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CD(K,∞) and RCD(K,∞) metric-measure spaces

CD(K,∞) metric measure spaces.

(X, d,m) :
(X, d) is a complete and separable metric space,

m is a Borel probability measure in P(X) with full support

CD(K,∞) spaces

For every µ0, µ1 ∈P(X) with finite entropy there exists µϑ ∈P(X) such
that:

I Geodesic interpolation in the transport metric:

W2(µϑ, µ0) = ϑW2(µ0, µ1), W2(µϑ, µ1) = (1− ϑ)W2(µ0, µ1),

I K-convexity of the Entropy:

Entm(µϑ) ≤ (1− ϑ)Entm(µ0) + ϑEntm(µ1)− K

2
ϑ(1− ϑ)W 2

2 (µ0, µ1).
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CD(K,∞) and RCD(K,∞) metric-measure spaces

Riemannian metric measure spaces: the RCD(K,∞) condition

Even if (X, d,m) satisfies the CD(K,∞) condition, in general the Cheeger
energy is not a quadratic form and the heat semigroup is not linear.
If one hope to compare the LSV and the BE approaches, it is necessary to
impose these properties: they lead to the definition of RCD(K,∞) spaces:

RCD(K,∞) spaces

A metric measure space satisfies the Riemannian RCD(K,∞) condition if

I (X, d,m) is a CD(K,∞) space

I the Cheeger energy Ch(f) =
1

2

∫
|Df |2w dm is quadratic

(equivalently P is a linear semigroup).

Theorem (RCD(K,∞) spaces satisfies the Bakry-Émery BE(K,∞)
condition)

If (X, d,m) is a RCD(K,∞) metric measure space then

I the Cheeger energy is a strongly local Dirichlet form

I (X,m,Ch) satisfies the Bakry-Émery BE(K,∞) condition.

I |Du|2w = Γ(u) and functions with |Du|w ≤ L m-a.e. are L-Lipschitz.
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A stronger notion of metric flows via Evolution Variational inequalities

Description of the Heat flow: Cheeger-L2 vs transport-entropy
L2(X,m) framework: ft = Ptf are functions, the evolution is obtained
by

“maximizing” the L2(X,m)-dissipation rate of the Cheeger energy,

Along an arbitrary curve ht ∈ AC2: − d

dt
Ch(ht) ≤ ‖ḣt‖2 ‖∆ht‖2

Along the heat flow ft = Ptf : − d

dt
Ch(ft) = ‖ḟt‖2 ‖∆ft‖2 = ‖ḟt‖22 = ‖∆ft‖22

Dual point of view: ft are probability densities, associated to the
evolving measures µt = ftm.
The evolution is obtained by

“maximizing” the dissipation rate of the Entropy functional

− d

dt
Entm(µt) =

√
F(ft)|µ̇t| = F(ft) = |µ̇t|2, µt = ftm

with respect to the transport distance W .

Are there better characterizations, as for convex functionals in Hilbert
spaces?

d

dt

1

2
‖ft − v‖2L2 ≤ Ch(v)− Ch(ft)
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A stronger notion of metric flows via Evolution Variational inequalities

EVI: euristics in the case of convex functionals

d

dt

1

2
‖xt − y‖2 ≤ Φ(y)− Φ(xt) for every y ∈ H (EVI)

EVI is modeled on the variational characterization of gradient flows of
K-convex functionals Φ in a Hilbert space H: in this case a curve
t 7→ xt solves the differential equation

ẋt = −DΦ(xt)

if and only if

d

dt

1

2
‖xt − y‖2 ≤ Φ(y)− Φ(xt) for every y ∈ H (EVI)

d

dt

1

2
‖xt − y‖2 = 〈ẋt, xt − y〉

= 〈DΦ(xt), y − xt〉
≤ Φ(y)− Φ(xt)

Φ(xt)

Φ(y)

xt y

〈DΦ(xt), y − xt〉

Φ(y)− Φ(xt)
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A stronger notion of metric flows via Evolution Variational inequalities

Evolution variational inequality for the Entropy and metric
K-flows

Let µ be a given initial measure in P2(X) and K ∈ R.

EVIK(µ) and Metric K-flows

A locally Lipschitz curve µ : (0,∞)→P2(X) is a solution of the
Evolution Variational Inequality EVIK(µ) if for a.e. t > 0 and for every
ν ∈P2(X)

d

dt

1

2
W 2

2 (µt, ν)+
K

2
W 2

2 (µt, ν) ≤ Entm(ν)− Entm(µt) (EVI)

and limt↓0 µt = µ in P2(X).
(St)t≥0 is a metric K-flow in D(Entm) if µt := St(µ) solves EVIK(µ) for
every µ ∈ D(Entm).
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A stronger notion of metric flows via Evolution Variational inequalities

Properties of solutions to EVIK

Let µ, ν be solutions to EVIK with initial data µ̄, ν̄ ∈P2(X).

I Uniqueness and K-contraction:

W2(µt, νt) ≤ e−KtW2(µ̄, ν̄)

I Entropy dissipation: The map t 7→ Entm(µt) is nonincreasing,
locally semi-convex, and satisfies the Entropy dissipation identity

− d

dt
Entm(µt) = |µ̇t|2 = F(µt) (EDI)

In particular µt = (Ptf)m whenever µ̄ = fm.

I Regularizing effect: For t > 0 we have µt ∈ D(F) ⊂ D(Entm). If e.g.
K ≥ 0, we have for every ν ∈ D(F)

Entm(µt) ≤ Entm(ν) +
1

2t
W 2

2 (µt, ν), F(µt) ≤ F(ν) +
1

t2
W 2

2 (µt, ν)
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A stronger notion of metric flows via Evolution Variational inequalities

Metric K-flows, RCD(K,∞)-spaces and BE(K,∞)

d

dt

1

2
W 2

2 (µt, ν) +
K

2
W 2

2 (µt, ν) ≤ Entm(ν)− Entm(µt) (EVI)

Theorem (Metric K-flow)

Let us suppose that the entropy functional admits a K-flow (St)t≥0 in
(X, d,m). Then

I St coincides with Heat semigroup Pt (equivalently defined as the
Wasserstein gradient flow of the Entropy or the L2-flow of the Cheeger
energy).

I The Entropy functional is K-convex, i.e. (X, d,m) is a CD(K,∞)
space.

I St is a linear semigroup and the Cheeger energy is quadratic. In
particular (X, d,m) is a Riemannian RCD(K,∞) space.

I St satisfies the Wasserstein contraction estimate

W2(Stµ, Stν) ≤ e−KtW2(µ, ν).

and [Kuwada] BE(K,∞) holds for the Heat semigroup P:∣∣DPtu
∣∣2
w
≤ e−2KtPt

∣∣Du∣∣2
w
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A stronger notion of metric flows via Evolution Variational inequalities

Contraction

µs = Ssµ, νt = Stν

∂

∂s

1

2
W 2

2 (µs, νt) ≤ Entm(νt)− Entm(µs)

∂

∂t

1

2
W 2

2 (µs, νt) ≤ Entm(µs)− Entm(νt)

∂

∂s

1

2
W 2

2 (µs, νt) +
∂

∂t

1

2
W 2

2 (µs, νt) ≤ 0

“s = t”
d

dt

1

2
W 2

2 (µt, νt) ≤ 0
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A stronger notion of metric flows via Evolution Variational inequalities

Convexity (K = 0)

Let µϑ be a geodesic in P2(X), µϑ(t) = Stµϑ.

1

2
W 2

2 (µϑ(t), µ0)− 1

2
W 2

2 (µϑ, µ0) ≤ t
(

Entm(µ0)− Entm(µϑ(t))
)
 ×(1− ϑ)

1

2
W 2

2 (µϑ(t), µ1)− 1

2
W 2

2 (µϑ, µ1) ≤ t
(

Entm(µ1)− Entm(µϑ(t))
)
 ×ϑ

(1− ϑ)Entm(µ0) + ϑEntm(µ1)− Entm(µϑ(t)) ≥ 0

since along the geodesic

(1− ϑ)W 2
2 (µϑ, µ0) + ϑW 2

2 (µϑ, µ1) = ϑ(1− ϑ)W 2
2 (µ0, µ1)

and the triangle inequality yields

(1− ϑ)W 2
2 (µϑ(t), µ0) + ϑW 2

2 (µϑ(t), µ1) ≥ ϑ(1− ϑ)W 2
2 (µ0, µ1)
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A stronger notion of metric flows via Evolution Variational inequalities

Linearity

and set
G(µ, ν) := Entm(ν)− Entm(µ).

Let µ1
t , µ

2
t be two gradient flows; we know that for arbitrary ν1, ν2

d
dt

1
2
W 2

2 (µ1
t , ν

1) ≤ G(µ1
t , ν

1), d
dt

1
2
W 2

2 (µ2
t , ν

2) ≤ G(µ2
t , ν

2).

Setting
µt := αµ1

t + βµ2
t , α, β ≥ 0, α+ β = 1,

we want to prove that

d
dt

1
2
W 2

2 (µt, ν) ≤ Entm(ν)− Entm(µt) = G(µt, ν) ∀ ν ∈ D(Entm)

Idea: fix a time t and split the test measure ν as ν = αν1 + βν2

(depending on t) so that at that time

d
dt

1
2
W 2

2 (µt, ν) ≤ α d
dt

1
2
W 2

2 (µ1
t , ν

1) + β d
dt

1
2
W 2

2 (µ2
t , ν

2) [Subadditivity]

G(µ, ν) ≥ αG(µ1, ν1) + βG(µ2, ν2) [Superadditivity]
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A stronger notion of metric flows via Evolution Variational inequalities

The choice of ν1, ν2

Fix t and let σ be an optimal coupling between µt and ν and let

θ1 := α
dµ1

t

dµt
, µ1

t = θ1µt; θ2 := β
dµ2

t

dµt
, µ2

t = θ2µt; θ1(x)+θ2(x) ≡ 1.

We set πx(x, y) := x, πy(x, y) := y and

σ1 := θ1(x)σ = (θ1 ◦ πx)σ, σ2 := θ2(x)σ = (θ2 ◦ πx)σ; σ1 + σ2 = σ

σ1,σ2 are still optimal couplings, since the optimality property depends
only on the support of a coupling.

Correspondingly we set ν1 := πy
]σ

1, ν2 := πy
]σ

2
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A stronger notion of metric flows via Evolution Variational inequalities

Fundamental solution and Lipschitz estimates

ηt,x = Stδx � m if t > 0, by the regularization estimates.

Ptf(x) =

∫
f dηt,x

If f ∈ Lip(X) then Ptf ∈ Lip(X) and Lip(Ptf) ≤ L = Lip(f).

Ptf(x)− Ptf(y) =

∫
f(z) dηt,x(z)−

∫
f(w) dηt,y(w)

=

∫ (
f(z)− f(w)

)
dµt,x,y(v, w) ≤ L

∫
d(z, w) dµt,x,y

= LW2(ηt,x, ηt,y) ≤ LW2(δx, δy) = Ld(x, y).
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A stronger notion of metric flows via Evolution Variational inequalities

Bakry-Émery estimate
Take two points x0, x1 and a geodesic y connecting them. For every time
t > 0 the curve ϑ 7→ ηt,y(ϑ) = Stδy(ϑ) is Lipschitz in P2(X) by the
contraction property. We lift it to a dynamic plan π
If f is a Lipschitz function and r = d(x0, x1) we get

Ptf(x0)− Ptf(x1) =

∫
f(z) dηt,x0(z)−

∫
f(w) dηt,x1(w)

=

∫ ∫
∂x

f dπ ≤
∫ ∫

x

|Df | dπ =

∫ 1

0

∫
|Df |(x(ϑ))|ẋ|(ϑ) dπ(x) dϑ ≤

≤
∫ 1

0

(∫
|Df |2 dηt,y(ϑ)

)1/2(∫
|ẋ|2 dπ

)1/2
dϑ

≤
∫ 1

0

(
Pt

(
|Df |2

)
(y(ϑ))

)1/2
|ẏ|(ϑ) dϑ ≤ d(x0, x1) sup

Br(x0)

(
Pt

(
|Df |2

))1/2
Dividing by d(x0, x1) and passing to the limit as x1 → x0

|DPtf |2(x0) ≤ Pt

(
|Df |2

)
(x0).

By approximation, whenever f ∈W 1,2(X, d,m)

|DPtf |2(x0) ≤ Pt

(
|Df |2w

)
(x0).
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RCD ⇒ BE

RCD = BE: exhibit a K-flow!

In order to prove the implication RCD(K,∞) ⇒ BE(K,∞):

1. start from the Heat semigroup Pt as the L2-gradient flow of the
Cheeger energy

2. it coincides with the Wasserstein gradient flow of the entropy in the
Entropy-dissipation sense.

3. Assuming moreover that Pt is linear (i.e. the Cheeger energy is
quadratic) prove that it induces a metric K-flow of the Entropy.

Basic ingredients: Given µt = ftm with ft = Ptf starting from f with
bounded density, and νϑ a geodesic connecting µt to ν calculate

the derivative W ′ =
d

dt

1

2
W 2

2 (µt, ν) at t > 0

the right derivative E′ =
d

dϑ+
Entm(νϑ) at ϑ = 0

Prove that W ′ ≤ E′. By convexity (K = 0), E′ ≤ Entm(ν)− Entm(µ).

19



RCD ⇒ BE

Dual Kantorovich characterization of the Wasserstein distance

Dual characterization:

1

2
W 2

2 (µ, ν) = sup
{∫

Q1φ dµ−
∫
φ dν : φ ∈ Lipb(X)

}
where

Qtφ(x) := inf
y

1

2t
d2(x, y) + φ(y).

If X is compact, there exists a couple φ, ψ = Q1φ in Lip(X) of optimal
Kantorovich potentials satisfying

ψ(x)− φ(y) ≤ 1

2
d2(x, y) ∀x, y

ψ(x)− φ(y) =
1

2
d2(x, y) if x, y ∈ suppµ, µ ∈ Opt(µ, ν).
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RCD ⇒ BE

Derivative of the Wasserstein distance along the heat flow

Let µt = ftm ∈P2(X), ft = Ptf , f ∈ L∞(X,m). Let ν ∈P2(X) and ψt

a Kantorovich potential for the couple µt, ν at the time t.

For a.e. t > 0
d

dt

1

2
W 2

2 (µt, ν) =

∫
ψt ∆ft dm.
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RCD ⇒ BE

Derivative of the entropy along a geodesic
Assume that (X, d,m) is a CD(K,∞) space.
Let µ = fm, ν ∈P2(X) with bounded densities and f ≥ c > 0 m-a.e., and
let (νϑ)ϑ be a geodesic connecting µ to ν with uniformly bounded
densities [Rajala, Sturm] along which Entm is convex.
Let ψ be the associated Kantorovich potential.

d

dϑ+
Entm(µϑ) ≥ lim

ε↓0

Ch(ψ)− Ch(ψ + εf)

ε

If Ch is quadratic, Ch(f) = 1
2
E(f, f) for a symmetric bilinear form E,

Ch(ψ)− Ch(ψ + εf) = −εE(ψ, f)− 1

2
ε2E(f, f)

lim
ε↓0

Ch(ψ)− Ch(ψ + εf)

ε
= −E(ψ, f) =

∫
ψ∆f dm

Entm(ν)− Entm(µt)
K=0

≥ d

dϑ+
Entm(µϑ) ≥ lim

ε↓0

Ch(ψt)− Ch(ψt + εf)

ε

Ch quadratic
=

∫
ψt∆f dm =

d

dt

1

2
W 2

2 (µt, ν)
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Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Characterization of metric-measure spaces

What is sufficient to characterize a metric measure space?

(X1, d1,m1) ∼ (X2, d2,m2) if there exists a measure preserving
isometry i : supp(m1) ⊂X1 →X2, i.e.

d2(i(x), i(y)) = d1(x, y), i](m1) = m2 for every x, y ∈X1, A ⊂X1

Consider independent and identically distributed X-random variables
X1, X2, · · · , XN with law m and consider metric-measure functionals

Φ[X, d,m] = E
[
Φ
(
d(Xi, Xj)

)N
i,j=1

]
=

∫
Φ
(
d(xi, xj)

N
i,j=1

)
dm⊗N (x1, x2, · · · , xN )

where Φ : RN×N → R continuous and bounded.

Theorem (Gromov reconstruction)

(X1, d1,m1) ∼ (X2, d2,m2) if and only if Φ[X1, d1,m1] = Φ[X2, d2,m2]
for every metric-measure functional.
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Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Sturm-Gromov-Hausdorff convergence of metric-measure
spaces

We say that (Xn, dn,mn) converge to (X∞, d∞,m∞) if

lim
n→∞

Φ[Xn, dn,mn] = Φ[X∞, d∞,m∞]

for every metric-measure functional Φ.

Equivalently [Sturm]: there exists a complete and separable metric space
(Y , d) and isometries in : (Xn, dn)→ (Y , d), n ∈ N ∪ {∞}, such that

(in)]mn −→ (i∞)]m∞ weakly in P(Y ).

Gromov’s compactness theorem:

The class of Riemannian manifolds (M, g) with

dim(M) ≤ N, diam(M) ≤ D, Ric(M) ≥ K

is pre-compact in the SGH topology.

The CD(K,∞) condition is stable under Gromov-weak convergence. In
particular, Gromov-weak limits of Riemannian manifolds with Ricci
curvature (uniformly) bounded from below is a CD(K,∞) space.
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Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Stability of RCD, convergence of the metric flow and of the
spectrum

Let (Xn, dn,mn) be RCD(K,∞) spaces SGH-converging to (X∞, d∞,m∞).

Theorem (Stability of the RCD condition)

(X∞, d∞,m∞) is RCD(K,∞)

Theorem (Convergence of the metric flow)

If Sn
t be the metric flow in (Xn, dn,mn).

If µn “converges” to µ∞, then Sn
t µ

n converges to S∞t µ
∞ for every

t > 0.

Let us assume K > 0 and let λ1(∆n) ≤ λ2(∆n) ≤ · · · ≤ λk(∆n) < · · · be
the (ordered) eigenvalues of the Laplace operator −∆n on (Xn, dn,mn).

Theorem (Convergence of the spectrum)

lim
n→∞

λk(∆n) = λk(∆∞).
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