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Abstract

We consider the sharp interface limit ε →
0+ of the semilinear wave equation 2u +
∇W (u)/ε2 = 0 in R1+n, where u takes val-
ues in Rk, k = 1, 2, and W is a double-well
potential if k = 1 and vanishes on the unit
circle and is positive elsewhere if k = 2. For
fixed ε > 0 we find some special solutions,
constructed around minimal surfaces in Rn.
In the general case, under some additional as-
sumptions, we show that the solutions con-
verge to a Radon measure supported on a
time-like k-codimensional minimal submani-
fold of the Minkowski space-time. This result
holds also after the appearence of singulari-
ties, and enforces the observation made by
J. Neu that this semilinear equation can be
regarded as an approximation of the Born-
Infeld equation.

1 Introduction

In this paper we consider the following sys-
tem of semilinear hyperbolic equations

2u +
1
ε2
∇W (u) = 0 , (1)

for

u : R× Rn → Rk, n ≥ 1, k = 1, 2,
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where 2u = utt − ∆u = ∂x0x0u − ∂xixiu is
the wave operator in R1+n with coordinates
x0 = t, x1, . . . , xn, ε > 0 is a small parame-
ter, and W (u) = W̃ (|u|), where W̃ : R → R+

is a double-well potential. Equation (1) is
a Lorentz invariant field equation, governing
the dynamics of topological defects such as
vortices [9]; it is also strictly related to time-
like lorentzian minimal submanifolds of codi-
mension k in Minkowski (1 + n)-dimensional
space-time [10]. We refer to [12] for a discus-
sion on the existence of local and global so-
lutions to (1). The elliptic/parabolic analog
of (1) is called the Ginzburg-Landau equa-
tion, and has been recently investigated by
many authors in connection with euclidean
minimal surfaces and mean curvature flow in
codimension k (see for instance [2] and refer-
ences therein). Here we are interested in the
asymptotic limit as ε → 0+ of solutions uε

to (1). The case k = 1 will be referred to as
the scalar case, since (1) reduces to a single
equation, and solutions will be denoted by
uε; note that in this case, the vacuum states
±1 are stable solutions.
For n = 3 and k = 1, the asymptotic
limit as ε → 0+ of uε has been formally
computed by Neu in [10], using suitable
asymptotic expansions. The author shows
that there are solutions which take the con-
stant values ±1 out of a transition layer
of thickness ε, provided such a layer is
suitably close to a one-codimensional time-
like lorentzian minimal surface Σ (called
kink). The one-codimensional time-like min-
imal surface equation can be described as
follows: the points (x0, x1, · · · , xn) on each
time-slice Σ(t) := Σ ∩ {x0 = t} of Σ must
satisfy the equation

A = (1− V 2)κ (2)
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in normal direction, where A, V and κ are
respectively the acceleration, the velocity
and the euclidean mean curvature of Σ(t) at
(x0, x1, · · · , xn). We refer to [3], [8], [5] for
the analysis of various aspects of Eq. (2). In-
terestingly, Neu [10] showed also that, due to
possible oscillations on a small scale on the
initial interface, which are not dissipated in
time, solutions to (1) may not converge to a
solution of (2), as the oscillation scale tends
to zero.
In the first part of the present paper we com-
pute some explicit selfsimilar solutions of (1).
In particular, on the basis of the results of
[11] we show that, given any euclidean non-
degenerate minimal hypersurface M in Rn,
there exists a solution to (1) traveling around
M (see Propositions 2.2 and 2.4).
In the second part of the paper we adapt to
the hyperbolic setting the parabolic strategy
followed in [1]. Given a solution uε to (1) let

`ε(uε) := ck(ε)
(
−|uεt|2 + |∇uε|2

2
+

W (uε)
ε2

)
be the rescaled lagrangian integrand, where

ck(ε) :=
{

ε if k = 1,
ε

| log ε| if k = 2.

In our main result (Theorem 3.3) we show
that, under some technical assumptions,
`ε(uε) concentrates on a k-codimensional set
Γ, as ε → 0+. Moreover, Γ is a time-like
lorentzian minimal submanifold whenever it
is smooth. In order to prove this result we
suitably extend the notion of rectifiable vari-
fold to the lorentzian setting, and prove that
the stress-energy tensor of the solutions of
(1) converges to a stationary lorentzian var-
ifold, as ε → 0+. Finally, we conclude the
paper by discussing the validity of our as-
sumptions in relation to the example of Neu
[10].

1.1 Notation

Throughout the paper bold letters will refer
to the case k = 2. The greek indices α, β, γ, δ
run from 0 to n, while the roman indices i, j
run from 1 to n; we adopt the Einstein sum-
mation convention over repeated indices.

We let η−1 = diag(−1, 1, . . . , 1) be the in-
verse Minkowski metric tensor with con-
travariant components ηαβ ; ηαβ are the co-
variant components of the Minkowski metric
tensor η.
Given ξ = (ξ0, ξ̂) ∈ R × Rn we set |ξ̂|2 :=
ηij ξ̂iξ̂j ,

〈ξ, ξ〉m := −(ξ0)2 + |ξ̂|2 = ηαβξαξβ ,

and if 〈ξ, ξ〉m 6= 0 we set |ξ|m := 〈ξ,ξ〉m
|〈ξ,ξ〉m|1/2 .

We say that ξ is space-like (resp. time-like)
if 〈ξ, ξ〉m > 0 (resp. 〈ξ, ξ〉m < 0). Given
a (2, 0)-tensor A, we set trm(A) := ηαβAβα,
while tr(A) is the euclidean trace of A. We
say that A is space-like (resp. time-like) if
Aξ is space-like (resp. time-like) for all ξ ∈
R× Rn \ {(0, 0)}.
∇ (resp. ∇) indicates the euclidean gradient
in Rn (resp. in R1+n); for a smooth function
g : R1+n → R we set ∇mg := (−gt,∇g) =
ηαβ ∂g

∂xβ = η−1∇g.
Hh denotes the h-dimensional euclidean area
(i.e. the Hausdorff measure) either in Rn or
in R1+n for h ∈ {0, . . . , n}; is the sym-
bol of restriction of measures and ⇀ denotes
the weak∗ convergence of Radon measures.
If µ is a measure absolutely continuous with
respect to ν, we denote by dµ/dν the Radon-
Nikodym derivative of µ with respect to ν.
We recall that a smooth k-codimensional
submanifold M of Rn without boundary is
said minimal if M has vanishing mean cur-
vature. A minimal submanifold M ⊂ Rn is
said nondegenerate if the second variation of
its (n − k)-dimensional area, represented by
the associated Jacobi operator, is injective.

2 Selfsimilar solutions

Unless otherwise specified, in what follows we
take W (u) = 1

4 (1 − |u|2)2 if n ≤ 4, and if
n > 4 we suppose W to be a function of |u|
with the proper growth at infinity in order
problem (1) to be well-posed [12].
We let

eε(uε) := ck(ε)
(
|uεt|2 + |∇uε|2

2
+

W (uε)
ε2

)
be the rescaled energy integrand of a solution
uε of (1). By |uεt|2 (resp. |∇uε|2) we mean
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the square euclidean norm of uεt ∈ Rk (resp.
of ∇uε, i.e., the sum of the squares of the
elements of the matrix ∇uε).
We notice that the following quantity is con-
served for any t ≥ 0:∫

Rn

eε(uε(t, x)) dx =
∫

Rn

eε(uε(0, x)) dx,

(3)
assuming the proper growth conditions on
the right hand side.

2.1 Traveling waves

Let k = 1, 2. We construct solutions of (1),
which are traveling waves along a prescribed
direction ν ∈ Rn, |ν| = 1. Up to a rotation of
Rn, we can assume ν = (0, . . . , 0, 1). Letting
x = (y, z) ∈ Rn = Rn−1 × R, we look for
traveling wave solutions of (1) of the form

uε(t, x) = v(y, z − vt), (4)

for some v ∈ (−1, 1) and a suitable map v :
Rn → Rk. Then, (1) becomes

−∆yv − (1− v2)vzz +
1
ε2
∇W (v) = 0, (5)

where ∆y is the Laplacian in Rn−1 with re-
spect to the y = (y1, . . . , yn−1)-coordinates.
Let

f(y, z) := v(y,
√

1− v2z). (6)

Then f satisfies the elliptic Ginzburg-Landau
system

−∆f +
1
ε2
∇W (f) = 0. (7)

Hence traveling wave solutions of (1), with
v ∈ (−1, 1), correspond to solutions of the
elliptic system (7).
We now recall the following result, which fol-
lows from [11].

Theorem 2.1. For any smooth nondegener-
ate minimal submanifold M ⊂ Rn of codi-
mension 1, there exist solutions fε of (7)
such that

ε

(
|∇fε|2

2
+

W (fε)
ε2

)
⇀ σHn−1 M

as ε → 0+, where σ = σ(W,n) is a positive
constant independent of M .

As a consequence our first result is the exis-
tence of traveling waves close to any nonde-
generate minimal hypersurface of Rn.

Proposition 2.2. Let k = 1. Let M ⊂ Rn

be a smooth nondegenerate minimal subman-
ifold of codimension 1 without boundary, and
let v ∈ (−1, 1). Define

Σ :=
{(

t, y,
√

1− v2z + vt
)
∈ R× Rn−1 × R :

(y, z) ∈ M
}

.

Then there exist traveling wave solutions uε :
R1+n → R of (1) of the form (4) such that

`ε(uε) ⇀ σHn Σ (8)

as ε → 0+.

Proof. Set γ := (1 − v2)−1/2. If fε are as in
Theorem 2.1, we define uε(t, x) := fε(y, γ(z−
vt)). Then `ε(uε) = ε

(
|∇fε|2

2 + W (fε)
ε2

)
,

hence if ϕ ∈ Cc(R1+n),

∫ T

0

∫
Rn

`ε(uε)ϕ dxdt

(9)

=
∫ T

0

∫
Rn

ε

(
|∇fε|2

2
+

W (fε)
ε2

)
ϕ dxdt

where the integrand on the right hand side is
evaluated at (y, γ(z−vt)). Therefore, making
the change of variables t′ = t, y′ = y, z′ =
γ(z − vt), and setting x′ = (y′, z′), we have
that (9) equals

γ−1

∫ T

0

∫
Rn

ε

(
|∇fε|2

2
+

W (fε)
ε2

)
ϕ dx′dt′

→ σγ−1

∫ T

0

∫
M

ϕ dHn−1dt′

= σ

∫
Σ

ϕ dHn,

and (8) is proved.
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Remark 2.3. Σ is a time-like lorentzian
minimal hypersurface. Indeed, let d : Rn →
R be the signed distance function from M ,
negative in the interior of M , so that M =
{(y, z) ∈ Rn : d(y, z) = 0}, |∇d|2 = 1 in a
neighbourhood of M , and ∆d = 0 on M . De-
fine g : R1+n → R as g(t, x) := d(y, γ(z−vt)),
x = (y, z). Observe that Σ = {g = 0}, so
that the Minkowskian mean curvature of Σ
is given by the euclidean divergence in R1+n

of ∇mg/|∇mg|m, namely by( −gt√
−(gt)2 + |∇g|2

)
t
+

( gxi√
−(gt)2 + |∇g|2

)
xi

evaluated on Σ. The equality |∇d|2 = 1 im-
plies

√
−(gt)2 + |∇g|2 = 1 in a neighbour-

hood of Σ. Therefore we only have to check
that

−gtt + gxixi = 0 on Σ, (10)

which is verified because −gtt + gxixi on Σ
coincides with ∆d on M .

Note that `ε(uε) concentrates on Σ in the
limit ε → 0+; the same happens for eε(uε),
since eε(uε), and `ε(uε) in Proposition 2.2 are
mutually absolutely continuous.

2.2 Rotating waves

In this section we let W (u) = (1 − |u|2)2/4,
W̃ : R → R be defined as W̃ (s) := (1 −
s2)2/4, and let k = 2; we identify the target
space R2 with the complex plane. We look
for solutions of (1) of the form

uε(t, x) = ρ(x)eiωt, ρ : Rn → R, (11)

for some ω ∈ R. Substituting (11) into (1),
we get that ρ must satisfy

−∆ρ− ω2ρ +
1
ε2

W̃ ′(ρ) = 0. (12)

This scalar equation can be rewritten as

−∆ρ +
1
ε2

W̃ ′
ε(ρ) = 0, (13)

where

W̃ε(ρ) :=
(1 + ε2ω2 − ρ2)2

4

= (1 + ε2ω2)2 W̃

(
ρ√

1 + ε2ω2

)
.

Therefore (13) reduces to (7) with k = 1 and
W replaced by W̃ , after the change of vari-
ables

f(x) =
ρ

(
x√

1+ε2ω2

)
√

1 + ε2ω2
,

and we can still apply Theorem 2.1. In par-
ticular, we get the following

Proposition 2.4. Let M ⊂ Rn be a smooth
nondegenerate minimal submanifold of codi-
mension 1, and let ω ∈ R. Define

Σ := R×M.

Then there exist solutions uε : R1+n → R2 of
(1) of the form (11) such that

ε

(
−|uεt|2 + |∇uε|2

2

)
+

W (uε)
ε

⇀ σHn Σ

as ε → 0+.

Proof. If ϕ is a test function, we have∫ T

0

∫
Rn

ε

c2(ε)
eε(uε)ϕ dxdt

=
∫ T

0

∫
Rn

[
ε
|∇ρ|2

2

+
1
ε

(
W̃ (ρ) + ε2

ρ2ω2

2

) ]
ϕ dxdt

→ σ

∫ T

0

∫
M

ϕ dHn−1dt.

Note that in Proposition 2.4 ε
c2(ε)

eε(uε) con-
centrates on the lorentzian minimal subman-
ifold Σ of codimension 1, even if k = 2.

3 Convergence as ε → 0+

We are interested in passing to the limit in
(1), as ε → 0+. As already mentioned in
the introduction, a formal limit has been per-
formed in [10]. Rigorous asymptotic results
for well prepared initial data have been re-
cently announced in [7].
From now on we shall assume that

(A1) there exists a constant C > 0 such that

sup
ε∈(0,1)

∫
Rn

eε(uε(0, x)) dx ≤ C.
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3.1 Assumptions on ` and e

Under assumption (A1), using (3) it follows
that the measures eε(uε) dtdx converge, up
to a (not relabelled) subsequence; namely

eε(uε) dtdx ⇀ e,

where e is a measure in R1+n. Since |`ε(uε)|
and ck(ε)W (uε)/ε2 are both bounded by
eε(uε), they converge, up to a subsequence,
to two measures ` and w respectively,

`ε(uε) dtdx ⇀ `, (14)

ck(ε)W (uε)/ε2 dtdx ⇀ w, (15)

and ` and w are absolutely continuous with
respect to e, with density less than or equal
to 1. In the following, we shall also assume
that

(A2) e is absolutely continuous with respect
to `.

and, as in [1], that

(A3) there exists an absolute constant c > 0
such that

c ≤ lim
ρ→0+

`(Bρ(t, x))
ωn+1−kρn+1−k

< +∞

for `-almost every (t, x), where Bρ(t, x) de-
notes the euclidean ball of radius ρ centered
at (t, x) and ωn+1−k := Hn+1−k(B1(0, 0)).
From Preiss’ Theorem [4] it follows that the
support of the measures e and `,

Γ := spt(e) = spt(`), (16)

is a rectifiable set of dimension n+1−k, and

` ≥ cHn+1−k Γ

in the sense of measures.

3.2 Lorentzian rectifiable vari-
folds

A matrix P represents a lorentzian orthog-
onal projection on a time-like subspace of
codimension k of R1+n if there exists a
Lorentz transformation L such that

L−1 P L =

{
diag(1, 0, 1, . . . , 1) if k = 1,
diag(1, 0, 0, 1, . . . , 1) if k = 2.

The pair of Radon measures V = (µV , δP )
is a rectifiable time-like lorentzian varifold
of codimension k if spt(µV ) ⊂ R1+n is an
(n+1−k)-rectifiable set whose tangent space
is time-like Hn+1−k-almost everywhere, and
δP is the Dirac delta concentrated on P ,
where P is the lorentzian orthogonal projec-
tion onto the tangent space to spt(µV ).

Definition 3.1. We say that the rectifiable
lorentzian varifold V = (µV , δP ) is station-
ary if∫

R1+n

tr
(
η−1P ∇X

)
dµV = 0 (17)

for all X ∈ (C1
c (R1+n))n+1.

Notice that (17) is equivalent to require that
the generalized varifold (µV , δη−1P ) is sta-
tionary in the sense of [1, Def. 3.4].

Remark 3.2. When spt(µV ) is smooth, a
direct computation [13] shows that condi-
tion (17) implies that spt(µV ) is a time-like
minimal submanifold of codimension k, and
µV = θHn+1−k Γ, for some constant θ > 0.

3.3 The stress-energy tensor

We let

Tαβ
ε (u) := −ck(ε)ηαγ∂xγu · ηβδ∂xδu

+`ε(u) ηαβ

be the contravariant components of the sym-
metric stress-energy tensor, where · is the eu-
clidean scalar product in Rk. Notice that

|Tαβ
ε (u)| ≤ eε(u), (18)

for any α, β ∈ {0, . . . , n}. A direct computa-
tion shows that a solution uε of (1) satisfies

∂xβ Tαβ
ε (uε) = 0. (19)

As a consequence, for all X ∈ C1
c (R1+n) we

have ∫
R1+n

Tαβ
ε (uε) ∂xβ X dtdx = 0. (20)

Since |Tαβ
ε (uε)| is bounded by eε(uε), for any

α, β ∈ {0, . . . , n} there exists a measure Tαβ

such that

Tαβ
ε (uε)dtdx ⇀ Tαβ (21)
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as ε → 0+. We denote by T the measure-
valued tensor with components Tαβ . Note
that Tαβ = T βα and spt(T ) = Γ.
From (18) it follows that Tαβ on the right
hand side of (21) is absolutely continuous
with respect to e; in turn, by (A2), e is ab-
solutely continuous with respect to `, and
therefore Tαβ is absolutely continuous with
respect to `. We denote by T̃αβ the density of
the measure Tαβ with respect to the measure
`, i.e.,

T̃αβ :=
dTαβ

d`
, (22)

and by T̃ the tensor with components T̃αβ .
In addition to (A3), we shall also assume that

(A4) for Hn+1−k-almost every x ∈ Γ the dif-
ference T̃ (x)− η−1 is space-like.

Recalling the expression of Tε(uε) −
`ε(uε)η−1, we observe that (A4) is reminis-
cent to require that ∇uε becomes space-like
near Γ in the limit ε → 0+, and that Γ
is time-like Hn+1−k-almost everywhere.
This is for instance consistent with the
explicit solution corresponding to a singular
pulsating spherical kink considered in [10]
(see also [7]).
Finally, in the case k = 1, we shall suppose

(A5)
dw

dl
=

1
2
.

This assumption corresponds to the so-called
equipartition of energy (see [6] for a similar
condition in the parabolic case).

3.4 Main result

We are now in a position to prove the main
result of the paper.

Theorem 3.3. Let `, w and T̃ be defined
as in (14), (15) and (22) respectively. The
following two statements hold.

(i) Let k = 1. Assume (A1)-(A5). Then
(`, δηT̃ ) is a stationary lorentzian rectifi-
able varifold of codimension one.

(ii) Let k = 2. Assume (A1)-(A4). Then
(`, δηT̃ ) is a stationary lorentzian rectifi-
able varifold of codimension two.

Therefore, in the two cases, the set Γ defined
in (16) is a time-like minimal submanifold

of codimension k in the regions where it is
smooth.

Proof. Passing to the limit in the linear con-
dition (20) we have∫

R1+n

∂xβ X dTαβ = 0, (23)

for any α ∈ {0, . . . , n}. Note that (23)
is (the generic component of) the station-
arity condition for the lorentzian varifold
(`, δηT̃ ). Therefore, it is enough to prove that
for Hn+1−k-almost every x ∈ Γ the matrix
ηT̃ (x) is the lorentzian orthogonal projection
onto the tangent space to Γ at x.
By a rescaling argument around Hn+1−k-
almost every point x ∈ Γ as in [1, eq. (3.6)],
from (23) we obtain

T̃ (x)
∫

R1+n

∇φdν = 0, (24)

for all test functions φ supported in the eu-
clidean unit ball of R1+n, and for all ν in the
tangent space to ` at x. As in [1, Lemma 3.9],
from (24) it follows that for Hn+1−k-almost
every x ∈ Γ

at least k eigenvalues of ηT̃ (x) are zero .
(25)

These eigenvalues correspond to the direc-
tions in the normal space to Γ at x.
From the equalities

trm(ηαγ∂xγuε · ηβδ∂xδuε) = −|uεt|2 + |∇uε|2

and

ck(ε)(|uεt|2−|∇uε|2) = 2
ck(ε)W (uε)

ε2
−2`ε(uε),

we obtain

trm(Tε(uε)) = 2
ck(ε)W (uε)

ε2
+ (n− 1)`ε(uε).

(26)
Passing to the limit as ε → 0+ we get

trm(T ) = 2w + (n− 1)` (27)

in the sense of measures. Considering the
density with respect to ` we get

trm(T̃ ) = 2
dw

d`
+ (n− 1). (28)
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Thanks to assumption (A4), for Hn+1−k-
almost every x ∈ Γ the tensor T̃ (x) − η−1,
hence also ηT̃ (x) − Id, is space-like. There-
fore, letting λ0, λ1, . . . , λn be the eigenvalues
of ηT̃ (x), there exists a Lorentz transforma-
tion L(x) such that

L−1(x)(ηT̃ (x)− Id)L(x)

= L−1(x) ηT̃ (x) L(x)− Id
= diag(0, λ1 − 1, . . . , λn − 1).

In particular
λ0 = 1.

Passing to the limit in the expression of
Tε(uε) − `ε(uε)η−1 as ε → 0+, we get that
T̃ − η−1 = η−1(ηT̃ − Id) is negative semidef-
inite (in the euclidean sense), which implies

λi ≤ 1 ∀i ∈ {1, . . . , n}. (29)

From (29) and (25) we then obtain

trm(T̃ (x)) =
n∑

i=0

λi ≤ n− k + 1 . (30)

Note that equality in (29) holds if and only
if ηT̃ (x) is a lorentzian orthogonal projec-
tion on a time-like subspace of codimension
k. Consequently, our aim is now to prove
equality in (30).
Case (i): k = 1. Using (A5), (28) becomes
trm(T̃ (x)) = n.
Case (ii): k = 2. From (28) and (30) it
follows

dw

d`
≤ 0.

Since w is a positive measure, as well as `
(thanks to assumption (A3)), we deduce

dw

d`
= 0.

Therefore, (28) becomes trm(T̃ (x)) = n −
1.

Remark 3.4. In [10] Neu shows by a for-
mal asymptotic argument (made rigorous by
Jerrard as announced in [7]) that the the-
sis of Theorem 3.3 holds, when k = 1, for
well-prepared initial data and before the ap-
pearence of singularities. However, the small

ripples example of Neu [10] suggests that the
thesis of case (i) of Theorem 3.3 may not
hold without assuming (A4)-(A5). There-
fore, we expect that (A4)-(A5) are not nec-
essarily satisfied for not well-prepared initial
data.
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