
Energy release rate along a kinked path

Matteo Negri

Dipartimento di Matematica - Università degli Studi di Pavia
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1 Introduction

In fracture mechanics the driving force for crack propagation is the so called energy release rate G,
i.e. the amount of elastic energy released by the body when the crack itself advances. According to
Griffith’s theory [6] the quasi-static propagation of a brittle crack is indeed governed by the balance
between energy release rate and fracture toughness. This concept has been the subject of several
fundamental works in fracture mechanics among which a couple of landmarks should be cited: the
representation of G in terms of the stress intensity factors, due to Irwin [8], and the representation
in terms of the J-integral, due to Rice [13].

On the mathematical side a fundamental result, concerning the energy release rate and its
representations, is that of Destuynder and Djaoua [5]. In this work the above mentioned results of
Irwin and Rice are settled in a rigorous way, i.e. in the framework of Sobolev spaces, considering the
simple setting of a straight crack. The technical tools provided in [5] are enough to study the quasi-
static evolution in the case of a predefined crack path of class C2 (the reader interested in evolution
problems may find in [12] an overview of the most recent results). Eventough straight cracks occur
frequently, especially in material testing, it seems more realistic to study the propagation without
any geometrical restriction on the fracture. Several results have been achieved in this perspective,
employing however an evolution model not fully consistent with Griffith’s theory (the interested
reader will find a complete survey in [1]). At the present stage, understanding the phenomenon
of rupture in its full generality is probably out of the grasp: it is not completely clear how to
deal with branching and even which criteria performs better, among maximum energy release rate,
principle of local symmetry, maximum hoop stress, vectorial J-integral etc. To pursue this target it
seems fundamental to provide first a set of basic technical tools, more flexible and general than those
developed in [5]. In this perspective, focusing on the energy release rate, there are among the others
four recent results that deserve to be mentioned. In the first, Brokate and Khludnev [2] assume that
the initial crack is rectilinear and prove that the classical integral representation formula with the
Eshelby tensor holds true for every extention in W 2,p, with p > 2. In the second, due to Lazzaroni
and Toader [10], the hypothesis on the initial crack is dropped, assuming this time that the path is
in C1,1, and thus in W 2,∞. Using again a rectilinear crack, Knees and Mielke [9] provide an integral
formula for G in the case of finite elasticity. In the above papers the regularity of the path does not
allow for kinks, which are however an intriguing phenomenon in crack propagation. This feature
has been taken into account in a paper by Chambolle, Francofort and Marigo [3]. Using an original
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approach, based on a duality argument, they assume that the initial crack is straight and that the
extention are rectifiable sets. Under these assumptions they compute the energy release rate and
provide a formula in terms of the stress intensity factors.

Our result follows the direction of these papers. We assume that the crack is of class C1,1 apart
from a point, the tip of the initial fracture, where we allow for kinks. Adapting the approach of
[5] based on mappings, we compute the energy release rate, first in terms of the stress intensity
factor. Then, taking advantage of the anti-plane setting we provide an integral representation with
the Eshelby tensor. In both the formulas, as in the one of [3], there are some implicit coefficients
which depend on the kink angle.

We conclude our introduction with a technical consideration. In [5], the energy release rate is
represented first as volume integral, then as a path integral (the J-integral) and finally in terms of
the stress intensity factors. More and more regularity is needed to pass from a representation to the
following one. In our setting, the presence of the kink makes it more convenient to somehow invert
the above scheme: with a direct proof, first comes the representation with the stress intensity factors,
then a simple manipulation allows to write G as the product of a scalar coefficient, depending on
the kink angle, with the stress intensity factor, for which the volume integral representation holds.

2 Elastic energy for the initial configuration

We assume that the reference domain Ω is open, bounded and Lipschitz regular. Since our argument
is local, it does not seem too restrictive to assume from the very beginning that the initial crack
K0 can be represented as the graph of a function f , e.g. in the form (t, f(t)) with t ∈ [−1, 0] and
f(0) = 0. For technical reasons it will be necessary to assume that f is at least of class C1,1 in
[−1, 0].

Given ∂DΩ relatively open in ∂Ω and g ∈ H1(Ω) the set of admissible configurations and varia-
tions will be respectively

U(Ω \K0) = {u ∈ H1(Ω \K0) : u = g ∂DΩ} ,

V(Ω \K0) = {v ∈ H1(Ω \K0) : v = 0 ∂DΩ} .

Now, for u ∈ U(Ω \K0) the elastic energy is given by

E0(u) =
1
2

∫
Ω\K0

µ|∇u|2 dx .

Since Ω\Γ0 is connected, there exists a unique minimizer u0 in U(Ω\K0). Under these assumptions
we know from [10] and [7] that there exists a unique value k ∈ R such that, in a small neighborhood
U of the origin,

u0 = kŝ+ ū , (1)

where ū ∈ H2(U \K0) and ŝ = ρ1/2 sin((θ − α)/2) with α = arctanf ′−(0).

3 Elastic energy for the incremental configuration

Consider an extention of f to [0, 1] of class C1,1 in [0, 1]. Note that f is continuous but in general
it is not of class C1,1 in the whole [−1, 1], in particular f ′−(0) and f ′+(0) exist but they may not
coincide (in such a case there is a kink in the origin).

Then for h ∈ (0, 1] let the crack Kh be defined by Kh = {(t, f(t)) : t ∈ [−1, h]}. In this case,
the set of configurations and variations are respectively

U(Ω \Kh) = {u ∈ H1(Ω \Kh) : u = g ∂DΩ} ,

V(Ω \Kh) = {v ∈ H1(Ω \Kh) : v = 0 ∂DΩ} .
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For u ∈ U(Ω \Kh) the elastic energy is now

Eh(u) =
1
2

∫
Ω\Kh

µ|∇u|2 dx .

Clearly there exists a unique minimizer uh of Eh in the space U(Ω \Kh).

Definition 3.1 We define the energy release rate as

G(u0) = − lim
h→0+

Eh(uh)− E0(u0)
H1(Kh \K0)

(2)

(we will prove existence in Theorem 11.4 and give a representation in Theorem 12.1).

In the above definition the increment in crack length can be computed easily as

H1(Kh \K0) =
∫

(0,h)

(
1 + |f ′(s)|2

)1/2
ds .

Clearly, being f of class C1,1 in [0, 1] the above term is of order h and, more precisely,

lim
h→0

h−1

∫
(0,h)

(
1 + |f ′(s)|2

)1/2
ds =

(
1 + |f ′+(0)|2

)1/2
.

Hence we can re-write the energy release rate as

G(u0) =
−1

(1 + |f ′+(0)|2)1/2
lim

h→0+

Eh(uh)− E0(u0)
h

. (3)

In order to compute the above limit we will make some changes of variable. For sake of clarity they
are splitted in three steps.

4 Linearization of the initial crack

The first change of variable linearizes the initial crack, at least in the vicinity of the tip. Let
η ∈ C∞0 (Ω) with η = 1 in a (small) neighborhood of the origin. Consider an extention f̃ of f in
C1,1(−1, 1) and define τ(x1) = x1f

′
−(0)− f̃(x1).

Let us consider the map Υ : Ω→ Ω given by

Υ(x) = x+ τ(x1)η(x) ê2 .

Υ is a C1,1 map of Ω in itself, moreover

DΥ =
(

1 0
τ ′(x1)η(x) + τ(x1)η,1(x) 1 + τ(x1)η,2(x)

)
,

detDΥ = 1 + τ(x1)η,2(x) ,

hence upon a suitable choice of η it turns out that Υ is a diffeomorphism of Ω into itself. For
convenience we will denote Γ0 = Υ(K0) and Γh = Υ(Kh). Note that the fracture sets Γh, for h ≥ 0,
are contained in the graph of the function

f̄(x1) = f(x1) + τ(x1)η(x1, f(x1)) ,

but only Γ0 is linear in a (small) neighborhood of the crack tip.
In this setting the functional spaces in the reference configuration Ω \ Γ0 becomes

U(Ω \ Γ0) = {u ∈ H1(Ω \ Γ0) : u = g ∂DΩ} , (4)
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V(Ω \ Γ0) = {v ∈ H1(Ω \ Γ0) : v = 0 ∂DΩ} , (5)

while the energy becomes

E(u) =
1
2

∫
Ω\Γ0

∇uA∇uT dx (6)

with
A = µDΥDΥT detDΥ−1 .

Note that the coefficients of A are of class C0,1 in the whole Ω. As before, there exists a unique
minimizer in U(Ω \ Γ0). By abuse of notation we will denote it again by u0. Clearly u0 solves also
the variational problem∫

Ω\Γ0

∇u0A∇vT dx = 0 , for every v ∈ V(Ω \ Γ0). (7)

It is proved in [10] that u0 can be represented again in the form

u0 = kŝ+ ū , (8)

where both k and ŝ are the same as in (1) while ū belongs to H2(U \Γ0). Before proceeding, let us
state a Lemma which, despite its simplicity, will be fundamental in the sequel.

Lemma 4.1 Let u0 be the solution of (7). Then∫
Br

|∇u0|2 dx = O(r) .

Proof. By the representation (8) we can write∫
Br

|∇u0|2 dx ≤ 2k2

∫
Br

|∇ŝ|2 dx+ 2
∫

Br

|∇ū|2 dx .

First, note that |∇ŝ|2 = (1/4)ρ−1, hence

2
∫

Br

|∇ŝ|2 dx = πr .

Then, by Sobolev inclusions ∇ū ∈ Lp for every p < ∞, hence, denoting by χ
r

the characteristic
function of Br, we can write the estimate∫

Br

|∇ū|2 dx =
∫

Ω

χ
r
|∇ū|2 dx ≤

∣∣∣ ∫
Ω

|∇ū|2p dx
∣∣∣1/p

|Br|1/p′
= O(r2/p′

) .

The thesis follows upon choosing p′ > 2.

Finally, let us consider the incremental configuration. With this change of variable the spaces
becomes

U(Ω \ Γh) = {u ∈ H1(Ω \ Γh) : u = g ∂DΩ} . (9)

V(Ω \ Γh) = {v ∈ H1(Ω \ Γh) : v = 0 ∂DΩ} , (10)

while the elastic energy becomes

Eh(u) =
1
2

∫
Ω\Γh

∇uA∇uT dx .

The unique minimizer in U(Ω \ Γh) will be denoted again by uh.
With the piece of notation introduced in this section, the definition of energy release rate will

be given again by (3).
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5 Linearization of the incremental crack

The next change of variable completes the linearization of crack, transforming Γh into a small
extention of Γ0, that will remain unchanged. Clearly this mapping cannot be as regular as the
previous one: remember that Γh is contained in the graph of f̄ and that in general f̄ is not of class
C1,1 in [−1, 1].

Since the idea is to map the graph of f̄ on the graph of x1f
′
−(0), at least in the vicinity of the

tip, let us introduce the function ξ(x1) = x1f
′
−(0) − f̄(x1). Note that ξ is a Lipschitz function in

[−1, 1], of class C1,1 in [−1, 0] and in [0, 1]. Then, for 1 < l < r let φ ∈ C∞(0,+∞) with φ = 1 in
(0, l], φ = 0 in [m,+∞) and such that ‖φ′‖∞ < 1/2, ‖φ′‖∞‖ξ′‖∞ < 1. For h� 1 we can define the
map Φh : Ω→ Ω as

Φh(x) = x+ ξ(x1)φ(|x|/h) ê2 .

Remark 5.1 It is important to stress that the support of φ is scaled by h, so that Φh(x) = x in
Ω \Brh. Note that this is not so for the cut off function η appearing in Υ. Thanks to this fact the
translation term ξ(x1)φ(|x|/h) is of order h.

It is clear that Φh is a Lipschitz map of Ω in itself. Let us check that it is indeed a diffeomorphism.
First, note that for x1 negative and sufficiently small we have ξ(x1) = 0, hence if h is sufficiently
small Φh(x) = x for every x ∈ Ω with x1 < 0 and in particular Φh(Γ0) = Γ0. Therefor, it is sufficient
to consider the case x1 > 0. Dropping the variables and denoting cos = x1/|x|, sin = x2/|x|, we
can write a.e. in Ω

DΦh =
(

1 0
ξ′φ+ ξφ′ cos /h 1 + ξφ′ sin /h

)
and detDΦh = 1 + ξφ′ sin /h. Being ξ of class C1,1 in [0, 1] with ξ(0) = 0 we have

|ξφ′ cos /h| = |ξ(x1)/h| |φ′(|x|/h)| |x1/|x|| ≤ ‖ξ′‖∞‖φ′‖∞ < 1 .

Therefore Φh is a diffeomorphism. Arguing as above it is easy to see that ‖DΦh‖∞ is bounded
uniformly with respect to h.

For u ∈ U(Ω \ Γh) the change of variable allows to write the energy as

Eh(u) =
1
2

∫
Ω\Φh(Γh)

∇(u ◦ Φ−1
h )Ah∇(u ◦ Φ−1

h )T dx , (11)

where
Ah = DΦh(A ◦ Φ−1

h )DΦT
h detDΦ−1

h .

By the properties of A and Φh it follows that Ah is uniformly bounded and that Ah = A in Ω\Brh,
in particular Ah converges pointwise to A.

6 Local translation

Let φ be as in the previous section. Define ψh(x) = φ(|x|/h). For h� 1 let

Ψh(x) = x+ hψh(x) ê , (12)

where ê denotes the unit vector (1, f ′−(0))/(1 + f ′−(0)2)1/2. Note that the vertical component of Φh

has the same order as the component of Ψh along ê.
Then,

DΨh = I + hê⊗∇ψh ,

detDΨh = 1 + h tr(ê⊗∇ψh) + h2det(ê⊗∇ψh) .

Since ‖h∇ψh‖∞ ≤ ‖φ′‖∞ < 1/2, it is easy to check that for h small enough Ψh is a diffeomorphism
of Ω \ Γ0 into Ω \ Φ(Γh).
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For u ∈ U(Ω \ Γh) the function u ◦ Φ−1
h ◦Ψh belongs to U(Ω \ Γ0) and by (11) the energy is

Eh(u) =
1
2

∫
Ω\Γ0

∇(u ◦ Φ−1
h ◦Ψh)Ah,0∇(u ◦ Φ−1

h ◦Ψh)T dx , (13)

where
Ah,0 = DΨ−1

h (Ah ◦Ψh)DΨ−T
h detDΨh .

For later convenience, let us define also the matrix A′h = Ah,0−A. The main properties of Ah,0 are
contained in the next Lemma. Its proof is left to the reader.

Lemma 6.1 Ah,0 is symmetric, uniformly elliptic and uniformly bounded. Moreover Ah,0 = A in
Ω \Brh, in particular Ah,0 → A pointwise in Ω.

Finally, for u ∈ U(Ω \ Γ0) define

Eh,0(u) =
1
2

∫
Ω\Γ0

∇uAh,0∇uT dx .

Clearly uh,0 = uh ◦Φ−1
h ◦Ψh is the minimizer of Eh,0 in U(Ω \Γ0). Clearly uh,0 is also the solution

of the variational problem∫
Ω\Γ0

∇uh,0Ah,0∇vT dx = 0 , for every v ∈ V(Ω \ Γ0). (14)

7 Expansion and convergence of the displacements

In order to study the convergence of uh,0 to u0 let u′h ∈ V(Ω \ Γ0) be defined by

uh,0 = u0 + h1/2u′h . (15)

The main property of u′h is stated in the next Lemma.

Lemma 7.1 Let u′h be defined by (15). Then u′h ⇀ 0 in V(Ω \ Γ0).

Proof. From the variation formulation (7) we can write that∫
Ω\Γ0

∇u0Ah,0∇vT dx = −
∫

Ω\Γ0

∇u0(A−Ah,0)∇vT dx , for every v ∈ V(Ω \ Γ0).

Then, from (14) we get∫
Ω\Γ0

(∇uh,0 −∇u0)Ah,0∇vT dx =
∫

Ω\Γ0

∇u0A
′
h∇vT dx , for every v ∈ V(Ω \ Γ0).

Hence u′h ∈ V(Ω \ Γ0) solves∫
Ω\Γ0

∇u′hAh,0∇vT dx = h−1/2

∫
Ω\Γ0

∇u0A
′
h∇vT dx , for every v ∈ V(Ω \ Γ0). (16)

As A′h is supported in Brh by Lemma 4.1 we deduce that h−1/2∇u0A
′
h is uniformly bounded in L2.

Hence
h−1/2

∫
Ω\Γ0

∇u0A
′
h∇vT dx ≤ c ‖v‖V(Ω\Γ0) ,

where c is independent of h. Then by Lemma 6.1 and by the Lax-Milgram Theorem ‖u′h‖V(Ω\Γ0) is
bounded. Hence, up to subsequences u′h ⇀ u′0 in V(Ω \ Γ0). Passing to the limit in (16) yields∫

Ω\Γ0

∇u′0A∇vT dx = 0 , for every v ∈ V(Ω \ Γ0),

from which the thesis follows.
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Remark 7.2 We remark that the expansion of (15), here suggested by Lemma 4.1, is actually the
same appearing in [11] and [3]. As we will see, this is not in contrast with the existence of G that
requires a variation of energy of order h. To conclude, it is worth to mention that in general the
convergence of Lemma 7.1 is not strong.

8 Re-writing the energy release rate

For u′ ∈ V(Ω \ Γ0) let u = u0 + h1/2u′ and consider the functional

Gh(u′) =
Eh,0(u)− E0(u0)

h
=
Eh,0(u0 + h1/2u′)− E0(u0)

h
.

Clearly u′h, defined by (15), is the minimizer of Gh in V(Ω\Γ0). Let us write Gh(u′) more explicitly.
Using the representation u = u0 + h1/2u′ we get

∇uAh,0∇uT = ∇u0Ah,0∇uT
0 + 2h1/2∇u′Ah,0∇uT

0 + h∇u′Ah,0∇u′ T .

Writing Ah,0 = A+A′h the first term above reads

∇u0Ah,0∇uT
0 = ∇u0A∇uT

0 +∇u0A
′
h∇uT

0 .

Then

Gh(u′) =
1
2

∫
Ω\Γ0

h−1(∇uAh,0∇uT −∇u0A∇uT
0 ) dx

=
1
2

∫
Ω\Γ0

h−1∇u0A
′
h∇uT

0 + 2h−1/2∇u′Ah,0∇uT
0 +∇u′Ah,0∇u′ T dx .

Since A′h is supported in Brh we can write∫
Ω\Γ0

∇u0A
′
h∇uT

0 dx =
∫

Brh\Γ0

∇u0A
′
h∇uT

0 dx .

For the same reason, being u′ ∈ V(Ω \ Γ0) the variational formulation (7) for u0 allows to write∫
Ω\Γ0

∇u′Ah,0∇uT
0 dx =

∫
Ω\Γ0

∇u′A′h∇uT
0 dx =

∫
Brh\Γ0

∇u′A′h∇uT
0 dx .

Therefore

Gh(u′) =
1
2

∫
Brh\Γ0

h−1∇u0A
′
h∇uT

0 +

1
2

∫
Ω\Γ0

∇u′Ah,0∇u′ T dx+
∫

Brh\Γ0

h1/2∇u′A′h∇uT
0 dx .

Next, we introduce the functionals

Ih(u0) =
1
2

∫
Brh\Γ0

h−1∇u0A
′
h∇uT

0 dx (17)

and
Jh(u′) =

1
2

∫
Ω\Γ0

∇u′Ah,0∇u′ T dx+
∫

Brh\Γ0

h−1/2∇u′A′h∇uT
0 dx . (18)

Clearly
Gh(u′) = Ih(u0) + Jh(u′)

and u′h ∈ argmin{Jh(u′) : u′ ∈ V(Ω \ Γ0)} where u′h has been defined in (15).
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Finally, we can re-define the energy release rate as

G(u0) =
−1

(1 + |f ′+(0)|2)1/2
lim
h→0
Gh(u′h) .

In order to study the limit of Gh it seems natural to find the Γ-limit [4] of Gh in V0(Ω \ Γ0).
To this end, the main difficulty come from Jh and in particular from the second term because
h−1/2Ah,0∇u0 ⇀ 0 in L2 but in general this convergence is not strong. Choosing the strong
topology it is easy to see that the Γ-limit of Jh would be

1
2

∫
Ω\Γ0

∇u′A∇u′ T dx ,

however u′h is not strongly compact in V0(Ω \ Γ0). Conversely, employing the weak topology the
compactness of u′h is easily proved, by Lemma 7.1, but it is harder to characterize a Γ-limit. In
fact, the div-curl Lemma seems not useful to treat the term h−1/2∇u′hA′h∇u0 which is concentrated
around the crack tip, i.e. on the boundary of Ω\Γ0. For this reasons it is convenient to blow up the
functionals before studying their limits. The blow up will also highlight the dependence on f ′±(0).

9 Blow up

Consider R > r, let αh and βh be defined as

αh(s) =

 h 0 ≤ s < r
(R− hr)/(R− r) r ≤ s ≤ R
1 s > R ,

βh(s) =

 0 0 ≤ s < r
Rr(h− 1)/(R− r) r ≤ s ≤ R
0 s > R .

Define the piecewise affine function λh(s) = αh(s)s+βh(s) and the map Λh(x) = xλh(|x|)/|x|. It is
not difficult to see that Λh is a diffeomorphism in the plane. Let us also define Λ0 as the pointwise
limit of Λh.

Now, let us apply this blow-up. As Λh(x) = hx in Brh a simple computation gives

Ih(u0) =
1
2

∫
Br\Γ0

h−1∇(u0 ◦ Λh)B′h∇(u0 ◦ Λh)T dx , (19)

where B′h = A′h ◦ Λh. Similarly, the second integral in Jh becomes∫
Br\Γ0

h−1/2∇(u′ ◦ Λh)B′h∇(u0 ◦ Λh)T dx .

Finally, the first integral in Jh becomes∫
Ω\Γ0

∇(u′ ◦ Λh)Bh,0∇(u′ ◦ Λh)T ,

where Bh,0 = DΛ−1
h (Ah,0 ◦ Λh)DΛ−T

h detDΛh. Hence

Jh(u′) =
1
2

∫
Ω\Γ0

∇(u′ ◦ Λh)Bh,0∇(u′ ◦ Λh)T +
∫

Br\Γ0

h−1/2∇(u′ ◦ Λh)B′h∇(u0 ◦ Λh)T dx .

Then, for w ∈ V(Ω \ Γ0) let

Ĵh(w) =
1
2

∫
Ω\Γ0

∇wBh,0∇wT +
∫

Br\Γ0

h−1/2∇wB′h∇(u0 ◦ Λh)T dx (20)

and let wh = u′h ◦ Λh. Then wh ∈ argmin{Ĵh(w) : w ∈ V(Ω \ Γ0)}. Finally let

Ĝh(w) = Ih(u0) + Ĵh(w) .
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Obviously wh ∈ argmin{Ĝh(w) : w ∈ V(Ω \ Γ0)}, hence Gh(u′h) = Ĝh(wh) and

G(u0) =
−1

(1 + |f ′+|2(0))1/2
lim
h→0
Ĝh(wh) . (21)

Note that wh = u′h in Ω \BR by the definition of Λh.

Let us give a closer look to the limits of the matrices B′h and Bh,0 appearing in (19) and (20).

Lemma 9.1 In the ball Br

Bh,0 → µ(FDΨ)−1(FDΨ)−T det(FDΨ) , (22)

where F is uniformly bounded and depends on f only through f ′±(0). In Ω \Br

Bh,0 → DΛ−1
0 (A ◦ Λ0)DΛ−T

0 detDΛ0 . (23)

Proof. Remember that Ah,0 = DΨ−1
h (Ah ◦ Ψh)DΨ−T

h detDΨh = A + A′h and that in Br we
have Λh(x) = hx. The term h∇ψh(hx) appearing in DΦh ◦ Λh becomes simply ∇ψ(x) and thus
DΨh ◦ Λh = DΨ is independent of h. Moreover DΛh = hI, it follows that

Bh,0 = Ah,0 ◦ Λh = DΨ−1(Ah ◦Ψh ◦ Λh)DΨ−T detDΨ .

As Ψh(x) = x+ hψh(x) ê we can write

Ψh ◦ Λh(x) = h(x+ ψ(x)ê) = hζ(x) .

Remember that Ah = DΦh(A ◦ Φ−1
h )DΦT

h detDΦ−1
h where

DΦh =
(

1 0
ξ′φ+ ξφ′ cos /h 1 + ξφ′ sin /h

)
.

Hence DΦh ◦Ψh ◦ Λh has the same form as above adopting the notation

ξ = ξ(hζ1) , ξ′ = ξ′(hζ1) , φ′ = φ′(|ζ|) , cos = ζ1/|ζ| , sin = ζ2/|ζ| .

We recall that ξ(x1) = x1f
′
−(0)− f̄(x1) and that f̄(x1) = f(x1) + (x1f

′
−(0)− f̃(x1)) for |x1| � 1;

hence for h� 1 we can write
ξ(x1) = f̃(x1)− f(x1) .

Let us also recall that f̃ is a C1,1 extention, hence f̃ ′±(0) = f ′−(0). It follows that ξ(0) = 0, ξ′−(0) = 0
and ξ′+(0) = f ′−(0)− f ′+(0). Then, we have limh→0 ξ(hζ1) = 0, and

lim
h→0

ξ′(hζ1) =
{
ξ′−(0) if ζ1 < 0
ξ′+(0) otherwise=

{
0 if ζ1 < 0
f ′−(0)− f ′+(0) otherwise.

In a similar way

lim
h→0

ξ(hζ1)/h =
{

0 if ζ1 < 0
ζ1(f ′−(0)− f ′+(0)) otherwise.

Therefore the pointwise limit F of the matrix DΦh ◦Ψh ◦Λh is bounded and depends on f only by
means of f ′±(0). Now, let us consider the limit of A ◦ Φ−1

h ◦Ψh ◦ Λh. Clearly Φh ◦Ψh ◦ Λh → 0 in
Br, hence by continuity

A ◦ Φ−1
h ◦Ψh ◦ Λh → A(0) .

In order to conclude, it is sufficient to note that A(0) = µI, then

Ah ◦Ψh ◦ Λh → µF−1F−T detF

and hence
Bh,0 = Ah,0 ◦ Λh → µ(FDΨ)−1(FDΨ)−T det(FDΨ) .
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In Ω \ Brh we have both Ah = A and Ψh = id, hence Ah ◦Ψh = A; moreover DΨh = I, hence
Ah,0 = A. Since Λh(Ω \ Br) = Ω \ Brh it follows that in Ω \ Br we have Ah,0 ◦ Λh = A ◦ Λh. In
conclusion

Bh,0 = DΛ−1
h (A ◦ Λh)DΛ−T

h detDΛh .

As DΛh → DΛ0 pointwise in Ω by the continuity of A we get that in Ω \Br

Bh,0 → DΛ−1
0 (A ◦ Λ0)DΛ−T

0 detDΛ0 ,

which concludes the proof.

Lemma 9.2 In the ball Br

B′h → B0 − µI . (24)

(Remember that B′h = 0 in Ω \Br).

Proof. Remember that Ah,0 = A+A′h in Br, hence Bh,0 = A ◦Λh +A′h ◦Λh = A ◦Λh +B′h. Since
A ◦ Λh → µI the thesis follows by the previous Lemma.

Definition 9.3 The previous Lemmas suggests to define

B0 =


µ(FDΨ)−1(FDΨ)−T det(FDΨ) in Br

DΛ−1
0 (A ◦ Λ0)DΛ−T

0 detDΛ0 in BR \Br.
A in Ω \BR.

B′0 =
{
B0 − µI in Br

0 in Ω \Br.

Clearly Bh,0 → B0 and B′h → B′0 pointwise in Ω.

10 Localization of Ĵh

Before proving the existence of the energy release rate it is convenient to ’localize’ Ĵh in the ball
BR. Consider the space

Wh,R = {w ∈ H1(BR \ Γ0) : w = wh = u′h in ∂BR}

and define for w ∈ Wh,R the localized functional

Ĵh,R(w) =
1
2

∫
BR\Γ0

∇wBh,0∇wT +
∫

Br\Γ0

h−1/2∇wB′h∇(u0 ◦ Λh) . (25)

Consider Ĵh,R = +∞ in H1 \ Wh,R. Clearly we have wh ∈ argmin{Ĵh,R(w) : w ∈ Wh,R}. In a
similar way consider the space

Wc
h,R = {w ∈ H1(Ω \ (B̄R ∪ Γ0)) : w = u′h in ∂BR ∪ ∂DΩ , w = 0 in ∂DΩ}

and the energy

Ĵ c
h,R(w) =

1
2

∫
Ω\(B̄R∪Γ0)

∇wBh,0∇wT dx =
1
2

∫
Ω\(B̄R∪Γ0)

∇wA∇wT dx . (26)

Clearly wh ∈ argmin{Ĵ c
h,R(w) : w ∈ Wc

h,R} and wh = uh in Ω \ B̄R.

For later convenience let us introduce also the space

W0,R = {w ∈ H1(BR \ Γ0) : w = 0 in ∂BR}

and define for w ∈ W0,R the localized functional

Ĵ0,R(w) =
1
2

∫
BR\Γ0

∇wB0∇wT + k

∫
Br\Γ0

∇wB′0∇ŝ . (27)

Consider Ĵ0,R = +∞ in H1 \W0,R and let w0 ∈ argmin {ĴR(w) : w ∈ W0,R}.
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11 Existence of the energy release rate

In this section we will prove the existence of the energy release rate. For convenience the proof is
splitted in three lemmas.

Lemma 11.1 Let I be defined in (19). Then

I(u0) = lim
h→0
Ih(u0) = k2 1

2

∫
Br\Γ0

∇ŝB′0∇ŝ dx . (28)

Proof. Let ŝ = ρ1/2 sin((θ − α)/2) and u0 = kŝ+ ū. Then ŝ ◦ Λh = h1/2ŝ in Br. Thus

Ih(u0) = h−1 1
2

∫
Br\Γ0

∇(u0 ◦ Λh)B′h∇(u0 ◦ Λh) dx

=
1
2

∫
Br\Γ0

k2∇ŝB′h∇ŝ dx+

1
2

∫
Br\Γ0

2kh−1/2∇ŝB′h∇(ū ◦ Λh) + h−1∇(ū ◦ Λh)B′h∇(ū ◦ Λh) dx .

Moreover, denoting by χ
s

the characteristic function of the ball Bs, we can write∫
Ω

χ
r
|∇(ū ◦ Λh)|2 dx =

∫
Ω

χ
rh
|∇ū|2 dx .

Arguing as in the proof of Lemma 4.1 we have h−1/2χ
r
∇(ū ◦ Λh) → 0 strongly in L2, from which

(28) is proved.

Lemma 11.2 The functionals Ĵh,R Γ-converge to Ĵ0,R with respect to the weak topology of H1 and
Ĵh,R(wh)→ Ĵ0,R(w0).

Proof. Let us begin with the liminf-inequality. First, it is better to re-write Ĵh,R in a more
convenient way. Let u0 = kŝ+ ū with ŝ = ρ1/2 sin((θ − α)/2). Then ŝ ◦ Λh = h1/2ŝ in Br and thus

Ĵh,R(w) =
1
2

∫
BR\Γ0

∇wBh,0∇wT dx+

1
2

∫
Br\Γ0

∇wB′h
(
k∇ŝ+ h−1/2∇(ū ◦ Λh)

)
dx .

Now, let wh ⇀ w in H1
0 (BR). Then by lower-semicontinuity we can write∫
BR\Γ0

∇wB0∇wT dx ≤ lim inf
h→0

∫
BR\Γ0

∇whBh,0∇wT
h dx .

Since k∇ŝ+ h−1/2χ
r
∇(ū ◦ Λh)→ k∇ŝ strongly in L2 (see the proof of Lemma 11.1) we have

k

∫
Br\Γ0

∇wB′0∇ŝ dx = lim
h→0

∫
Br\Γ0

∇whB
′
h

(
k∇ŝ+ h−1/2∇(ū ◦ Λh)

)
dx .

We can conclude that Ĵ0,R(w) ≤ lim infh→0 Ĵh,R(wh).

Let us prove the limsup-inequality. Let L : H1/2(∂BR)→ H1(BR \Γ0) denote a bounded lifting
operator and consider the sequence L(wh). Since u′h ⇀ 0 in H1(Ω \Γ0) then u′h → 0 in H1/2(∂BR)
and hence L(wh) → 0 in H1(BR \ Γ0). Given w ∈ W0,R, let us write it as w = L(wh) − zh. Then
zh ∈ Wh,R and zh → w in H1(BR \ Γ0). It is easy to check that limh→0 Ĵh,R(zh) = Ĵ0,R(w).

Finally, let us check the convergence of minimizers. Remember that the minimizer of Ĵh,R is
wh = u′h ◦ Λh and that u′h is bounded in H1(BR \ Γ0). Using again the change of variable, it is
easy to see that wh is bounded in H1(BR \ Γ0) and thus weakly compact. By a standard result on
Γ-convergence [4] it follows that Ĵh,R(wh)→ Ĵ0,R(w0).
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Lemma 11.3 Let Ĵ c
h,R the functional defined in (26). Then

lim
h→0
Ĵ c

h,R(wh) = 0 .

Proof. It is sufficient to remember that wh = u′h ∈ argmin{Ĵ c
h,R(w) : w ∈ Wc

h,R} and that u′h → 0
in H1/2(∂BR).

Writing Ĝh(wh) = Ih(u0) + Ĵh,R(wh) + Ĵ c
h,R(wh) and combining the three previous Lemmas

follows the existence of the energy release rate, as stated in the next Theorem.

Theorem 11.4 The energy release rate (2) exists and is given by

G(u0) = −I(u0) + Ĵ0,R(w0)
(1 + |f ′+(0)|2)1/2

,

where

I(u0) =
k2

2

∫
Br\Γ0

∇ŝB′0∇ŝ dx ,

Ĵ0,R(w) =
1
2

∫
BR\Γ0

∇wB0∇wT dx+ k

∫
Br\Γ0

∇wB′0∇ŝ dx .

and w0 ∈ argmin{Ĵ0,R(w) : w ∈ W0,R}.

We will see how to re-write the above formula in a more convenient way in the next section. It
is worth to stress the fact that G depends on u0 only by means of the coefficient k.

12 Representation of the energy release rate

Let us denote by ŵ the minimizer with k = 1. Thank to the fact that w0 = 0 in ∂BR it follows
easily that w0 = kŵ is the minimizer of Ĵ0,R. Therefore, using also the fact that B′0 is supported
in Br, we can write

Ĵ0,R(w) =
k2

2

∫
BR\Γ0

∇ŵB0∇ŵT dx+ k2

∫
Br\Γ0

∇ŵB′0∇ŝT dx

=
k2

2

∫
BR\Γ0

∇ŵB0∇ŵT + 2∇ŵB′0∇ŝT dx

and

I(u0) =
k2

2

∫
BR\Γ0

∇ŝB′0∇ŝ dx .

As a consequence G(u0) can be represented as in the following Theorem.

Theorem 12.1 The energy release rate can be represented as

G(u0) =
−k2

2(1 + |f ′+|2(0))1/2

∫
BR\Γ0

(∇ŵB0∇ŵT + 2∇ŵB′0∇ŝT +∇ŝB′0∇ŝ) dx . (29)

It seem particularly usefull in view of the applications to crack propagation to have at one’s
disposal an integral representation formula for the energy release rate. When there are no kinks
the classical representation with the Eshelby tensor holds true for C1,1 cracks [10]. To this end, let
η be a cut off function with η = 1 is a (small) neighborhood of the origin and consider the tangent
map

T (x) = (1, f̃ ′(x1)) η(x) ,
where f̃ is again a C1,1 extension of f . Under these assumptions we have

k2 =
4
π

∫
Ω\K0

E(u0) ·DT dx ,

where E is the Eshelby tensor. Combining the last formula with (29) allows to write the energy
release rate with a volume integral.
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