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Theorem (Toponogov comparison)

Let (Mn, g) be a complete Riemannian manifold of Ksec ≥ κ. Let
∆pqr be a geodesic triangle in M and let ∆p̃q̃r̃ = ∆̃κpqr be a
comparison triangle in Mn

κ Then α ≥ α̃, β ≥ β̃, γ ≥ γ̃.
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Equivalent formulations

Point-on-a-side comparison. For any geodesic [xy] and
z ∈]xy[, we have

|pz| ≥ |p̃z̃|

where ∆p̃x̃ỹ = ∆̃κpxy and |xz| = |x̃z̃|.

p p̃

x

x̃

y ỹ
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Comparison angles are monotone.
Given two shortest unit speed geodesics γ1(t), γ2(s) with

p = γ1(0), γ2(0) in M the function (t, s) 7→ ]̃κ(p
γ1(t)
γ2(s)) is

monotone non-increasing in both t and s.
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Hinge comparison Given two shortest unit speed geodesics
γ1(t), γ2(s) with p = γ1(0), γ2(0) in M let γ̃1, γ̃2 be two
geodesics in M2

κ with p̃ = γ̃1(0) = γ̃2(0) and
∠γ′1(0)γ′2(0) = ∠γ̃′1(0)γ̃′2(0).
Then |γ1(t), γ2(s)| ≤ |γ̃1(t), γ̃2(s)|.
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(1+3)-comparison For any p, x1, x2, x3 ∈M we have

]̃κ(p x
1

x2) + ]̃κ(p x
2

x3) + ]̃κ(p x
3

x1) ≤ 2π
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Rauch Comparison implies that it holds locally i.e. for every point in
M with sec ≥ κ there is a small neighbourhood where Toponogov
comparison (in any of its equivalent formulations) holds.

Globalization theorem implies that if comparison holds locally then it
holds globally .
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Alexandrov spaces

Definition

A complete intrinsic metric space L is called an Alexandrov space
with curvature ≥ κ (briefly, L ∈ CBBκ) if any quadruple
p, x1, x2, x3 ∈ L satisfies (1+3)-point comparison.

Theorem (Globalization Theorem)

Let L be a complete intrinsic metric space such that for any point p
there exists R > 0 such that (1+3)-comparison with respect to κ
holds for any x1, x2, x3, x4 ∈ B(p,R).
Then L ∈ CBBκ.

We will only consider finite dimensional Alexandrov spaces.
They are proper and in particular geodesic.
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Alexandrov spaces

Definition

Let L ∈ CBBκ and let γ1(t), γ2(s) be geodesics with
γ1(0) = γ2(0) = p.
Then the angle α between them is defined as

α :
def
= lim

t,s→0
]̃κ(p

γ1(t)
γ2(s))
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Examples

If Mn is a complete Riemannian manifold with sec ≥ κ then
M ∈ CBBκ.

If L ∈ CBBκ and U ⊂ L is a closed convex subset then
U ∈ CBBκ

If (X, dX), (Y, dY ) are in CBBκ with κ ≤ 0 then
(X × Y, d) ∈ CBBκ where
d((x, y), (x′, y′)) =

√
d2
X(x, x′) + d2

Y (y, y′)

If Σ has curv ≥ 1 then C(Σ) - the Euclidean cone over Σ has
curv ≥ 0. Here d((t, v), (s, u)) :=

√
t2 + s2 − 2ts cos dΣ(u, v).
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Let L ∈ CBBκ and let G be a compact group acting on L by
isometries. Then L/G is in CBBκ too.
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L L/G

|pxi| = |[p][xi]|

|xixj | ≥ |[xi][xj ]|
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α̃1 ≥ α̃2, β̃1 ≥ β̃2, γ̃1 ≥ γ̃2

α̃2 + β̃2 + γ̃2 ≤ α̃1 + β̃1 + γ̃1 ≤ 2π
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Gromov-Hausdorff convergence

Definition

Let X,Y be two compact inner metric spaces. A map f : X → Y is
called an ε-Hausdorff approximation if

||f(p)f(q)| − |pq|| ≤ ε for any p, q ∈ X;

For any y ∈ Y there exists p ∈ X such that |f(p)y| ≤ ε
We define the Gromov-Hausdorff distance between X and Y as
dG−H(X,Y ) = inf ε such that there exist ε-Hausdorff approximation
from X to Y .

Gromov-Hausdorff distance (symmetrized) turns out to be a distance
on the set of isometry classes of compact inner metric spaces.

Remark

If f : X → Y is an ε-Hausdorff approximation then there exist
g : Y → X which is a 2ε-Hausdorff approximation.
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Gromov-Hausdorff convergence

Example

Let secN ≥ κ and let f : N → R be convex. Let fi : N → R be
smooth convex functions converging to f . Let c be any value in the
range of f different from max f . Then {fi = c} is a smooth
manifold of sec ≥ κ and {fi = c} Gromov-Hausdorff converges to
{f = c} with respect to the intrinsic metrics. (This is not obvious).
In particular {f = c} is in CBBκ.

{fi = c}

{f = c} {fi = c} G−H−→
i→∞

X = {f = c}
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Gromov-Hausdorff convergence

If Li
G−H−→
i→∞

L and Li ∈ CBBκ for all i then L ∈ CBBκ too.

Exercise

Let fi : [0, 1]→ R be a sequence of convex functions converging to a
convex function f . Then the lengths of the graphs also converge, i.e.

L(Γfi)→ L(Γf )
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Gromov precompactness criterion

Theorem (Gromov)

Let M be a class of compact (inner) metric spaces satisfying the
following property. There exists a function N : (0,∞)→ (0,∞) such
that
for any δ > 0 and any X ∈M there are at most N(δ) points in X
with pairwise distances ≥ δ.

Then M is precompact in the Gromov-Hausdorff topology.

Corollary

The class Msec(n, κ,D) of complete n-manifolds with
sec ≥ κ,diam ≤ D is precompact in the the Gromov-Hausdorff
topology.

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Gromov precompactness criterion

Theorem (Gromov)

Let M be a class of compact (inner) metric spaces satisfying the
following property. There exists a function N : (0,∞)→ (0,∞) such
that
for any δ > 0 and any X ∈M there are at most N(δ) points in X
with pairwise distances ≥ δ.
Then M is precompact in the Gromov-Hausdorff topology.

Corollary

The class Msec(n, κ,D) of complete n-manifolds with
sec ≥ κ,diam ≤ D is precompact in the the Gromov-Hausdorff
topology.

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Gromov precompactness criterion

Theorem (Gromov)

Let M be a class of compact (inner) metric spaces satisfying the
following property. There exists a function N : (0,∞)→ (0,∞) such
that
for any δ > 0 and any X ∈M there are at most N(δ) points in X
with pairwise distances ≥ δ.
Then M is precompact in the Gromov-Hausdorff topology.

Corollary

The class Msec(n, κ,D) of complete n-manifolds with
sec ≥ κ,diam ≤ D is precompact in the the Gromov-Hausdorff
topology.

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Bishop-Gromov volume comparison

Theorem (Bishop-Gromov’s Relative Volume Comparison)

Suppose Mn has RicM ≥ (n− 1)k. Then

(1)
Vol (∂Br(p))

Vol(∂Bkr (0))
and

Vol (Br(p))

Vol(Bkr (0))
are nonincreasing in r.

In particular,

Vol (Br(p)) ≤ Vol(Bkr (0)) for all r > 0,(2)

Vol (Br(p))

Vol (BR(p))
≥ Vol(Bkr (0))

Vol(BkR(0))
for all 0 < r ≤ R,(3)

Here Bkr (0) is the ball of radius r in the n-dimensional simply
connected space of constant curvature k.

Note that this implies that if the volume of a big ball has a lower
bound, then all smaller balls also have lower volume bounds
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Idea of the proof for Ksec ≥ 0

Consider the following contraction map f : BR(p) → Br(p). Given
x ∈ BR(p) let γ : [0, 1] → M be a shortest geodesic from p to x.
Define f(x) = γ( rR ). At points where the geodesics are not unique we
choose any one. By Toponogov comparison we have that

|f(x)f(y)| ≥ r

R
|xy|

Therefore

VolBr(p) ≥ Volf(BR(p)) ≥ (
r

R
)nVolBR(p)
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ỹ

|f(x)f(y)|
|xy| ≥ | ˜f(x) ˜f(y)|

|x̃ỹ| = r
R

p

x

yf(x)

f(y)

B(p, r)
B(p,R)

R2

x̃

0

f̃(x)

f̃(y)
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Corollary (δ-separated net bound)

Let (Mn, g) have Ric ≥ κ(n− 1). Let p ∈M, 0 < δ < R/2.
Suppose x1, . . . xN is a δ-separated net in BR(p). Then

N ≤ C(n,R, δ)

Proof.

By Bishop-Gromov we have VolBδ/2(xi) ≥ c(n,R, δ)VolB2R(p).
Since the balls Bδ/2(xi) are disjoint we have
VolB2R(p) ≥

∑
i VolBδ/2(xi) ≥ N · c(n,R, κ, δ)VolB2R(p) and the

result follows.
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|xixj| ≥ δ
xi

xj

xk

Bδ/2(xk)

p

R

2R

VolBδ/2(xi)

VolB2R(p)
≥ c(n, δ, R)

The balls Bδ/2(xi) are disjoint therefore

there can only be so many of them.
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Example

Let G be a compact connected Lie group with a biinvariant
Riemannian metric gbi. It has sec ≥ 0.

Suppose G acts isometrically on a manifold (Mn, g) with sec ≥ κ
with κ ≤ 0.
Let Mε = (G, εgbi)× (M, g))/G with the induced Riemannian metric
gε.
Then sec(Mε) ≥ κ and Mε →M/G as ε→ 0.

Example

let G = S1,M = S3. For the action λ(z1, z2) = (λz1, z2) we have
that (S3, gε) has sec ≥ 0 and (S3, gε)→ S2

+. For the diagonal Hopf
action λ(z1, z2) = (λz1, z2) we have that (S3, gε) converges to S2.
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Theorem (Yamaguchi)

Let Mn
i → Nm as i→∞ in Gromov-Hausdorff topology. where

sec(Mn
i ) ≥ k and N is a smooth manifold. Then for all large i there

exists a fiber bundle Fi →Mn
i → N .

Theorem (Perelman’s stability theorem)

Let Xni be a sequence of n-dimensional Alexandrov spaces with
curv ≥ κ Gromov-Hausdorff converging to X where dimX = n.
Then Xi is homeomorphic to X for all large i.
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Space of directions

Definition

Let X ∈ CBBnκ and p ∈ X be a point. Let SpX be the space of
directions of geodesics starting at p with angle as the distance on
SpX. We define the space of directions to X at p as the metric
completion of SpX

ΣpX :
def
= S̄pX

For a smooth manifold Mn with sec ≥ k we have that
SpM = ΣpM ∼= Sn−1 for any p ∈M .
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If X = B̄(0, 1) ⊂ R2. then for any p ∈ ∂B(0, 1) we have that

SpX ∼= (0, π) ΣpX ∼= [0, π]
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If G is a compact Lie group acting isometrically on Mn and
X = M/G then for any p ∈M

Σ[p]X ∼= Sk−1/Gp

where k is the codimension of the orbit Gp in M and Gp is the
isotropy subgroup of p.

In particular, Let Z2 act on Rn by
reflection in the origin. Then X = Rn/G = C(RPn−1) and
Σ[0]X ∼= RPn−1

Theorem

Let X ∈ CBBnκ and p ∈ X be a point. Then (λX, p)→ C(ΣpX ) as
λ→∞. In particular, C(ΣpX ) has curv ≥ 0 and hence Σ has
curv ≥ 1.

TpX
def
= C(ΣpX )

is called the tangent space to X at p.
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Theorem (Perelman)

Let X ∈ CBBnκ. Then for any p ∈ X there is a small neighbourhood
of p homeomorphic to TpX .

By induction on dimension this implies
that X is a stratified manifold.
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First Variation Formula

Let X ∈ CBBnκ and p ∈ X be a point. Let f(x) = |xp|. Then f has
directional derivatives at every pout q ∈ p given by the following
formula. Let ⇑pq= {u ∈ ΣqX| such that u is a direction of a shortest
geodesic from q to p}. Then

Dvf(q) = − cosα where α = inf
u∈⇑pq

∠uv

Dvf(q) = inf
u∈⇑pq
〈u, v〉

p

q

α
v

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

First Variation Formula

Let X ∈ CBBnκ and p ∈ X be a point. Let f(x) = |xp|. Then f has
directional derivatives at every pout q ∈ p given by the following
formula. Let ⇑pq= {u ∈ ΣqX| such that u is a direction of a shortest
geodesic from q to p}. Then

Dvf(q) = − cosα where α = inf
u∈⇑pq

∠uv

Dvf(q) = inf
u∈⇑pq
〈u, v〉

p

q

α
v

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Application to Erdos problem

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of Rn. Then Γ has no more
than 2n isolated singular orbits.

Let X = Rn/Γ. Then isolated singular orbits project to points pi in
X such that ΣpiX has diameter ≤ π/2 (exercise). Now the above
result follows from

Theorem (Perelman)

Let X ∈ CBBn0 . Let p1, . . . pN ∈ X satisfy diam Σpi ≤ π/2.
Then N ≤ 2n.

This bound is sharp (e.g. for a cube).

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Application to Erdos problem

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of Rn. Then Γ has no more
than 2n isolated singular orbits.

Let X = Rn/Γ. Then isolated singular orbits project to points pi in
X such that ΣpiX has diameter ≤ π/2 (exercise). Now the above
result follows from

Theorem (Perelman)

Let X ∈ CBBn0 . Let p1, . . . pN ∈ X satisfy diam Σpi ≤ π/2.
Then N ≤ 2n.

This bound is sharp (e.g. for a cube).

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Application to Erdos problem

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of Rn. Then Γ has no more
than 2n isolated singular orbits.

Let X = Rn/Γ. Then isolated singular orbits project to points pi in
X such that ΣpiX has diameter ≤ π/2 (exercise). Now the above
result follows from

Theorem (Perelman)

Let X ∈ CBBn0 . Let p1, . . . pN ∈ X satisfy diam Σpi ≤ π/2.
Then N ≤ 2n.

This bound is sharp (e.g. for a cube).

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Application to Erdos problem

Theorem (Erdos-Perelman)

Let Γ be a discrete group of isometries of Rn. Then Γ has no more
than 2n isolated singular orbits.

Let X = Rn/Γ. Then isolated singular orbits project to points pi in
X such that ΣpiX has diameter ≤ π/2 (exercise). Now the above
result follows from

Theorem (Perelman)

Let X ∈ CBBn0 . Let p1, . . . pN ∈ X satisfy diam Σpi ≤ π/2.
Then N ≤ 2n.

This bound is sharp (e.g. for a cube).

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Proof

Assume X is compact. Consider the Voronoi cells Vi = {x ∈ X | such
that |xpi| ≤ |xpj | for all j 6= i}.
For any i and let Ui = {x ∈ X | such that x is the middle of a
shortest geodesic [py(x)] for some (necessarily uniquely defined) y(x).
Look at the map fi : Ui → X given by x 7→ y(x).
Then f is onto and, by Toponogov comparison, f is 2-Lipschitz.
therefore,

VolUi ≥
1

2n
VolX
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Claim:
Ui ⊂ Vi

Let x ∈ Ui. then there is y such that x is the midpoint of [piy]. Let
a = |pix| = |xy| = 1

2 |piy|. Let j 6= i.
We have α ≤ π/2 because diam ΣpjX ≤ π/2. Consider the triangle
∆piypj and its comparison triangle ∆p̃iỹp̃j in R2 Then α̃ ≤ α ≤ π/2
and hence p̃j lies outside the circle of radius a centred at x̃. Hence
|p̃j x̃| ≥ a.
By triangle comparison |pjx| ≥ |p̃j x̃|. Therefore

|pjx| ≥ |p̃j x̃| ≥ a = |pix|

Since j was arbitrary this means that Ui ⊂ Vi which proves the claim.
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Therefore

Vol Vi ≥ VolUi ≥
1

2n
VolX

Since
∑N
i=1 VolVi = VolX this implies that N ≤ 2n.

If X is non compact then using Busemann functions one can
construct a proper convex function f : X → R.
Let Y = {f ≤ c} be a sublevel set containing all singular points of X
in its interior. Then the double of Y along its boundary is still an
Alexandrov space of curv ≥ 0. By the result for the compact case Y
has at most 2n singular points.

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Therefore

Vol Vi ≥ VolUi ≥
1

2n
VolX

Since
∑N
i=1 VolVi = VolX this implies that N ≤ 2n.

If X is non compact then using Busemann functions one can
construct a proper convex function f : X → R.
Let Y = {f ≤ c} be a sublevel set containing all singular points of X
in its interior. Then the double of Y along its boundary is still an
Alexandrov space of curv ≥ 0. By the result for the compact case Y
has at most 2n singular points.

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

Concavity of distance functions

Point-on-a-side comparison. Recall that in a space of
curv ≥ κ for any geodesic [xy] and z ∈]xy[, we have

|pz| ≥ |p̃z̃|

where ∆p̃x̃ỹ = ∆̃κpxy and |xz| = |x̃z̃|.

p p̃

x

x̃

y ỹ

z

z̃d
d̃

d ≥ d̃

M

M2
κ

Vitali Kapovitch Spaces with curvature bounded below



Spaces with
curvature

bounded below

Vitali Kapovitch

Toponogov
comparison

Examples

Gromov-
Hausdorff
convergence

Bishop-Gromov
volume
comparison

First Order
Structure

Application to
Erdos problem

Concavity of
distance functions

How concave is that?

This means that distance function to a point is more concave than
the distance function to a point in the space of constant curvature.
How concave is that?

Definition

Define mdk(r) by the formula

mdk(r) =


r2

2 if r = 0
1
k (1− cos(

√
kr)) if k > 0

1
k (1− cosh(

√
|k|r)) if k < 0

Then
mdk(0) = 0,md′k(0) = 1 and md′′k + kmdk ≡ 1
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Let f(x) = mdk(|xp|) where p ∈Mn
k - simply connected space form of

constant curvature k we have Hessxf = (1− kf(x))Id. In particular,
for any unit speed geodesic γ(t) we have that

f(γ(t))′′ + kf(γ(t)) = 1

Note that for k = 0 this means that Hessxf = Id and

f(γ(t))′′ = 1
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Theorem (Toponogov restated)

Let X have curv ≥ k and p ∈ X . Let f(x) = mdk(|xp|).
Then

Hessxf ≤ (1− kf(x))Id

and
f(γ(t))′′ + kf(γ(t)) ≤ 1

For any unit speed geodesic γ.

These inequalities can be understood in the barrier sense or in the
following sense.

Definition

A function f : M → R is called λ-concave if for any unit speed
geodesic γ(t) we have

f(γ(t)) +
λt2

2
is concave
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and
f(γ(t))′′ + kf(γ(t)) ≤ 1

For any unit speed geodesic γ.

These inequalities can be understood in the barrier sense or in the
following sense.

Definition

A function f : M → R is called λ-concave if for any unit speed
geodesic γ(t) we have

f(γ(t)) +
λt2

2
is concave
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Why do we care?

This means that spaces with curv ≥ κ naturally possess a LOT of
semiconcave functions. Why do we care? They provide a useful
technical tools.
Specifically, the following simple observation is of crucial importance.

Theorem

Gradient flow of a concave function f on an Alexandrov space is
1-Lipshitz.

Proof.

Let p, q ∈ X and let γ : [0, d] → X be a unit speed geodesic with
γ(0) = p, γ(d) = q. Here d = |pq|. Let φt be the gradient flow of f .
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By the first variation formula

|φt(p)φt(q)|′+(0) ≤ 〈∇qf, γ′(d)〉 − 〈∇pf, γ′(0)〉

〈∇qf, γ′(d)〉 − 〈∇pf, γ′(0)〉 = f(γ(d))′ − f(γ(0))′ ≤ 0

since f(γ(s)) is concave.

φt(γ(s))

q

φt(p)

φt(q)

∇pf

∇qf

p

γ(s)
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A similar argument shows that if f is λ-concave then φt is eλt-Lipschitz.
Yamaguchi’s Fibration Theorem and gradient flows of semi-concave
functions are key technical tools for proving topological results about
manifolds with lower sectional curvature bounds. Typical application
is the following

Let X ∈ CBBnκ and let f : X → R be λ-concave and locally Lipschitz.
Let p ∈ X . Then dfp : TpX → R is Lipschitz and concave.
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Gradients of semiconcave functions

Definition

A vector in TpX is called the gradient of f at p and denoted by ∇pf
is if it satisfies the following conditions

1 dfp(∇pf) = |(∇pf |2

2 dfp(v) ≤ 〈∇pf, v〉 for any v ∈ TpX

Lemma

1 Let f : X → R be λ-concave and Lipschitz and let p ∈ X . Then
∇pf exists and is unique.

2 |∇pf | is lower semicontinuous:
Let (Xi, pi) be a sequence of Alexandrov spaces with curv ≥ κ
converging to (X , p). And let fi : Xi → R be L-Lipschitz and
λ-concave and converge to f : X → R. Then

|∇pf | ≤ lim inf
i→∞

|∇pifi|
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Gradient curves of semiconcave functions

Definition

Let X ∈ CBBκ and let f : X → R be λ-concave and Lipschitz. A
curve γ : I → X is called a gradient curve of f if

γ′+(t) = ∇γ(t)f for all t

Theorem

For any p ∈ X there exists unique gradient curve of f
γ : [0,∞)→ X such that γ(0) = p.

Remark

Gradient curves starting at different points can merge.
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Theorem (Splitting theorem)

Let Xn be an Alexandrov space of curv ≥ 0. Suppose X contains a
line.
Then X is isometric to Y × R for some Alexandrov space Y n−1 of
curv ≥ 0.

Corollary (Almost splitting)

Let (Mn
i , pi)

G−H−→
i→∞

(X, p) where secMi
≥ − 1

i , where pi is the middle

of a shortest geodesic of length li →∞. Then X is isometric to
Y × R for some nonnegatively curved space Y .

Theorem

Let Xn be a compact Alexandrov space of curv ≥ 0. Then a finite
cover of X is homeomorphic to T k × Y for some simply-connected
nonnegatively curved Alexandrov space Y. In particular, π1(X) is
virtually abelian.
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Definition

A closed smooth manifold M is called almost nonnegatively curved if
it admits a sequence of Riemannian metrics gi such that satisfy

sec(M, gi) ≥ −1 and (M, gi)→ {pt} as i→∞.

by rescaling this is equivalent to
M admits a sequence of metrics gi such that

diam(M, gi) ≤ 1 sec(M, gi) ≥ −1/i

Example (Boring Example)

Let Mn be compact of sec ≥ 0. Then it is almost nonnegatively
curved.
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Example

Let N3 be the space of real 3× 3 of the form1 x z
0 1 y
0 0 1


N3 is a nilpotent Lie group. Let Γ = N ∩SL(3,Z). Then M3 = N/Γ
admits almost nonnegative sectional curvature. But it does not admit
nonnegative sectional curvature because Γ is not virtually abelian.

Theorem (Fukaya-Yamaguchi, Kapovitch-Petrunin-Tuschmann)

Let Mn be almost nonnegatively curved. Then π1(M) contains a
nilpotent subgroup of index ≤ C(n).
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Theorem (KPT)

Let Mn be almost nonnegatively curved. Then a finite cover of M is
a fiber bundle over a nilmanifold with a simply connected fiber.

Theorem (KPT)

Let Mn be almost nonnegatively curved. Then a finite cover of M ′

of M is nilpotent, i.e π1(M ′) is nilpotent and π1(M ′) acts on
πk(M ′) nilpotently for all k ≥ 2.
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Example

Let h : S3 × S3 → S3 × S3 be defined by

h : (x, y) 7→ (xy, yxy).

This map is a diffeomorphism and the induced map h∗ on

π3(S3 × S3) is given by the matrix Ah =

(
1 1
1 2

)
. Notice that the

eigenvalues of Ah are different from 1 in absolute value.

Let M be
the mapping cylinder of h. Clearly, M has the structure of a fiber
bundle S3 × S3 →M → S1, and the action of π1(M) ∼= Z on
π3(M) ∼= Z2 is generated by Ah. In particular, M is not a nilpotent
space and hence, it does not admit almost nonnegative curvature.
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