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Abstract

We prove that, if E is the Engel group and u is a stable solution
of ∆Eu = f(u), then

∫
{∇Eu≠0}

⎡⎢⎢⎢⎣
∣∇Eu∣2{(p +

⟨(Hu)T ν, v⟩
∣∇Eu∣ )

2

+ h2} − J
⎤⎥⎥⎥⎦
η
2 ≤ ∫

E

∣∇Eη∣2∣∇Eu∣2

for any test function η ∈ C∞0 (E).
Here above, h is the horizontal mean curvature, p is the imaginary

curvature and

J ∶= 2(X3X2uX1u −X3X1uX2u) + (X4u)(X1u −X2u)

This can be interpreted as a geometric Poincaré inequality, extending the
work of [21, 22, 13] to stratified groups of step 3.

As an application, we provide a non-existence result.

1 Introduction

The Engel group is the Lie group E having Lie algebra e spanned by the vector
fields X1,X2,X3,X4 subject to the commuting relations

[X1,X2] =X3, [X1,X3] = [X2,X3] =X4.

The subRiemannian geometry of E is the one in which the horizontal vectors in
V1 ∶= span(X1,X2) play a distinguished role. The geometry is not trivial because
V1, V2 ∶= [V1, V1] and V3 ∶= [V1, V2] span e. The essence of subRiemannian
geometry is that its information is carried out only by V1, but in a way which
might differ from the Riemannian case. For istance, to better understand the
difficulties hidden by the misterious geometry of the Engel group before going
into the details of the semilinear equations on it let us consider the case of
geodesics. The distance between two points P and Q in E can be computed
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as the infimum of the subRiemannian length of smooth curves joining them.
Namely, we require that γ̇ = a1X1 + a2X2 ∈ V1 and compute the length as

length(γ) = ∫ √a2
1
+ a2

2
dt.

By definition there are ∞1 choices for the (unit) tangent vector of a geodesic at
a point P of E, but there are ∞4 points in E and (Chow’s Theorem) they can
all be reached from P along geodesics. Having each geodesic ∞1 points, there
must be two “hidden” real parameters to account for the ∞3 multiplicity to be
reached starting from each tangent vector at P . In particulat, let us consider
a smooth three-dimensional hypersurface S ⊂ E with P ∈ E and consider the
problem of finding the geodesic starting at P such that, for small t, which is the
only length minimizing geodesic between P and γ(t). Surely, γ̇(t) ∶= ν ∈ V1 must
be the vector normal to S in the sub-Riemannian geometry, but this leaves us
with ∞2 geodesics to choose from. In [1] and [2] the problem was considered in
the Heisenberg group, where the only missing parameter was rescued in terms
of the “imaginary curvature” of S. In [3] the same problem was considered in
groups of any step, although most applications were proved in the step-two case
only. We refer to Section 2 for a more detailed treatment of the Engel group.

We now introduce the problem we study and present our main result. Given
a domain Ω ⊆ E we consider solutions u of the following semilinear equation in
E,

∆Eu = f(u). (1)

For simplicity, we assume f ∈ C∞(R): in this way, u ∈ C∞(Ω) by the regu-
larity theory of [18] (the case of less regular nonlinearities f may be treated
analogously, with only minor modifications).

Moreover, we assume that u is stable, that is

0 ≤ ∫
E

⟨∇Eη,∇Eη⟩E + ∫
E

ḟ(u)η2 (2)

for every η ∈ C∞0 (Ω).
The stability condition in (2) has been widely studied in the calculus of vari-

ation setting: indeed, it states that the second variation of the energy functional
associated to (1) is nonnegative at the critical point u – hence, for instance, min-
imal solutions are always stable, but, in principle, stability is a weaker condition
than minimality.

Equation (1) is called semilinear, since the only nonlinearity depends on
the solution u (not on the space, neither on the derivatives of u): such kind
of equations have been studied in detail in the Euclidean framework, and in
the subRiemannian one as well (see, e.g. [5, 6, 7, 17]), and they possess the
remarkable geometric property that the operator is constant along the level sets
of the solution.

At any point of
E0 ∶= {x ∈ Ω ∣ ∇Eu ≠ 0}
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we denote by

ν = ∇Eu∣∇Eu∣
the intrinsic unit normal to the level set of u, to wit ν is the normalized projec-
tion on the horizontal fiber of the Riemannian normal.

We shall also consider the intrinsic tangent direction to the level set of u

v ∶= X2u∣∇Eu∣X1 − X1u∣∇Eu∣X2 (3)

Let us observe that ∀p ∈ E0

⟨ν(p), v(p)⟩p,E = 0
where ⟨⋅, ⋅⟩p,E is the standard scalar product on the fiber HpE. We denote by
Hu the intrinsic Hessian matrix, i.e.

Hu ∶= (X1X1u X2X1u

X1X2u X2X2u
)

As usual, we define (Hu)2 ∶= (Hu)(Hu)T
and ∣Hu∣ ∶=√∣∇EX1u∣2 + ∣∇EX2u∣2
Also, in E0, following an analogy in the Heisenberg group (see [1, 2, 19, 20]), we
define the horizontal mean curvature

h ∶= divE ν (4)

and the imaginary curvature

p ∶= − X3u∣∇Eu∣ (5)

Let also

J ∶= 2(X3X2uX1u −X3X1uX2u) + (X4u)(X1u −X2u)
With this notation, we have:

Theorem 1.1.

∫
E0

⎡⎢⎢⎢⎣∣∇Eu∣2{(p + ⟨(Hu)T ν, v⟩∣∇Eu∣ )2 + h2} − J ⎤⎥⎥⎥⎦η2 ≤ ∫E ∣∇Eη∣2∣∇Eu∣2
for any η ∈ C∞0 (Ω).
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Theorem 1.1 is a sort of geometric weighted Poincaré inequality, in the sense
that the weighted L2-norm of any test function is bounded by a weighted L2-
norm of its gradient, and the weights are built with geometric objects.

In the Euclidean case, the analogue of Theorem 1.1 was established in [21,
22], and recently many extensions have been performed (see, in particular, [11,
12]). As far as we know, the first applications in the subRiemannian setting,
were performed in [4, 13] for the Heisenberg group and in [14] for the Grushin
plane. In several cases, these type of geometric weighted inequalities lead to
rigidity results (such as classification, symmetry, or non existence, of solutions).
Differently from the Euclidean case, the weight on the left hand side of the
inequality does not need to be positive in general, due to the presence of J .
Thus, the presence of noncommutating vector fields, complicates the geometry
of the level sets via the sign of J . Indeed, if J ≤ 0, when the right hand side
of the inequality in Theorem 1.1 vanishes, one obtains that the level sets of u
satisfy the geometric equations, see Corollary 4.2,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p +
⟨(Hu)T ν, v⟩∣∇Eu∣ = 0

h = 0
(6)

Also, a more geometric interpretation of the quantity J , in dependence of the
intrinsic tangent and normal vectors, will be given in Lemma 3.8.

In this paper, Theorem 1.1 is a first attempt to adapt these geometric
weighted inequalities to stratified groups of step higher than 2 (for other differ-
ent weighted inequalities in R

4 obtained via the Engel group, see Theorem 1.4
of [15]).

The higher the step of the group, the more complicated are the combinatorics
occurring in the inequality, and the more difficult is the geometric interpreta-
tion of the quantities involved. Nevertheless, the Engel group still mantains a
reasonable level of geometric insight and provides a challenging source of prob-
lems for this approach. For instance, we think that it would be interesting to
investigate whether or not rigidity results and geometric properties of stable so-
lutuions may be obtained from these kind of Poincaré inequalities (or by other
methods as well).
In this spirit we are able to prove a first non-existence result for semilinear
equations in the Engel group in Theorem 4.7.

To conclude this introduction we think that is interesting to propose some
suggestion for further research. In particular we think that it could be interest-
ing to see if a result like the one proved in Theorem 1.1 holds in more general
Carnot groups. Moreover, we think that it could be stimulating to study the
geometric nature of J , in particular it would be desirable to relate J with the
sub-Riemannian metric structure of E.

The organization of this paper is as follows. In Section 2, we recall what the
Engel group is and what its basic properties are. Then, we prove Theorem 1.1
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in Section 3. Finally, in Section 4, we derive the geometric equations (6) in
Corollary 4.2, and we provide a non-existence result in Theorem 4.7.

2 The Engel group

We recall the basic definitions and properties of the Engel group.

Definition 2.1. The Engel algebra is the finite dimensional Lie algebra e with
basis (X1,X2,X3,X4) where the only nonvanishing commutators relationship
among the generators are

[X1,X2] =X3, [X1,X3] = [X2,X3] =X4 (7)

Remark 2.2. It is easy to see that the Engel algebra is stratified of step 3, i.e.

e = e1 ⊕ e2 ⊕ e3

where e1 ∶= span{X1,X2}, e2 ∶= span{X3} and e3 ∶= span{X4} and
[e1, e1] = e2, [e1, e2] = e3, [e1, e3] = {0} (8)

Definition 2.3. The Engel group, denoted by E, is the simply connected nilpo-
tent Lie group associated to e.

Since E is a Carnot group we can represent it by means of graded coordinates
associated to the basis (X1,X2,X3,X4); it follows that E = (R4, ⋅,{δr}{r>0}),
where ∀(x1, x2, x3, x4), (y1, y2, y3, y4) ∈ E

(x1, x2, x3, x4) ⋅ (y1, y2, y3, y4) ∶= (9)

= (x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − x2y1),

x4 + y4 +
1

2
[(x1y3 − x3y1) + (x2y3 − x3y2)]+

+
1

12
[(x1 − y1 + x2 − y2)(x1y2 − x2y1)])

and the homogeneous dilations on E are

δr(x1, x2, x3, x4) ∶= (rx1, rx2, r
2x3, r

3x4) r > 0
The rappresentation of the basis (X1,X2,X3,X4) on the graded coordinates
gives

X1(x1, x2, x3, x4) = ∂1 − x2

2
∂3 − (x3

2
+
x2

12
(x1 + x2))∂4

X2(x1, x2, x3, x4) = ∂2 + x1

2
∂3 − (x3

2
−
x1

12
(x1 + x2))∂4

X3(x1, x2, x3, x4) = ∂3 + 1

2
(x1 + x2)∂4

X4(x1, x2, x3, x4) = ∂4
5



We fix a left invariant Riemannian metric on R
4 that makes the above vector

fields orthonormal, i.e. at every p ∈ E we give a scalar product ⟨⋅, ⋅⟩p,E such that

⟨Xi(p),Xi(p)⟩p,E = 1 i ∈ {1,2,3,4}
and ⟨Xi(p),Xj(p)⟩p,E = 0 if i ≠ j
As usual in the context of Carnot groups, for every p ∈ E we define the Horizontal
fiber at p as the subspace of the tangent space at p generated by X1(p) and
X2(p), i.e

HpE ∶= span{X1(p),X2(p)} ⊂ TpE

and the horizontal subbundle of the tangent boundle associated to E as

HE ∶= ⋃
p∈E

HpE

Finally, we briefly recall the notion of Carnot-Carathéodory distance on E, see [7]
for a more detailed treatment.

Definition 2.4. A locally Lipschitz curve λ ∶ [0, T ] Ð→ R
4 is said to be hori-

zontal if there are c1, c2 ∈ L∞([0, T ]) such that

λ̇(t) = c1(t)X1(λ(t)) + c2(t)X2(λ(t)) L
1
− q.o t ∈ [0, T ]

and
c1(t)2 + c2(t)2 ≤ 1 in [0, T ]

The CC−distance between two points p, q ∈ E is defined as follows

dCC(x, y) ∶= inf{T > 0 ∣ ∃ λ ∶ [0, T ]Ð→ R
4 horizontal s.t λ(0) = x,λ(T ) = y}

Remark 2.5. It is a classical result that dCC is a distance on E, see [9]. More-
over, we have

dCC(x, y) = dCC(z ⋅ x, z ⋅ y) ∀x, y, z ∈ E
and

dCC(δr(x), δr(y)) = rdCC(x, y) ∀x, y ∈ E,∀r ∈ (0,∞)
Finally, let K ⋐ Ω be a compact set then there exists a constant α > 0 such that

dCC(x, y) ≥ α∣x − y∣ (10)

for all x, y ∈K.

Definition 2.6. Let u ∶ ΩÐ→ R be a C1 map then the horizontal gradient of u
is defined as follows

∇Eu(x) ∶=X1u(x)X1 +X2u(x)X2

moreover, if u ∈ C1(Ω,R2) the horizontal divergence of u is

divE u(x) ∶=X1u1(x) +X2u2(x)
Finally, if u ∶ ΩÐ→ R is C2 the horizontal Laplacian of u is

∆Eu(x) ∶=X1X1u(x) +X2X2u(x)
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Remark 2.7. Let us explicitely observe that the intrinsic gradient does not
depend of the basis (X1,X2).
Remark 2.8. If, in Theorem 1.1, u does not depend on x4, then the situation
boils down to the one in the Heisenberg group (note indeed that X3X1u =
X1X3u, so Theorem 1.1 reduces to Theorem 2.3 in [13]).

3 Proof of Theorem 1.1

The proof of our first result needs some preliminary, technical computations, by
which we obtain some useful identities.

Lemma 3.1. Let j ∈ {1,2}. If u ∈ C∞(Ω) then in E0 we have

Xj ∣∇Eu∣ = ⟨Xj(∇Eu), ν⟩E. (11)

Moreover, for each η ∈ C∞0 (Ω),
∇E(∣∇Eu∣η) = η∣∇Eu∣ (Hu)T∇Eu + ∣∇Eu∣∇Eη (12)

and

∣∇E(∣∇Eu∣η)∣2 = η2∣∇Eu∣2 ∣(Hu)T∇Eu∣2 + 2η ⟨∇Eu, (Hu)∇Eη⟩E + ∣∇Eη∣2∣∇Eu∣2
(13)

Proof. Equation (11) is straightforward. Also, the proof of (12) follows from
the following simple calculation:

∇E(∣∇Eu∣η) = η∇E(∣∇Eu∣) + ∣∇Eu∣∇Eη = (14)

= η∣∇Eu∣ (Hu)T∇Eu + ∣∇Eu∣∇Eη

Furthermore

∣∇E(∣∇Eu∣η)∣2 = ⟨∇E(∣∇Eu∣η),∇E(∣∇Eu∣η)⟩E =
= ⟨ η∣∇Eu∣ (Hu)T∇Eu,

η∣∇Eu∣ (Hu)T∇Eu⟩
E

+

+ 2 ⟨ η∣∇Eu∣ (Hu)T∇Eu, ∣∇Eu∣∇Eη⟩
E

+

+ ⟨∣∇Eu∣∇Eη, ∣∇Eu∣∇Eη⟩E .
Hence

∣∇E(∣∇Eu∣η)∣2 = ( η∣∇Eu∣ )
2∣(Hu)T∇Eu∣2 + 2η ⟨(Hu)T∇Eu,∇Eη⟩

E
+

+ ∣∇Eη∣2∣∇Eu∣2
= ( η∣∇Eu∣ )

2∣(Hu)T∇Eu∣2 + 2η ⟨∇Eu, (Hu)∇Eη⟩E +
+ ∣∇Eη∣2∣∇Eu∣2
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and this proves (13).

Lemma 3.2. Let u ∈ C∞(Ω) then
∣Hu∣2 − ⟨(Hu)2ν, ν⟩

E
= ∣(Hu)T v∣2. (15)

Moreover, in E0

∣(Hu)T v∣2 = ∣∇Eu∣2{(p + ⟨(Hu)T ν, v⟩∣∇Eu∣ )2 + h2}. (16)

Proof. We note that for each p ∈ E (ν(p), v(p)) is an orthonormal basis of HpE.
Then (15) follows, for instance, from Lemma 3 in [4].

In order to prove (16), we begin observing that

(Hu)T = (X1X1u X1X2u

X2X1u X2X2u
) = (17)

= (X1X1u X2X1u

X1X2u X2X2u
) + ( 0 X1X2u −X2X1u

X2X1u −X1X2u 0
) =

=Hu + ( 0 X3u

−X3u 0
) .

Now we define

J ∶= ( 0 1
−1 0

)
Let also Z and Hν ∈ Mat (R,2 × 2) be defined as

Zij ∶= νi((Hu)T ν)
j

and (Hν)ij ∶=Xj(νi)
for i, j ∈ {1,2}. So, we use (11) to obtain that

Zij + ∣∇Eu∣(Hν)ij =
= νi⟨Xj(∇Eu), ν⟩E + ∣∇Eu∣Xj( Xiu∣∇Eu∣ ) =
= Xiu∣∇Eu∣ ⟨Xj(∇Eu), ν⟩E +XjXiu −

Xiu∣∇Eu∣Xj ∣∇Eu∣ =
= XjXiu

that is
Z + ∣∇Eu∣Hν =Hu

Hence, we can rewrite (17) in the following way

(Hu)T = (X3u)J +Z + ∣∇Eu∣Hν (18)

Furthermore
Jv = −ν (19)
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and

(Zv)i = 2

∑
j=1
Zijvj =

=
2

∑
j=1

νi((Hu)T ν)
j
vj = νi ⟨(Hu)T ν, v⟩E

that is
Zv = ⟨(Hu)T ν, v⟩

E
ν (20)

By plugging (19) and (20) into (18), we conclude that

(Hu)T v = ( −X3u + ⟨(Hu)T ν, v⟩
E
)ν + ∣∇Eu∣Hνv (21)

and so

∣(Hu)T v∣2 = ⟨(Hu)T v, (Hu)T v⟩
E
=

= ( −X3u + ⟨(Hu)T ν, v⟩
E
)2 + ∣∇Eu∣2∣Hνv∣2+

+ 2( −X3u + ⟨(Hu)T ν, v⟩
E
)∣∇Eu∣ ⟨Hνv, ν⟩E

From this and the definitions in (4) and (5), we obtain that the proof of (16) is
completed if we prove that ⟨Hνv, ν⟩E = 0 (22)

and that ∣Hνv∣ = ∣divE ν∣ (23)

To this end, let us observe that, by (21),

∣∇Eu∣ ⟨Hνv, ν⟩E = ⟨(Hu)T v, ν⟩
E
− ⟨(Hu)v, ν⟩

E
+X3u (24)

Now, by (17),

(Hu)T v − (Hu)v =
⎛⎜⎜⎜⎜⎜⎝

−
X1u∣∇Eu∣X3u

−
X2u∣∇Eu∣X3u

⎞⎟⎟⎟⎟⎟⎠
= −(X3u)ν

hence ⟨(Hu)T v − (Hu)v, ν⟩
E
= −X3u

By plugging this into (24), we obtain (22).
To obtain (23), we argue as follows. By (22), we know that Hνv is parallel

(or antiparallel) to v, therefore

Hνv = ±∣Hνv∣v
9



Hence, by (21),

± ∣∇Eu∣ ∣Hνv∣ = ⟨∣∇Eu∣Hνv, v⟩E =
= ⟨(Hu)T v, v⟩E = 2

∑
i,j=1
(XiXju)vivj (25)

Now, we remark that
ν2i = 1 − v2i (26)

To prove this, we take i = 1 (the case i = 2 being analogous), and we observe
that

ν21 = v22 = 1 − v21
which establishes (26).

On the other hand, if i ≠ j,
νiνj = ν1ν2 = (−v2)(v1) = −vivj (27)

So, by (11), (26) and (27), we obtain

∣∇Eu∣ ∣divE ν∣ = ∣∇Eu∣ 2

∑
i=1

Xi( Xiu∣∇Eu∣ ) =
=

2

∑
i=1

XiXiu −
Xiu∣∇Eu∣ ⟨Xi(∇Eu), ν⟩E =

=
2

∑
i=1

XiXiu −
2

∑
i,j=1
(XiXju)νiνj =

=
2

∑
i=1

XiXiu −
2

∑
i=1
(XiXiu)ν2i − 2

∑
i≠j=1
(XiXju)νiνj =

=
2

∑
i=1

XiXiu −
2

∑
i=1
(XiXiu)(1 − v2i ) + 2

∑
i≠j=1
(XiXju)vivj =

=
2

∑
i=1
(XiXiu)v2i + 2

∑
i≠j=1
(XiXju)vivj =

2

∑
i,j=1
(XiXju)vivj

(28)

By comparing (25) and (28), we see that

±∣∇Eu∣ ∣Hνv∣ = ∣∇Eu∣ ∣divE ν∣
which implies (23), as desired.

Lemma 3.3. For each u ∈ C∞(Ω) it holds that

X1∆Eu =∆EX1u + 2X3X2u +X4u; (29)

X2∆Eu =∆EX2u − 2X1X3u +X4u; (30)

X3∆Eu =∆EX3u − 2X4X1u − 2X4X2u; (31)

and X4∆Eu =∆EX4u. (32)
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Proof. For the first equality

X1∆Eu =X1(X1X1u) +X1(X2X2u)
=∆EX1u +X1X2X2u −X2X2X1u

=∆EX1u +X3X2u +X2X1X2u −X2X2X1u

=∆EX1u + 2X3X2u +X2X3u −X3X2u

=∆EX1u + 2X3X2u +X4u.

The second and the third equality follow in a similar way, indeed

X2∆Eu =X2(X1X1u) +X2(X2X2u)
=∆EX2u −X1X1X2u +X2X1X1u

=∆EX2u −X3X1u +X1X2X1u −X1X1X2u

=∆EX2u −X3X1u −X1X3u

=∆EX2u −X3X1u +X1X3u − 2X1X3u

=∆EX2u − 2X1X3u +X4u

and

X3∆Eu =X3(X1X1u) +X3(X2X2u)
=X1X3X1u +X2X3X2u −X4X1u −X4X2u

=∆EX3u − 2X4X1u − 2X4X2u.

The last is a direct consequence of X1X4u =X4X1u and X2X4u =X4X2u.

Using Lemma 3.3, we obtain

Corollary 3.4. Let u ∈ C∞(Ω) be a solution of (1) then

∆EX1u + 2X3X2u +X4u = ḟ(u)X1u

∆EX2u − 2X1X3u +X4u = ḟ(u)X2u

∆EX3u − 2X4X1u − 2X4X2u = ḟ(u)X3u.

Now, some observation related to the Coarea formula, in order to reduce the
computations in the whole of E to the one in E0.

Lemma 3.5. If u ∶ Ω Ð→ R is Lipschitz with respect to the dCC distance then,
for every c ∈ R, the set {x ∈ Ω ∣ ∇Eu(x) ≠ 0} ∩ {x ∈ Ω ∣ u(x) = c} has zero
Lebesgue measure.

Proof. For every f ∈ L1(Ω) by the Coarea formula proved in [19] we have

∫
Ω

f ∣∇Eu∣dx = ∫ +∞

−∞
(∫{x∈Ω ∣ u(x)=t} fd∣∂Et∣E)dt

where ∣∂Et∣E is the Engel group perimeter (see [7, 16, 17]).
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If we take as f the characteristic function of the set U ∩{u = c} where U ⊆ Ω
is a bounded domain, then

∫{x∈Ω ∣ u(x)=t} fd∣∂Et∣E = 0 ∀ t ≠ c

hence

∫
U∩{u=c}

∣∇Eu∣dx = 0
that implies the desired result.

Using Lemma 3.5 and (10) it easily follows the following

Corollary 3.6. If u ∈ Liploc(Ω) then, for every c ∈ R, the set {x ∈ Ω ∣ ∇Eu(x) ≠
0} ∩ {x ∈ Ω ∣ u(x) = c} has zero Lebesgue measure.

With this, we are in the position of proving the following geometric inequal-
ity:

Proposition 3.7. Let u ∈ C∞(Ω) be a stable weak solution of (1). Then, for
each η ∈ C∞0 (Ω),

∫
E0

[∣Hu∣2 − ⟨(Hu)2ν, ν⟩
E
]η2 − 2∫

E0

(X3X2uX1u −X3X1uX2u)η2−
−∫

E0

(X4u)(X1u −X2u)η2 ≤ ∫
E

∣∇Eη∣2∣∇Eu∣2
Proof. Multiplying by (X1u)η2 equation (29) in Corollary 3.4 and by (X2u)η2
equation (30) and then integrating by parts we obtain

−∫
E

⟨∇EX1u,∇E(X1uη
2)⟩

E
+ 2∫

E

X3X2u(X1u)η2 +∫
E

X4u(X1u)η2 =
= ∫

E

ḟ(u)(X1u)2η2
−∫

E

⟨∇EX2u,∇E(X2uη
2)⟩

E
− 2∫

E

X1X3u(X2u)η2 +∫
E

X4u(X2u)η2 =
= ∫

E

ḟ(u)(X2u)2η2
Consequently, by summing term by term, we get

−∫
E

(∣∇EX1u∣2 + ∣∇EX2u∣2)η2−
−∫

E

⟨∇EX1u,∇Eη
2⟩

E
X1u −∫

E

⟨∇EX2u,∇Eη
2⟩

E
X2u+ (33)

+ 2∫
E

(X3X2uX1u −X1X3uX2u)η2 +∫
E

(X4u)(X1u +X2u)η2 =
= ∫

E

ḟ(u)∣∇Eu∣2η2 (34)
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On the other hand, since u is stable, by choosing ∣∇Eu∣η as a test function in (2)
we obtain

0 ≤ ∫
E

∣∇E(∣∇Eu∣η)∣2 +∫
E

ḟ(u)∣∇Eu∣2η2 (35)

By Corollary 3.6 we have that ∇E(∣∇Eu∣η) = 0 almost everywhere outside E0;
hence making use of (13) we obtain from (35) that

0 ≤ ∫
E0

( η2∣∇Eu∣2 ∣(Hu)T∇Eu∣2 + 2η ⟨(Hu)T∇Eu,∇Eη⟩
E
+ ∣∇Eη∣2∣∇Eu∣2)+

+∫
E

ḟ(u)∣∇Eu∣2η2
So, noticing that 2η∇Eη = ∇Eη

2, and using (33), after a simplification we obtain
that

∫
E

∣Hu∣2η2 −∫
E0

η2∣∇Eu∣2 ∣(Hu)T∇Eu∣2 − 2∫
E

(X3X2uX1u −X1X3uX2u)η2−
−∫

E

(X4u)(X1u +X2u)η2 ≤ ∫
E0

∣∇Eη∣2∣∇Eu∣2.
Recalling that

X1X3u =X3X1u +X4u

we get the thesis.

Then, from Proposition 3.7 and Lemma 3.2 we immediately obtain Theo-
rem 1.1.

We end this section by giving some more geometric insight on the quantity J ,
in relation with the intrinsic normal and tangent vectors:

Lemma 3.8. For every u ∈ C2(Ω) and every x ∈ E0 it holds

J (x) = −∣∇Eu∣(x) ⟨∇EX3u(x), v(x)⟩E − ∣∇Eu∣(x)2 ⟨X3ν(x), v(x)⟩E (36)

Proof. By definition in E0

⟨∇EX3u, v⟩E = 1∣∇Eu∣ (X1X3uX2u −X2X3uX1u) (37)

and using (7) we obtain

⟨∇EX3u, v⟩E = 1∣∇Eu∣ [(X3X1uX2u −X3X2uX1u) +X4u(X2u −X1u)]. (38)

Moreover, in E0,

⟨X3ν, v⟩E = 1∣∇Eu∣2 (X3X1uX2u −X3X2uX1u) (39)

hence adding (38) and (39) we get the thesis.
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Using Theorem 1.1 and Lemma 3.8 it immediately follows that

Corollary 3.9. Let u ∈ C∞(Ω) be a stable weak solution of (1). Then, for each
η ∈ C∞0 (Ω),
∫
E0

(∣∇Eu∣2{(p + ⟨(Hu)T ν, v⟩
E∣∇Eu∣ )2 + h2} + ∣∇Eu∣ ⟨∇EX3u, v⟩E + ∣∇Eu∣2 ⟨X3ν, v⟩E )η2

(40)

≤ ∫
E

∣∇Eη∣2∣∇Eu∣2
4 Some applications to entire stable solutions:

geometric equations and non-existence results

From now on, for every x = (x1, x2, x3, x4) ∈ E, we denote by

∣x∣ ∶= ((x2

1 + x
2

2)6 + x6

3 + x
4

4) 1

12

the standard gauge norm in E (see [7], [10]), and we denote by

B(0,R) ∶= {x ∈ E ∣ ∣x∣ < R}
the gauge open ball centered at 0 of radius R.

The following Lemma is proved in [13].

Lemma 4.1. Let g ∈ L∞loc(Rn, [0,+∞)) and let q > 0. Let also, for any τ > 0,

η(τ) ∶= ∫
B(0,τ)

g(x)dx (41)

Then, for every 0 < r < R,

∫
B(0,R)∖B(0,r)

g(x)∣x∣q dx ≤ q∫
R

r

η(τ)
τ q+1

dτ +
1

Rq
η(R)

Corollary 4.2. Let u be a stable solution of ∆Eu = f(u) in the whole of E with

J ≤ 0 in E0 (42)

For any τ > 0 and any x = (x1, x2, x3, x4) ∈ E, let us define

η(τ) ∶= ∫
B(0,τ)

∣∇Eu(x)∣2dx (43)

If

lim inf
R→∞

∫ R√
R

η(τ)
τ3

dτ +
η(R)
R2(logR)2 = 0 (44)

14



then, the level set of u in the proximity of noncharacteristic points are such that

divE ν = 0 (45)

and on such sets the following equation holds

p = − 1∣∇Eu∣ ⟨Huv, ν⟩
E

(46)

Proof. This is a modification of the proof of Corollary 3.2 of [13], where we take
into account the more complicated algebraic calculations of the Engel group.
Given R > 1, we define

φR(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if x ∈ B(0,√R)
2(logR)−1 log(R/∣x∣) if x ∈ B(0,R) ∖B(0,√R)

0 if x ∈ E ∖B(0,R)
We observe that

X1∣x∣12 = 12(x2

1 + x
2

2)5x1 −Ax2 − 2x3x
3

4

and X2∣x∣12 = 12(x2

1 + x
2

2)5x2 +Ax1 − 2x3x
3

4

with A ∶= 3x5
3 + (1/3)(x1 + x2)x3

4. Since ∣x1∣ ≤ ∣x∣, ∣x2∣ ≤ ∣x∣, ∣x3∣ ≤ ∣x∣2 and ∣x4∣ ≤∣x∣3, we conclude that ∣A∣ ≤ C1∣x∣10 and so

∣∇E∣x∣12∣ ≤ C2∣x∣11
for some for some C1, C2 > 0.

Notice also that, in B(0,R) ∖B(0,√R),
φR(x) = C(R) − (1/6)(logR)−1 log ∣x∣12

for some C(R) ∈ R, thus
∣∇EφR(x)∣ = (1/6)(logR)−1∣x∣−12∣∇E∣x∣12∣ ≤ C3(logR)−1∣x∣−1

in B(0,R) ∖B(0,√R), for some C3 > 0. Therefore, by (42) and Theorem 1.1,

∫
E0

⎡⎢⎢⎢⎣∣∇Eu∣2{(p + ⟨(Hu)T ν, v⟩∣∇Eu∣ )2 + h2}⎤⎥⎥⎥⎦φ2

R

≤ ∫
E

∣∇EφR∣2∣∇Eu∣2 ≤ C4(logR)−2 ∫
B(0,R)∖B(0,

√
R)

∣∇Eu∣2∣x∣2
for some C4 > 0. On the other hand, by Lemma 4.1,

∫
B(0,R)∖B(0,

√
R)

∣∇Eu∣2∣x∣2 ≤ 2∫
R

√
R

η(τ)
τ3

dτ +
1

R2
η(R)
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All in all,

∫
E0

⎡⎢⎢⎢⎣∣∇Eu∣2{(p + ⟨(Hu)T ν, v⟩∣∇Eu∣ )2 + h2}⎤⎥⎥⎥⎦φ2

R

≤ 2C4(logR)−2 [∫ R

√
R

η(τ)
τ3

dτ +
1

R2
η(R)]

Then the claim follows by sending R →∞, thanks to (44).

Remark 4.3. Recalling Lemma 3.8, we observe that (42) is implied by the
following monotonicity conditions:

⟨X3ν, v⟩E ≥ 0 and ⟨∇EX3u, v⟩E ≥ 0
Remark 4.4. Condition (44) may be seen as a bound on the energy growth:
for instance, it is satisfied if η(R)/R2 stays bounded for large R, i.e. if the
energy in B(0,R) does not grow more than R2. Of course, this is quite a
strong assumption on the decay of ∇Eu in the variables (x3, x4) and it would
be desirable to investigate in which way such condition may be weakened.

Remark 4.5. We stress that equations (45) and (46) may be seen as geometric
equations along the level sets of the solution u. In particular, (45) may be
stated as saying that the level set is a minimal surface for the Engel framework
(in analogy with the Euclidean setting and in the terminology of [19]). Also, (46)
is a prescription on the imaginary curvature p, in relation with the Hessian, the
normal, and the tangent vectors.

Remark 4.6. Let us observe that if u is solution of (1.1) that do not depend
on x3 and x4 then u satisfies ∆u = f(u), where ∆ is the classical Euclidean
Laplacian. Moreover, by [13, Remark 3.4], every bounded stable solution of(1.1) that do not depend on the last two coordinates and satisties (44) has to
be constant.

Theorem 4.7. There exists no stable solution of ∆Eu = f(u) satisfying
i. The zeros of f̈ (if any) are isolated;

ii. {x ∈ E ∣ ∇Eu(x) = 0} = ∅;
iii. u ∈ L∞(E);
iv. ⟨X3ν, v⟩E ≥ 0 in E;

v. ⟨∇EX3u, v⟩E ≥ 0 in E;

vi. the set {(X1u +X2u) = 0} has zero Lebesgue measure;

vii. lim inf
R→∞

∫ R√
R

η(τ)
τ3

dτ +
η(R)
R2(logR)2 = 0;
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where η is as in Corollary 4.2.

Proof. By contradiction: let u ∈ C3(E) be a stable solution of (1) and satisfying(i), (ii), (iii), (iv), (v), (vi) and (vii). By (iii) and [8, Th. 2.10] we have

∣∇Eu∣ ∈ L∞(E) (47)

We claim that

X3u = 0 in E (48)

To this end, we argue by contradiction, supposing that there exists Q ∈ E such
that

X3u(Q) ≠ 0. (49)

Thus we consider the following Cauchy problem

{ φ
′(s) = v(φ(s))

φ(0) = Q
where v is as in (3). By (ii) and the fact that ∣v∣ = 1 it follows that the solution
exists and it is defined for any s ∈ R. Moreover, by (ii)

u(φ(s))′ = ⟨∇Eu(φ(s)), φ′(s)⟩
E

= ∣∇E(φ(s))∣ ⟨ν(φ(s)), v(φ(s))⟩E = 0 ∀s ∈ R
that is, φ lies on the level set of u, namely

φ(s) ∈ {x ∈ E ∣ u(x) = u(Q)} ∀s ∈ R.
Furthermore,

∣∇Eu(φ(s))∣′ = ⟨∇E∣∇Eu∣(φ(s)), φ(s)′⟩
E

∀s ∈ R
and by (14) (applied here with η ≡ 1) and Corollary 4.2 (recall also Remark 4.3)
we get

∣∇Eu(φ(s))∣′ = 1∣∇Eu(φ(s))∣ ⟨(Hu)T∇Eu(φ(s)), v(φ(s))⟩
E
=

= ⟨ν(φ(s)), (Hu)v(φ(s))⟩
E
= −∣∇Eu(φ(s))∣p(φ(s)) =

=X3u(φ(s)) ∀s ∈ R
(50)

which, via (49), implies

∣∇Eu(φ(s))∣′∣s=0 ≠ 0 (51)

From (50) we deduce

∣∇Eu(φ(s))∣′′ = (X3u(φ(s)))′ = ⟨∇EX3u(φ(s)), φ′(s)⟩
E

= (52)

= ⟨∇EX3u(φ(s)), v(φ(s))⟩E ∀s ∈ R
17



and by (iv) we deduce also that

∣∇Eu(φ(s))∣′′ ≥ 0 ∀s ∈ R (53)

Therefore, defining Φ ∶ RÐ→ R by

Φ(s) ∶= ∣∇Eu(φ(s))∣ − ∣∇Eu(Q)∣
we have that Φ ∈ C2(R), Φ(0) = 0, Φ

′(s) ≠ 0 ∀s ∈ R and Φ
′′(s) ≥ 0 ∀s ∈ R,

thanks to (51) and (53). It follows that

sup
R

Φ = +∞

but this is in contradiction with (47), hence (48) is established.
Now we claim that

X4u = 0 (54)

By Corollary 3.4, we have

∆EX3u − 2X4X1u − 2X4X2u =X3∆Eu =
=X3(f(u)) = ḟ(u)X3u

and so by (48) it follows that

X4(X1u +X2u) = 0 (55)

Moreover, by Corollary 3.4 and (48),

∆EX1u −X4u =∆EX1u − 2X4u +X4u =
=∆EX1u − 2(X2X3 −X3X2)u +X4u =∆EX1u + 2X3X2u +X4u =
= ḟ(u)X1u

(56)

and

∆EX2u +X4u =∆EX2u − 2X1X3u +X4u =
= ḟ(u)X2u

(57)

By adding (56) and (57) we obtain

∆E(X1u +X2u) = ḟ(u)(X1u +X2u) (58)

and so, by Lemma 3.3,

∆EX4(X1u +X2u) =X4∆E(X1u +X2u) =
=X4(ḟ(u)(X1u +X2u)) =
= f̈(u)X4u(X1u +X2u) + ḟ(u)X4(X1u +X2u)

(59)
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Accordingly, using (59) and (55), we conclude that

f̈(u)X4u(X1u +X2u) = 0 in E

Hence, by (vi)
f̈(u)X4u = 0 almost everywhere in E

and so, by continuity,

f̈(u)X4u = 0 everywhere in E

This implies that (54) holds at any point of the open set G ∶= {x ∈ E ∣ f̈(u(x)) ≠
0}. So, by continuity, (54) holds at any point of its closure G.

We show that (54) also holds at points of E ∖ G (if any). For this, let us
take xo ∈ E ∖G. Since the latter is an open set, there exists an open neighbor-
hood V such that

xo ∈ V ⊆ (E ∖G) ⊆ E ∖G = {x ∈ E ∣ f̈(u(x)) = 0}.
In particular, f̈(u(x)) = 0 for any x ∈ V . Thus, by (i), u(x)must be constant for
any x ∈ V . Therefore, X4u(x) = 0 for any x ∈ V , and, in particular, X4u(xo) = 0.

This shows that (54) holds at points of E ∖G too, and so the proof of (54)
is completed.

Now, by (48) and (54), we conclude that u does not depend on x3 and x4

and by Remark 4.6 we conclude that u is constant but this is impossible by (ii),
which proves Theorem 4.7.

Remark 4.8. Of course, we do not believe that our Theorem 4.7 is optimal: we
just consider it a first attempt towards the understanding of semilinear equations
in the Engel framework and, as far as we know, this is the first non-existence
result in this setting. We think it would be interesting to develop a stronger
theory and possibly to drop some structural assumptions in Theorem 4.7.
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