leq \pi/2$ because diam $\sum_{p_j} \mathcal{X} \leq \pi/2$. Consider the triangle $\Delta p_i y p_j$ and its comparison triangle $\Delta \tilde{p}_i \tilde{y} \tilde{p}_j$ in \mathbb{R}^2 Then $\tilde{\alpha} \leq \alpha \leq \pi/2$ and hence \tilde{p}_j lies outside the circle of radius a centred at \tilde{x} . Hence $|\tilde{p}_j \tilde{x}| \geq a$. By triangle comparison $|p_j x| \geq |\tilde{p}_j \tilde{x}|$. Therefore

 $|p_j x| \ge |\tilde{p}_j \tilde{x}| \ge a = |p_i x|$

Since j was arbitrary this means that $U_i \subset V_i$ which proves the claim.

くぼう くほう くほう

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Grom volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Therefore

$$\operatorname{Vol} V_i \ge \operatorname{Vol} U_i \ge \frac{1}{2^n} \operatorname{Vol} \mathcal{X}$$

Since $\sum_{i=1}^{N} \operatorname{Vol} V_i = \operatorname{Vol} \mathcal{X}$ this implies that $N \leq 2^n$.

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Grom volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Therefore

$$\operatorname{Vol} V_i \ge \operatorname{Vol} U_i \ge \frac{1}{2^n} \operatorname{Vol} \mathcal{X}$$

Since $\sum_{i=1}^{N} \operatorname{Vol} V_i = \operatorname{Vol} \mathcal{X}$ this implies that $N \leq 2^n$. If \mathcal{X} is non compact then using Busemann functions one can construct a proper convex function $f: \mathcal{X} \to \mathbb{R}$. Let $Y = \{f \leq c\}$ be a sublevel set containing all singular points of \mathcal{X} in its interior. Then the double of Y along its boundary is still an Alexandrov space of $curv \geq 0$. By the result for the compact case Y has at most 2^n singular points.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Concavity of distance functions

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

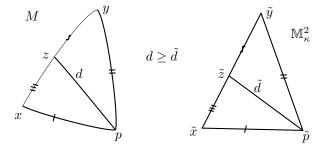
First Order Structure

Application to Erdos problem

Concavity of distance functions • **Point-on-a-side comparison.** Recall that in a space of $curv \ge \kappa$ for any geodesic [xy] and $z \in]xy[$, we have

 $|pz| \ge |\tilde{p}\tilde{z}|$

where
$$\Delta \tilde{p} \tilde{x} \tilde{y} = \tilde{\Delta}^{\kappa} p x y$$
 and $|xz| = |\tilde{x} \tilde{z}|$.



→ ∃ → → ∃ →

< 10 b

How concave is that?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions This means that distance function to a point is more concave than the distance function to a point in the space of constant curvature. How concave is that?

Definition

Define $md_k(r)$ by the formula

$$\mathrm{md}_{k}(r) = \begin{cases} \frac{r^{2}}{2} \text{ if } r = 0\\ \frac{1}{k}(1 - \cos(\sqrt{k}r)) \text{ if } k > 0\\ \frac{1}{k}(1 - \cosh(\sqrt{|k|}r)) \text{ if } k < 0 \end{cases}$$

How concave is that?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions This means that distance function to a point is more concave than the distance function to a point in the space of constant curvature. How concave is that?

Definition

Define $md_k(r)$ by the formula

$$\mathrm{md}_{k}(r) = \begin{cases} \frac{r^{2}}{2} \text{ if } r = 0\\ \frac{1}{k}(1 - \cos(\sqrt{k}r)) \text{ if } k > 0\\ \frac{1}{k}(1 - \cosh(\sqrt{|k|}r)) \text{ if } k < 0 \end{cases}$$

Then

-

 $md_k(0) = 0, md'_k(0) = 1 \text{ and } md''_k + kmd_k \equiv 1$

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Let $f(x) = \mathrm{md}_k(|xp|)$ where $p \in \mathbb{M}_k^n$ - simply connected space form of constant curvature k we have $\mathrm{Hess}_x f = (1 - kf(x))\mathrm{Id}$. In particular, for any unit speed geodesic $\gamma(t)$ we have that

 $f(\gamma(t))'' + kf(\gamma(t)) = 1$

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions Let $f(x) = \mathrm{md}_k(|xp|)$ where $p \in \mathbb{M}_k^n$ - simply connected space form of constant curvature k we have $\mathrm{Hess}_x f = (1 - kf(x))\mathrm{Id}$. In particular, for any unit speed geodesic $\gamma(t)$ we have that

 $f(\gamma(t))'' + kf(\gamma(t)) = 1$

Note that for k = 0 this means that $\operatorname{Hess}_x f = \operatorname{Id}$ and

 $f(\gamma(t))'' = 1$

- 4 回 2 4 U 2 4 U

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Toponogov restated)

Let \mathcal{X} have $curv \ge k$ and $p \in \mathcal{X}$. Let $f(x) = md_k(|xp|)$. Then

$$\operatorname{Hess}_{x} f \leq (1 - kf(x)) \operatorname{Id}$$

and

$$f(\gamma(t))'' + kf(\gamma(t)) \le 1$$

For any unit speed geodesic γ .

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Toponogov restated)

Let \mathcal{X} have $curv \ge k$ and $p \in \mathcal{X}$. Let $f(x) = md_k(|xp|)$. Then

$$\operatorname{Hess}_{x} f \leq (1 - kf(x)) \operatorname{Id}$$

and

$$f(\gamma(t))'' + kf(\gamma(t)) \le 1$$

For any unit speed geodesic γ .

These inequalities can be understood in the barrier sense or in the following sense.

Definition

A function $f: M \to \mathbb{R}$ is called λ -concave if for any unit speed geodesic $\gamma(t)$ we have

$$f(\gamma(t)) + rac{\lambda t^2}{2}$$
 is concave

< 171 ▶

注 ト イ ヨ ト

Why do we care?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

This means that spaces with $curv\geq\kappa$ naturally possess a LOT of semiconcave functions. Why do we care? They provide a useful technical tools.

Specifically, the following simple observation is of crucial importance.

heorem

Gradient flow of a concave function *f* on an Alexandrov space is 1-Lipshitz.

roof.

Let $p, q \in \mathcal{X}$ and let $\gamma: [0, d] \to \mathcal{X}$ be a unit speed geodesic with $\gamma(0) = p, \gamma(d) = q$. Here d = |pq|. Let ϕ_t be the gradient flow of f.

(人間) システン イラン

Why do we care?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions This means that spaces with $curv\geq\kappa$ naturally possess a LOT of semiconcave functions. Why do we care? They provide a useful technical tools.

Specifically, the following simple observation is of crucial importance.

Theorem

Gradient flow of a concave function f on an Alexandrov space is 1-Lipshitz.

Proof.

Let $p, q \in \mathcal{X}$ and let $\gamma: [0, d] \to \mathcal{X}$ be a unit speed geodesic with $\gamma(0) = p, \gamma(d) = q$. Here d = |pq|. Let ϕ_t be the gradient flow of f.

Why do we care?

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions This means that spaces with $curv\geq\kappa$ naturally possess a LOT of semiconcave functions. Why do we care? They provide a useful technical tools.

Specifically, the following simple observation is of crucial importance.

Theorem

Gradient flow of a concave function f on an Alexandrov space is 1-Lipshitz.

Proof.

Let $p,q \in \mathcal{X}$ and let $\gamma: [0,d] \to \mathcal{X}$ be a unit speed geodesic with $\gamma(0) = p, \gamma(d) = q$. Here d = |pq|. Let ϕ_t be the gradient flow of f.

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

By the first variation formula

$$|\phi_t(p)\phi_t(q)|'_+(0) \le \langle \nabla_q f, \gamma'(d) \rangle - \langle \nabla_p f, \gamma'(0) \rangle$$

Vitali Kapovitch Spaces with curvature bounded below

・ロン ・回 と ・ ヨ と ・ ヨ と …

э

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

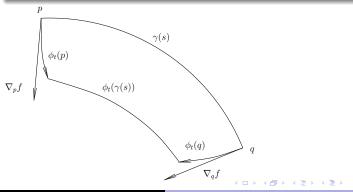
Concavity of distance functions

By the first variation formula

$$|\phi_t(p)\phi_t(q)|'_+(0) \le \langle \nabla_q f, \gamma'(d) \rangle - \langle \nabla_p f, \gamma'(0) \rangle$$

 $\langle \nabla_q f, \gamma'(d) \rangle - \langle \nabla_p f, \gamma'(0) \rangle = f(\gamma(d))' - f(\gamma(0))' \le 0$

since $f(\gamma(s))$ is concave.



э

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

A similar argument shows that if f is λ -concave then ϕ_t is $e^{\lambda t}$ -Lipschitz.

Yamaguchi's Fibration Theorem and gradient flows of semi-concave functions are key technical tools for proving topological results about manifolds with lower sectional curvature bounds. Typical application is the following

Let $X \in \operatorname{CBB}^n_{\kappa}$ and let $f \colon \mathcal{X} \to \mathbb{R}$ be λ -concave and locally Lipschitz. Let $p \in \mathcal{X}$. Then $df_p \colon T_p \mathcal{X} \to \mathbb{R}$ is Lipschitz and concave.

< 回 > < 三 > < 三 >

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions A similar argument shows that if f is λ -concave then ϕ_t is $e^{\lambda t}$ -Lipschitz. Yamaguchi's Fibration Theorem and gradient flows of semi-concave functions are key technical tools for proving topological results about manifolds with lower sectional curvature bounds. Typical application is the following

Let $X \in \operatorname{CBB}_{\kappa}^{n}$ and let $f : \mathcal{X} \to \mathbb{R}$ be λ -concave and locally Lipschitz. Let $p \in \mathcal{X}$. Then $df_p : T_p \mathcal{X} \to \mathbb{R}$ is Lipschitz and concave.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A vector in $T_p \mathcal{X}$ is called the gradient of f at p and denoted by $\nabla_p f$ is if it satisfies the following conditions

$$df_p(\nabla_p f) = |(\nabla_p f)|^2$$

(人間) システン イラン

э

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A vector in $T_p \mathcal{X}$ is called the gradient of f at p and denoted by $\nabla_p f$ is if it satisfies the following conditions

 $df_p(\nabla_p f) = |(\nabla_p f)|^2$

 $df_p(v) \leq \langle \nabla_p f, v \rangle \text{ for any } v \in T_p \mathcal{X}$

通 と く ヨ と く ヨ と

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A vector in $T_p \mathcal{X}$ is called the gradient of f at p and denoted by $\nabla_p f$ is if it satisfies the following conditions

$$df_p(\nabla_p f) = |(\nabla_p f)|^2$$

2)
$$df_p(v) \leq \langle
abla_p f, v
angle$$
 for any $v \in T_p \mathcal{X}$

Lemma

• Let $f: \mathcal{X} \to \mathbb{R}$ be λ -concave and Lipschitz and let $p \in \mathcal{X}$. Then $\nabla_p f$ exists and is unique.

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A vector in $T_p \mathcal{X}$ is called the gradient of f at p and denoted by $\nabla_p f$ is if it satisfies the following conditions

$$df_p(\nabla_p f) = |(\nabla_p f)|^2$$

2)
$$df_p(v) \leq \langle
abla_p f, v
angle$$
 for any $v \in T_p \mathcal{X}$

Lemma

- Let $f: \mathcal{X} \to \mathbb{R}$ be λ -concave and Lipschitz and let $p \in \mathcal{X}$. Then $\nabla_p f$ exists and is unique.
- **2** $|\nabla_p f|$ is lower semicontinuous: Let (\mathcal{X}_i, p_i) be a sequence of Alexandrov spaces with $curv \ge \kappa$ converging to (\mathcal{X}, p) . And let $f_i: \mathcal{X}_i \to \mathbb{R}$ be L-Lipschitz and λ -concave and converge to $f: \mathcal{X} \to \mathbb{R}$. Then

$$|\nabla_p f| \le \liminf_{i \to \infty} |\nabla_{p_i} f_i|$$

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let $\mathcal{X} \in \text{CBB}_{\kappa}$ and let $f: \mathcal{X} \to \mathbb{R}$ be λ -concave and Lipschitz. A curve $\gamma: I \to \mathcal{X}$ is called a gradient curve of f if

 $\gamma'_+(t) = \nabla_{\gamma(t)} f$ for all t

(4回) (4回) (4回)

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let $\mathcal{X} \in \text{CBB}_{\kappa}$ and let $f : \mathcal{X} \to \mathbb{R}$ be λ -concave and Lipschitz. A curve $\gamma : I \to \mathcal{X}$ is called a gradient curve of f if

 $\gamma'_+(t) = \nabla_{\gamma(t)} f$ for all t

Theorem

For any $p \in \mathcal{X}$ there exists unique gradient curve of $f \gamma: [0, \infty) \to \mathcal{X}$ such that $\gamma(0) = p$.

Spaces with curvature bounded below

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

Let $\mathcal{X} \in \text{CBB}_{\kappa}$ and let $f : \mathcal{X} \to \mathbb{R}$ be λ -concave and Lipschitz. A curve $\gamma : I \to \mathcal{X}$ is called a gradient curve of f if

 $\gamma'_+(t) = \nabla_{\gamma(t)} f$ for all t

Theorem

For any $p \in \mathcal{X}$ there exists unique gradient curve of $f \gamma: [0, \infty) \to \mathcal{X}$ such that $\gamma(0) = p$.

Remark

Gradient curves starting at different points can merge.

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Splitting theorem)

Let \mathcal{X}^n be an Alexandrov space of $curv \ge 0$. Suppose \mathcal{X} contains a line.

Then X is isometric to $Y \times \mathbb{R}$ for some Alexandrov space Y^{n-1} of $curv \ge 0$.

3

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Splitting theorem)

Let \mathcal{X}^n be an Alexandrov space of $curv \ge 0$. Suppose \mathcal{X} contains a line.

Then X is isometric to $Y \times \mathbb{R}$ for some Alexandrov space Y^{n-1} of $curv \ge 0$.

Corollary (Almost splitting)

Let $(M_i^n, p_i) \xrightarrow[i \to \infty]{G-H} (X, p)$ where $\sec_{M_i} \ge -\frac{1}{i}$, where p_i is the middle of a shortest geodesic of length $l_i \to \infty$. Then X is isometric to $Y \times \mathbb{R}$ for some nonnegatively curved space Y.

イロン 不同 とくほう イロン

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (Splitting theorem)

Let \mathcal{X}^n be an Alexandrov space of $curv \ge 0$. Suppose \mathcal{X} contains a line.

Then X is isometric to $Y \times \mathbb{R}$ for some Alexandrov space Y^{n-1} of $curv \ge 0$.

Corollary (Almost splitting)

Let $(M_i^n, p_i) \xrightarrow[i \to \infty]{G-H} (X, p)$ where $\sec_{M_i} \ge -\frac{1}{i}$, where p_i is the middle of a shortest geodesic of length $l_i \to \infty$. Then X is isometric to $Y \times \mathbb{R}$ for some nonnegatively curved space Y.

Theorem

Let \mathcal{X}^n be a compact Alexandrov space of $curv \ge 0$. Then a finite cover of \mathcal{X} is homeomorphic to $T^k \times \mathcal{Y}$ for some simply-connected nonnegatively curved Alexandrov space \mathcal{Y} . In particular, $\pi_1(X)$ is virtually abelian.

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A closed smooth manifold M is called almost nonnegatively curved if it admits a sequence of Riemannian metrics g_i such that satisfy

 $\operatorname{sec}(M, g_i) \ge -1$ and $(M, g_i) \to \{pt\}$ as $i \to \infty$.

by rescaling this is equivalent to M admits a sequence of metrics g_i such that

 $\operatorname{diam}(M, g_i) \le 1 \qquad \operatorname{sec}(M, g_i) \ge -1/i$

(1日) (日) (日)

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Definition

A closed smooth manifold M is called almost nonnegatively curved if it admits a sequence of Riemannian metrics g_i such that satisfy

 $\operatorname{sec}(M, g_i) \ge -1$ and $(M, g_i) \to \{pt\}$ as $i \to \infty$.

by rescaling this is equivalent to M admits a sequence of metrics g_i such that

 $\operatorname{diam}(M, g_i) \le 1 \qquad \operatorname{sec}(M, g_i) \ge -1/i$

Example (Boring Example)

Let M^n be compact of $\sec \geq 0.$ Then it is almost nonnegatively curved.

イロン 不同 とくほう イロン

3

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let N^3 be the space of real 3×3 of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

 N^3 is a nilpotent Lie group. Let $\Gamma = N \cap SL(3, \mathbb{Z})$. Then $M^3 = N/\Gamma$ admits almost nonnegative sectional curvature. But it does not admit nonnegative sectional curvature because Γ is not virtually abelian.

・ 同 ト ・ ヨ ト ・ ヨ ト

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let N^3 be the space of real 3×3 of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

 N^3 is a nilpotent Lie group. Let $\Gamma = N \cap SL(3, \mathbb{Z})$. Then $M^3 = N/\Gamma$ admits almost nonnegative sectional curvature. But it does not admit nonnegative sectional curvature because Γ is not virtually abelian.

Theorem (Fukaya-Yamaguchi, Kapovitch-Petrunin-Tuschmann)

Let M^n be almost nonnegatively curved. Then $\pi_1(M)$ contains a nilpotent subgroup of index $\leq C(n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (KPT)

Let M^n be almost nonnegatively curved. Then a finite cover of M is a fiber bundle over a nilmanifold with a simply connected fiber.

イロト イポト イヨト イヨト

э

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromov volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Theorem (KPT)

Let M^n be almost nonnegatively curved. Then a finite cover of M is a fiber bundle over a nilmanifold with a simply connected fiber.

Theorem (KPT)

Let M^n be almost nonnegatively curved. Then a finite cover of M'of M is nilpotent, i.e $\pi_1(M')$ is nilpotent and $\pi_1(M')$ acts on $\pi_k(M')$ nilpotently for all $k \ge 2$.

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let $h: S^3 \times S^3 \to S^3 \times S^3$ be defined by

 $h:(x,y)\mapsto (xy,yxy).$

This map is a diffeomorphism and the induced map h_* on $\pi_3(S^3 \times S^3)$ is given by the matrix $A_h = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Notice that the eigenvalues of A_h are different from 1 in absolute value.

(4回) (4回) (4回)

Vitali Kapovitch

Toponogov comparison

Examples

Gromov-Hausdorff convergence

Bishop-Gromo volume comparison

First Order Structure

Application to Erdos problem

Concavity of distance functions

Example

Let $h: S^3 \times S^3 \to S^3 \times S^3$ be defined by

 $h:(x,y)\mapsto (xy,yxy).$

This map is a diffeomorphism and the induced map h_* on $\pi_3(S^3 \times S^3)$ is given by the matrix $A_h = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Notice that the eigenvalues of A_h are different from 1 in absolute value. Let M be the mapping cylinder of h. Clearly, M has the structure of a fiber bundle $S^3 \times S^3 \to M \to S^1$, and the action of $\pi_1(M) \cong \mathbb{Z}$ on $\pi_3(M) \cong \mathbb{Z}^2$ is generated by A_h . In particular, M is not a nilpotent space and hence, it does not admit almost nonnegative curvature.

・ 同 ト ・ ヨ ト ・ ヨ ト