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CD(K, o©) and RCD(K, co) metric-measure spaces

CD(K, c0) metric measure spaces.

(X, d,m) (X,d) is a complete and separable metric space,
,d,m) :
m is a Borel probability measure in &(X) with full support

CD(K, ) spaces

For every po,p1 € (X)) with finite entropy there exists uy € Z(X) such
that:

» Geodesic interpolation in the transport metric:
Wa (s, o) = IWa(po, 1),  Walps, p1) = (1 — 9)Wa(po, p1),

» K-convexity of the Entropy:

K
Bntw (19) < (1~ 9)Entm (o) + 0Bntw (1) — 5 0(1 — 9)W3 (s, 1),




CD(K, o©) and RCD(K, co) metric-measure spaces

Riemannian metric measure spaces: the RCD(K, o) condition
Even if (X,d, m) satisfies the CD(K, o) condition, in general the Cheeger
energy is not a quadratic form and the heat semigroup is not linear.

If one hope to compare the LSV and the BE approaches, it is necessary to
impose these properties: they lead to the definition of RCD(K, c0) spaces:
RCD(K, x) spaces
A metric measure space satisfies the Riemannian RCD(K, co) condition if
» (X,d,m) is a CD(K, c0) space
. 1 o . .
» the Cheeger energy Ch(f) = 3 / \D]‘|ﬁ dm is quadratic

(equivalently P is a linear semigroup).

Theorem (RCD(K, o) spaces satisfies the Bakry-Emery BE(K, o)
condition)

If (X,d,m) is a RCD(K, 00) metric measure space then
> the Cheeger energy is a strongly local Dirichlet form
» (X, m,Ch) satisfies the Bakry-Emery BE(K, c0) condition.
> |Dul? =T(u) and functions with |Dul, < L m-a.e. are L-Lipschitz. %ﬁ




A stronger notion of metric flows via Evolution Variational inequalities

Description of the Heat flow: Cheeger-L? vs transport-entropy

L*(X,m) framework: f; = P,f are functions, the evolution is obtained

by
“maximizing” the L?(X, m)-dissipation rate of the Cheeger energy,
Along an arbitrary curve h; € AC%:  — %Ch(ht) < |lhel|2 | A |2

d , ,
Along the heat flow f; =P.f: — = Ch(fe) = [l fell2 [Afe]l2 = 1fell2 = 1A 212

Dual point of view: f; are probability densities, associated to the
evolving measures p: = fym.
The evolution is obtained by

“maximizing” the dissipation rate of the Entropy functional

— LBt () = VG lie] = F(F) = i, e = fom

with respect to the transport distance W.

Are there better characterizations, as for convex functionals in Hilbert
spaces?

&SI~ vle < Ch(v) — Ch(f)



A stronger notion of metric flows via Evolution Variational inequalities

EVI: euristics in the case of convex functionals

a1
dt 2
EVI is modeled on the variational characterization of gradient flows of
K-convex functionals ¢ in a Hilbert space H: in this case a curve
t — x: solves the differential equation

[ — y||* < ®(y) — P(x;) forevery y € H (EVI)

)‘(t = 7D<I>(Xt)
if and only if
d1 2
ai”xt —y|I” < P(y) — P(x¢) foreveryy e H (EVI)
‘ o(y)

d1 .
&§||Xt - ?/||2 = (X, %t — ¥)
= (D®(x¢),y — xt)

< O(y) — D(xt) D(y) — P(xt)

() } (D@ (), y —x)

Xt Y

R



A stronger notion of metric flows via Evolution Variational inequalities

Evolution variational inequality for the Entropy and metric
K-flows

Let p be a given initial measure in %(X) and K € R.

EVIk(u) and Metric K-flows

A locally Lipschitz curve p : (0,00) — £2(X) is a solution of the
Evolution Variational Inequality EVIx (u) if for a.e. ¢ > 0 and for every
ve P(X)

d1 K __ -
ain (e, I/)+5W’fr_)z(/1,h v) < Entwm (V) — Entw (pe) (EVI)

and limy o e = p in Po(X).
(St)i>0 is a metric K-flow in D(Entw) if g := S¢(p) solves EVIg (p) for
every p € D(Entn).




A stronger notion of metric flows via Evolution Variational inequalities

Properties of solutions to EVIx

Let p, v be solutions to EVIx with initial data i, 7 € P2(X).

» Uniqueness and K-contraction:

WQ(/“? Vt) < eiKtW2(ﬂ7 77)

» Entropy dissipation: The map ¢ — Entw (44¢) is nonincreasing,
locally semi-convex, and satisfies the Entropy dissipation identity

d .
— St () = |jul? = F(u) (EDI)

In particular p; = (P:f)m whenever it = fm.
» Regularizing effect: For ¢t > 0 we have p; € D(F) C D(Entn). If e.g.
K > 0, we have for every v € D(F)
1 1
Bt (1) < Bntn () + 2 WEGuv),  Flue) < F) + 5 Wi, »)
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A stronger notion of metric flows via Evolution Variational inequalities

Metric K-flows, RCD(K, co)-spaces and BE(K, c0)

d1 K
3132 (o) + 5 W3 (e, v) < Bnten (1) — Enten (1) (EVI)

Theorem (Metric K-flow)
Let us suppose that the entropy functional admits a K-flow (S¢)i>0 in
(X,d, m). Then
> S; coincides with Heat semigroup P: (equivalently defined as the
Wasserstein gradient flow of the Entropy or the L*-flow of the Cheeger
energy).
» The Entropy functional is K-convez, i.e. (X,d,m) is a CD(K, c0)
space.
> S; is a linear semigroup and the Cheeger energy is quadratic. In
particular (X,d, m) is a Riemannian RCD(K, c0) space.

> S, satisfies the Wasserstein contraction estimate
Wa(Seu, Sev) < ™' Wa(p, v).
and [KuwaDA] BE(K, co0) holds for the Heat semigroup P:

IDPeu|’ < e”?**P,|Dul’




A stronger notion of metric flows via Evolution Variational inequalities

Contraction

s = Ssph, vt = Stv

%7W22 (,ue", Vt) < Entm(Vt) - Entm(///s)
01
aEWQZ(MS/ Vt) < Entm(ﬂs) - Entm(Vt)
01

£*W2 (s, vt) + &§W2 (ps,vt) <0

“S — t”
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A stronger notion of metric flows via Evolution Variational inequalities

Convexity (K =0)

Let py be a geodesic in Po(X), po(t) = Seps.

SWE (10 (1), o) — 5 W (o, o) < t(Entun () — Bt (o (1))~ (1 0)
SWE (o (t), i) — 5 WE (o, ) < t(Entm () — Bnta (o (1))~ <0

(1 —¥)Entm(p0) + 9Entm (p1) — Entwm (ps(t)) > 0

since along the geodesic
(1 — O)YW5 (ko, o) + IW3 (1o, 1) = 9(1 — 9)W5 (po, p11)
and the triangle inequality yields

(1= )W (o (), p10) + IW3 (o (), pa) > 9(1 — W5 (po, )
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A stronger notion of metric flows via Evolution Variational inequalities

Linearity

and set
G(p,v) := Entm (v) — Entm (p).

Let pi, u? be two gradient flows; we know that for arbitrary v*, v

LIWS (e v') < Glug,v'),  LIWs(ui,v°) < G(ui, v°).

2

Setting
pe = opp +Bui, «,8>0, a+B=1,

we want to prove that

’ LIW3 (e, v) < Entw (v) — Entw(pe) = G(pe,v) | Vv € D(Entwm)

Idea: fix a time ¢ and split the test measure v as v = av' + fv/°
(depending on t) so that at that time

AW (e, )| < ok AWE (ud ') + BLEWS (7, V%) [Subadditivity]
G(p,v) aG (1", v + BG (W2, V°) [Superadditivity]
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A stronger notion of metric flows via Evolution Variational inequalities

The choice of v!,v

2

Fix ¢t and let o be an optimal coupling between u; and v and let

, dpt K dp?
0! = uﬁﬁ pi=0'y; 07 = 3#' pi =0 0'(x)+6%(x) = 1.
Lt an

We set n%(z,y) ==z, n¥(z,y) :=y and

o' =0'(2)o=0" oo, o =0 (z)o=(0’0n")0o; o' +o’=0c
o', o? are still optimal couplings, since the optimality property depends
only on the support of a coupling.

Correspondingly we set | v' :=7/o!, v :=7/c?
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A stronger notion of metric flows via Evolution Variational inequalities

Fundamental solution and Lipschitz estimates

Ntz = Stde € m if ¢ > 0, by the regularization estimates.

— [ ran.

If f € Lip(X) then Pf € Lip(X) and Lip(P:f) < L = Lip(f).

Pif(z) — Pef /f ) dne,x (2 /f ) dnjey (w

— [ (1)~ £@) dit .y (00) < I / d(zw) dpa
= LW2 (2, Mty) < LW2(6z,6y) = Ld(z, y).
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A stronger notion of metric flows via Evolution Variational inequalities

Bakry-Emery estimate
Take two points o, x1 and a geodesic y connecting them. For every time
t > 0 the curve ¥ — 1,y (9) = S¢dy(g) is Lipschitz in #»(X) by the
contraction property. We lift it to a dynamic plan 7
If f is a Lipschitz function and r = d(xo, 1) we get

Puf(20) — Puf(a1) = / F(2) Az (2) / F(w) dije ey (w)

-/ axfdvré//lDf\dfr—/ [ 171D I(9) dm(x) o <
S/Ol (/|Df|2d77t,y(19) /|*|2d7r a

< [ (Pus) o) 10 @0 < dGane) sup (D))"

Br(zo0)
Dividing by d(xo,x1) and passing to the limit as 1 — xo
IDP:f|*(z0) < Pe(IDfI*) (o).
By approximation, whenever f € W'?(X,d, m)

IDP. f|*(z0) < P¢(IDf]%)(x0).



RCD = BE: exhibit a K-flow!

In order to prove the implication RCD(K, 00) = BE(K, o0):
1. start from the Heat semigroup P, as the L2-gradient flow of the
Cheeger energy
2. it coincides with the Wasserstein gradient flow of the entropy in the
Entropy-dissipation sense.
3. Assuming moreover that P, is linear (i.e. the Cheeger energy is
quadratic) prove that it induces a metric K-flow of the Entropy.
Basic ingredients: Given p; = fym with fi; = P f starting from f with
bounded density, and vy a geodesic connecting u: to v calculate

1
the derivative W' = %§W§ (ut,v) att>0
the right derivative E' = %Entm (vo) at¥=0

Prove that W’ < E'. By convexity (K = 0), E' < Entm(v) — Entm (1).
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RCD = BE

Dual Kantorovich characterization of the Wasserstein distance

Dual characterization:

W) = s { [ Quodu— [ oav 6 e Lin, ()}

where

Qui(a) i= inf 2.d* (@) + 6(»)

If X is compact, there exists a couple ¢,% = Q1¢ in Lip(X) of optimal
Kantorovich potentials satisfying

U(e) — oy) < 58 (,y) Vo

(x) — d(y) = %dz(x,y) if z,y € suppp, p € Opt(p,v).
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RCD = BE

Derivative of the Wasserstein distance along the heat flow

Let put = fom € Po(X), fr =Pif, f € L (X, m). Let v € P5(X) and )¢
a Kantorovich potential for the couple p., v at the time ¢.

For a.e. t >0

d1
&AW (v /thftdm

21



RCD = BE

Derivative of the entropy along a geodesic
Assume that (X,d,m) is a CD(K, c0) space.
Let = fm,v € (X)) with bounded densities and f > ¢ > 0 m-a.e., and
let (v9)9 be a geodesic connecting p to v with uniformly bounded
densities [Rajala, Sturm)] along which Enty, is convex.
Let 1 be the associated Kantorovich potential.

Ch(y) — Ch(y +¢f)

&

d
o ot (o) 2 lim

If Ch is quadratic, Ch(f) = 2&(f, f) for a symmetric bilinear form €,

Ch() — Ch( +f) = ~<&(6, f) = 2<*(,f)

iy SP(¥) = Ch(¥ + &)
el0 5

— (). f) = /wAfdm

. Ch(¢p¢) — Ch(v: +f)
Pt () 2 L —EE

Ch quadratic . gl 2 _
< [ = L SWE )

K=0
Entw(v) — Entm(pe) >



Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Characterization of metric-measure spaces

What is sufficient to characterize a metric measure space?

(X1,d1,m1) ~ (X2,d2, ms) if there exists a measure preserving
isometry i: supp(mi) C X1 — X, i.e.

da(i(z),i(y)) = di(z,y), ig(mi) =my forevery z,y € X1, AC X1

Consider independent and identically distributed X-random variables
X1, Xo,---, Xy with law m and consider metric-measure functionals

®[X,d, m] :E[(I)(d(Xi,Xj))i\’;:l] = /@(d(mi,mj)szl) dm® (21,22, ,zN)

where ® : RV N — R continuous and bounded.

Theorem (Gromov reconstruction)

(Xl, d1, ml) ~ (XQ, d2, mg) Zf and only Zf @[Xh dl, m1] = ‘I)[XQ, dQ7 mz]
for every metric-measure functional.




Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Sturm-Gromov-Hausdorff convergence of metric-measure
spaces
We say that (X, d,, m,) converge t0 (X oo, doo, Moo) if

lim ®[X,,d,, my,] = [ X, doo, M)

n—oo

for every metric-measure functional ®.

Equivalently [Sturm]: there exists a complete and separable metric space
(Y, d) and isometries i, : (Xn,dn) — (Y,d), n € NU{oo}, such that

(in)smn — (ico)sMoo  weakly in 2(Y).

Gromov’s compactness theorem:
The class of Riemannian manifolds (M, g) with
dim(M) < N, diam(M) <D, Ric(M)>K

is pre-compact in the SGH topology.

The CD(K, o) condition is stable under Gromov-weak convergence. In
particular, Gromov-weak limits of Riemannian manifolds with Ricci

curvature (uniformly) bounded from below is a CD(K, c0) space.
o5



Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

Stability of RCD, convergence of the metric flow and of the
spectrum

Let (X™,d™, m") be RCD(K, o) spaces SGH-converging to (X °°,d*, m*).

Theorem (Stability of the RCD condition)
(X°°,d*°, m*) is RCD(K, o0)

Theorem (Convergence of the metric flow)

If ST be the metric flow in (X",d", m").
If i “converges” to pu>, then Siu" converges to S7°u°° for every
t>0.

Let us assume K > 0 and let A\ (An) < X2(An) <+ - < A(Ap) < -+ be
the (ordered) eigenvalues of the Laplace operator —A,, on (X, d,, my).

Theorem (Convergence of the spectrum)

m Ak(An) = Ae(Aoso).

n— 00




	CD(K,) and RCD(K,) metric-measure spaces
	A stronger notion of metric flows via Evolution Variational inequalities
	RCD  BE
	Stability under Sturm-Gromov-Hausdorff convergence and spectral convergence

