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Abstract

We consider the sharp interface limit ¢ —
0T of the semilinear wave equation Ou +
VW (u)/e? = 0 in R where u takes val-
ues in R¥, k = 1,2, and W is a double-well
potential if & = 1 and vanishes on the unit
circle and is positive elsewhere if £ = 2. For
fixed € > 0 we find some special solutions,
constructed around minimal surfaces in R".
In the general case, under some additional as-
sumptions, we show that the solutions con-
verge to a Radon measure supported on a
time-like k-codimensional minimal submani-
fold of the Minkowski space-time. This result
holds also after the appearence of singulari-
ties, and enforces the observation made by
J. Neu that this semilinear equation can be
regarded as an approximation of the Born-
Infeld equation.

1 Introduction

In this paper we consider the following sys-
tem of semilinear hyperbolic equations

1
Ou + ?VW(u) =0, (1)

for

u:R x R" — Rk, n>1, k=1,2,
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where Ou = uy — Au = Jpo0u — Opigiu is
the wave operator in R'™™ with coordinates
20 =t ... ,x", € > 0 is a small parame-
ter, and W (u) = W(|u|), where W : R — R*
is a double-well potential. Equation (1) is
a Lorentz invariant field equation, governing
the dynamics of topological defects such as
vortices [9]; it is also strictly related to time-
like lorentzian minimal submanifolds of codi-
mension k in Minkowski (1 4 n)-dimensional
space-time [10]. We refer to [12] for a discus-
sion on the existence of local and global so-
lutions to (1). The elliptic/parabolic analog
of (1) is called the Ginzburg-Landau equa-
tion, and has been recently investigated by
many authors in connection with euclidean
minimal surfaces and mean curvature flow in
codimension k (see for instance [2] and refer-
ences therein). Here we are interested in the
asymptotic limit as € — 0% of solutions u,
to (1). The case k = 1 will be referred to as
the scalar case, since (1) reduces to a single
equation, and solutions will be denoted by
ue; note that in this case, the vacuum states
+1 are stable solutions.

For n = 3 and kK = 1, the asymptotic
limit as ¢ — 07 of u. has been formally
computed by Neu in [10], using suitable
asymptotic expansions. The author shows
that there are solutions which take the con-
stant values +1 out of a transition layer
of thickness €, provided such a layer is
suitably close to a one-codimensional time-
like lorentzian minimal surface ¥ (called
kink). The one-codimensional time-like min-
imal surface equation can be described as
follows: the points (2°,2!,--- ,2™) on each
time-slice X(¢) := £ N {2° = t} of ¥ must
satisfy the equation

A=(1-V?k (2)



in normal direction, where A, V and k are
respectively the acceleration, the velocity
and the euclidean mean curvature of 3(t) at
(2021, 2™). We refer to [3], [8], [5] for
the analysis of various aspects of Eq. (2). In-
terestingly, Neu [10] showed also that, due to
possible oscillations on a small scale on the
initial interface, which are not dissipated in
time, solutions to (1) may not converge to a
solution of (2), as the oscillation scale tends
to zero.

In the first part of the present paper we com-
pute some explicit selfsimilar solutions of (1).
In particular, on the basis of the results of
[11] we show that, given any euclidean non-
degenerate minimal hypersurface M in R",
there exists a solution to (1) traveling around
M (see Propositions 2.2 and 2.4).

In the second part of the paper we adapt to
the hyperbolic setting the parabolic strategy
followed in [1]. Given a solution u. to (1) let

7|uet‘2 + |Vue|2 + W(UE)
2 €2

£ = (o)

be the rescaled lagrangian integrand, where

€
ck(e) == { c
Togel

In our main result (Theorem 3.3) we show
that, under some technical assumptions,
Lc(u.) concentrates on a k-codimensional set
I, as € — 0. Moreover, I' is a time-like
lorentzian minimal submanifold whenever it
is smooth. In order to prove this result we
suitably extend the notion of rectifiable vari-
fold to the lorentzian setting, and prove that
the stress-energy tensor of the solutions of
(1) converges to a stationary lorentzian var-
ifold, as ¢ — 0%. Finally, we conclude the
paper by discussing the validity of our as-
sumptions in relation to the example of Neu
[10].

it k=1,
if k=2

1.1 Notation

Throughout the paper bold letters will refer
to the case k = 2. The greek indices a, 3,7,
run from 0 to n, while the roman indices %, j
run from 1 to n; we adopt the Einstein sum-
mation convention over repeated indices.

We let n~! = diag(—1,1,...,1) be the in-
verse Minkowski metric tensor with con-
travariant components 1n*?; Nag are the co-
variant components of the Minkowski metric
tensor 7). . .
Given ¢ = (£,€) € R x R™ we set |{|? :=
77”51’53'7

<§7£>m = 7(60)2 + |€|2 = naﬁ§a§ﬂ7

and if (§,&)m # 0 we set [§],, = %

We say that £ is space-like (resp. time-like)
if (£,&)m > 0 (vesp. (£,&)m < 0). Given
a (2,0)-tensor A, we set tr,,(A4) := 9,547,
while tr(A) is the euclidean trace of A. We
say that A is space-like (resp. time-like) if
A¢ is space-like (resp. time-like) for all £ €
R x R™\ {(0,0)}.

V (resp. V) indicates the euclidean gradient
in R™ (resp. in R1™™); for a smooth function
g: RY" — R we set V9 := (—g¢, Vg) =
P 2% = n~1¥g.

H" denotes the h-dimensional euclidean area
(i.e. the Hausdorff measure) either in R™ or
in R for h € {0,...,n}; L is the sym-
bol of restriction of measures and — denotes
the weak® convergence of Radon measures.
If i is a measure absolutely continuous with
respect to v, we denote by du/dv the Radon-
Nikodym derivative of p with respect to v.
We recall that a smooth k-codimensional
submanifold M of R™ without boundary is
said minimal if M has vanishing mean cur-
vature. A minimal submanifold M C R" is
said nondegenerate if the second variation of
its (n — k)-dimensional area, represented by
the associated Jacobi operator, is injective.

2 Selfsimilar solutions

Unless otherwise specified, in what follows we
take W(u) = $(1 — |[u|?)? if n < 4, and if
n > 4 we suppose W to be a function of |u]
with the proper growth at infinity in order
problem (1) to be well-posed [12].

We let

u|? u.|? u,
ec(ue) = Ck(e)<| ctl +2|V | +W(2 ))

€

be the rescaled energy integrand of a solution
u. of (1). By |ue|? (resp. |Vuc|?) we mean



the square euclidean norm of u ., € R¥ (resp.
of Vu,, i.e., the sum of the squares of the
elements of the matrix Vu,).

We notice that the following quantity is con-
served for any ¢t > 0:

/n ec(uc(t,x)) de = / e(uc(0,2)) dz,
(3)

assuming the proper growth conditions on
the right hand side.

2.1 Traveling waves

Let k = 1,2. We construct solutions of (1),
which are traveling waves along a prescribed
direction v € R", |v| = 1. Up to a rotation of
R™, we can assume v = (0,...,0,1). Letting
r = (y,2) € R" = R"! x R, we look for
traveling wave solutions of (1) of the form

(4)

for some v € (—1,1) and a suitable map v :
R"™ — R¥. Then, (1) becomes

u(t,z) =v(y,z — vt),

1
—Ayv—(1—=vH)v,, + VW (v) =0, (5)
€

where A, is the Laplacian in R"~! with re-
spect to the y = (y!,...,y" !)-coordinates.

Let
f(y,z) == v(y, V1 —v2z). (6)

Then f satisfies the elliptic Ginzburg-Landau
system
1

—Af + :QVW(f) =0. (7)
Hence traveling wave solutions of (1), with
v € (—=1,1), correspond to solutions of the
elliptic system (7).
We now recall the following result, which fol-
lows from [11].

Theorem 2.1. For any smooth nondegener-
ate minimal submanifold M C R™ of codi-
mension 1, there exist solutions f. of (7)
such that

o (L,

2 €2

> —~oH" LM

as € — 0%, where 0 = o(W,n) is a positive
constant independent of M.

As a consequence our first result is the exis-
tence of traveling waves close to any nonde-
generate minimal hypersurface of R™.

Proposition 2.2. Let k = 1. Let M C R"
be a smooth nondegenerate minimal subman-
ifold of codimension 1 without boundary, and
let v e (—1,1). Define

2::{ (t,y,m,z—i—vt) ERXR"IxR:

(y,2) € M}

Then there exist traveling wave solutions u. :
R — R of (1) of the form (4) such that

Ce(ue) = o H'LY 8)

as € — 07T,

Proof. Set v := (1 —v?)~/2. If f. are as in

Theorem 2.1, we define u. (¢, z) := fc(y, v(z—
2

vt)). Then f(u.) = e (% + %)’

hence if ¢ € C’C(RH”),

/OT /n Le(ue)p dadt
(9)
/OT/f <|v£6|2+W€(2fE)>godxdt

where the integrand on the right hand side is
evaluated at (y,v(z—wvt)). Therefore, making
the change of variables t’' = t, ¢y =y, 2/ =
~v(z — vt), and setting ' = (y', 2’), we have
that (9) equals

T 2
771/ / € <|vf€| + W(2f€)> ) dx/dt/
0 n 2 €
T
— 0")/_1/ / © dH"tat’
0 JM
= a/  dH™,
b

and (8) is proved. O




Remark 2.3. ¥ is a time-like lorentzian
minimal hypersurface. Indeed, let d : R" —
R be the signed distance function from M,
negative in the interior of M, so that M =
{(y,2) € R" : d(y,2) = 0}, [Vd]? =1in a
neighbourhood of M, and Ad = 0 on M. De-
fine g : R1™™ — Ras g(t, x) := d(y,v(z—vt)),
x = (y,z). Observe that ¥ = {g = 0}, so
that the Minkowskian mean curvature of ¥
is given by the euclidean divergence in R!*™
of Vy19/ |V nglm, namely by

evaluated on ¥. The equality |Vd|? = 1 im-
plies /—(g1)?> + |Vyg|? = 1 in a neighbour-
hood of ¥. Therefore we only have to check
that

—Jt Gz
+
( —(9¢)* + \VQIQ)t ( —(9¢)* +Vgl?

—Git + Ggigi =0 on X, (10)

which is verified because —gy + gyizi On %
coincides with Ad on M.

Note that £.(u.) concentrates on ¥ in the
limit ¢ — 07; the same happens for e.(u.),
since e (u.), and £ (ue) in Proposition 2.2 are
mutually absolutely continuous.

2.2 Rotating waves

In this section we let W(u) = (1 — |u|?)?/4,
W : R — R be defined as W(s) = (1 -
52)2/4, and let k = 2; we identify the target
space R? with the complex plane. We look
for solutions of (1) of the form

wt

u(t,x) = p(x)e™", p: R" - R,

(11)

for some w € R. Substituting (11) into (1),
we get that p must satisfy

1 ~—
—Ap—w?p+ 6—2W’(p) =0. (12)
This scalar equation can be rewritten as

1~
~Ap+ Wi =0, (13)

Therefore (13) reduces to (7) with k = 1 and

W replaced by W, after the change of vari-
ables

o - )
T) = ——+,
V14 e2w?
and we can still apply Theorem 2.1. In par-
ticular, we get the following

Proposition 2.4. Let M C R" be a smooth
nondegenerate minimal submanifold of codi-
mension 1, and let w € R. Define

Yi=Rx M.

Then there exist solutions u, : R1T" — R? of
(1) of the form (11) such that
_|uet|2 + |vue|2

W(ue)
(FE)
as € — 0F.

Proof. If ¢ is a test function, we have

T
€
——e(ue)p drdt
[ L gt
_ /T / [ Vp|?
= €
0 n 2
1/~ 2 .2
+ - (W(p) + 62p;) }g@ dxdt

€
T

— O’/ / o dH"tdt.
0o JMm

Note that in Proposition 2.4 f(e)es(ue) con-
centrates on the lorentzian minimal subman-
ifold X of codimension 1, even if k = 2.

—~cH"L X

O

3 Convergence as ¢ — 07

We are interested in passing to the limit in
(1), as € — 0. As already mentioned in
the introduction, a formal limit has been per-
formed in [10]. Rigorous asymptotic results
for well prepared initial data have been re-
cently announced in [7].

From now on we shall assume that

(A1) there exists a constant C' > 0 such that

)/n ec(ue(0,2)) de < C.

sup
e€(0,1



3.1 Assumptions on ¢/ and e

Under assumption (A1), using (3) it follows
that the measures e.(u.) dtdx converge, up
to a (not relabelled) subsequence; namely

ec(ue) dtde — e,

where e is a measure in R+, Since |/ (u.)|
and ci(e)W (u.)/e* are both bounded by
ec(u.), they converge, up to a subsequence,
to two measures £ and w respectively,

le(u,) dtdx — ¢,
cr(€)W(ue)/e® dtdr — w,

(14)
(15)

and ¢ and w are absolutely continuous with
respect to e, with density less than or equal
to 1. In the following, we shall also assume
that

(A2) e is absolutely continuous with respect
to £.

and, as in [1], that

(A3) there exists an absolute constant ¢ > 0
such that

, {(By(t, )
CS lim T

p—0t Wnt1—kpP

< +00

for (-almost every (t,x), where B,(t,x) de-
notes the euclidean ball of radius p centered
at (t,x) and wyy1_p := H"T17F(B1(0,0)).
From Preiss’ Theorem [4] it follows that the
support of the measures e and /,

I :=spt(e) = spt(¥), (16)
is a rectifiable set of dimension n+1—k, and

0> cHMTIRLD

in the sense of measures.

3.2 Lorentzian rectifiable vari-
folds

A matrix P represents a lorentzian orthog-
onal projection on a time-like subspace of
codimension k of R*™ if there exists a

Lorentz transformation L such that
I-1p_ d?ag(l,O,l,...,l) .iszl,
diag(1,0,0,1,...,1) if k=2.

The pair of Radon measures V = (uy,dp)
is a rectifiable time-like lorentzian varifold
of codimension k if spt(u,) C R is an
(n+1—k)-rectifiable set whose tangent space
is time-like H" !~ *_almost everywhere, and
0p is the Dirac delta concentrated on P,
where P is the lorentzian orthogonal projec-
tion onto the tangent space to spt(uy).

Definition 3.1. We say that the rectifiable
lorentzian varifold V.= (uy,0p) is station-

ary if

/ tr (n~'P VX) duy, =0 (17)
R1+n

for all X € (CH(RMFm))n+L,

Notice that (17) is equivalent to require that
the generalized varifold (py,0,-1p) is sta-
tionary in the sense of [1, Def. 3.4].

Remark 3.2. When spt(uy) is smooth, a
direct computation [13] shows that condi-
tion (17) implies that spt(uy) is a time-like
minimal submanifold of codimension k, and
pyv = OH" =R T, for some constant § > 0.

3.3 The stress-energy tensor
We let

TP M) = —cp(e)n®dpvu - 0 5u

+le (u) Uaﬁ

be the contravariant components of the sym-
metric stress-energy tensor, where - is the eu-
clidean scalar product in R*. Notice that

727 ()] < ec(w), (18)

for any a, 8 € {0,...,n}. A direct computa-
tion shows that a solution u, of (1) satisfies

Dy TP (u,) = 0. (19)

As a consequence, for all X € C}(R*") we
have
/ TP (u.) 0,5 X dtdx = 0. (20)
Rl4n
Since |74 (u,)| is bounded by e (u.), for any

a,B€{0,...,n} there exists a measure 7"
such that

TP (u.)dtdz — TP (21)



as ¢ — 07. We denote by T the measure-
valued tensor with components T%%. Note
that T = TP and spt(T) =T.
From (18) it follows that 7% on the right
hand side of (21) is absolutely continuous
with respect to e; in turn, by (A2), e is ab-
solutely continuous with respect to ¢, and
therefore 77 is absolutely continuous with
respect to £. We denote by T%% the density of
the measure 7% with respect to the measure
£ ie.,
dTes
e’
and by T the tensor with components Teb.
In addition to (A3), we shall also assume that

(A4) for H"J’i_k—almost every x € I' the dif-
ference T'(x) —n~? is space-like.

Recalling the expression of T.(u.) —
l.(uc)n~t, we observe that (A4) is reminis-
cent to require that Vu, becomes space-like
near I' in the limit ¢ — 0%, and that T
is time-like H"*!~*.almost everywhere.
This is for instance consistent with the
explicit solution corresponding to a singular
pulsating spherical kink considered in [10]
(see also [7]).

Finally, in the case k = 1, we shall suppose

dw 1

A5) — = —.

(45) dl 2
This assumption corresponds to the so-called
equipartition of energy (see [6] for a similar

condition in the parabolic case).

TP .= (22)

3.4 Main result

We are now in a position to prove the main
result of the paper.

Theorem 3.3. Let ¢, w and T be defined
as in (14), (15) and (22) respectively. The
following two statements hold.

(i) Let k = 1. Assume (A1)-(A5). Then
(¢, 577%) is a stationary lorentzian rectifi-
able varifold of codimension one.

(i) Let k = 2. Assume (A1)-(A4). Then
(¢, 577:;) is a stationary lorentzian rectifi-
able varifold of codimension two.

Therefore, in the two cases, the set I' defined
in (16) is a time-like minimal submanifold

of codimension k in the regions where it is
smooth.

Proof. Passing to the limit in the linear con-
dition (20) we have

/ Dy X dTP =0, (23)
Rl+n

for any o € {0,...,n}. Note that (23)
is (the generic component of) the station-
arity condition for the lorentzian varifold
(£, 6nf)' Therefore, it is enough to prove that
for H 1k almost every x € I' the matrix
nT'(x) is the lorentzian orthogonal projection
onto the tangent space to I' at .

By a rescaling argument around H"H1-k-
almost every point x € I" as in [1, eq. (3.6)],
from (23) we obtain

T(x) Veodv =0,

R1+n

(24)

for all test functions ¢ supported in the eu-
clidean unit ball of R'*", and for all v in the
tangent space to £ at . Asin [1, Lemma 3.9],
from (24) it follows that for H"+1~*_almost
every z € I

at least k eigenvalues of nT(x) are zero .
(25)
These eigenvalues correspond to the direc-
tions in the normal space to I' at z.
From the equalities

T (N7 O e '77'86890“16) = _|u6t‘2 + |Vu€|2
and
ck(e)W(ue
Ck(e)(|uet‘2_|vue‘2) = 2%_266(116)7
we obtain
cr (€)W (ue

try (1o (,)) = 2% + (n — 1)c(u,).

(26)

Passing to the limit as e — 07 we get

tr(T) = 2w + (n — 1)L (27)

in the sense of measures. Considering the
density with respect to ¢ we get

b (T) = 22 1 (n = 1),

i (28)



Thanks to assumption (A4), for H"+1=k-
almost every z € I' the tensor T(x) — ™!,
hence also nf(x) — Id, is space-like. There-
fore, letting Ao, Ay, ..., Ay be the eigenvalues
of nT(x), there exists a Lorentz transforma-

tion L(x) such that

17 @) (0T @) - 1)L ()
= L Yz)nT(z) L(z) —1d
= diag(O,/\l—l,...,)\n—l).

In particular
Ao =1.

Passing to the limit in the expression of
T.(u.) — l(u)n=t as e — 0T, we get that

T — =t = =1 (yT —1d) is negative semidef-
inite (in the euclidean sense), which implies

N<1o Vie{l,....n}.  (29)
From (29) and (25) we then obtain
tr(T(z)) =Y N <n—k+1. (30)

=0

Note that equality in (29) holds if and only
if nT(x) is a lorentzian orthogonal projec-
tion on a time-like subspace of codimension
k. Consequently, our aim is now to prove
equality in (30).

Case (i): k = 1. Using (A5), (28) becomes
tro, (T(a:)) =n.
Case (ii): k = 2.
follows

From (28) and (30) it

dw

— <0.

al —
Since w is a positive measure, as well as ¢
(thanks to assumption (A3)), we deduce

dw

— =0.

ds
Therefore, (28) becomes tr, (T(z)) = n —
1. O

Remark 3.4. In [10] Neu shows by a for-
mal asymptotic argument (made rigorous by
Jerrard as announced in [7]) that the the-
sis of Theorem 3.3 holds, when &k = 1, for
well-prepared initial data and before the ap-
pearence of singularities. However, the small

ripples example of Neu [10] suggests that the
thesis of case (i) of Theorem 3.3 may not
hold without assuming (A4)-(A5). There-
fore, we expect that (A4)-(A5) are not nec-
essarily satisfied for not well-prepared initial
data.
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