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Abstract. We present a macroscopic model of electrical conduction in biological tissues. This
model is derived via a homogenization limit by a microscopic formulation, based on Maxwell’s
equations, taking into account the periodic geometry of the microstructure. We also study the
asymptotic behaviour of the model for large times. Our results imply that periodic boundary
data lead to an asymptotically periodic solution. The model is relevant in applications like
electric impedance tomography.

1. Introduction

In this paper we deal with a model of electrical conduction in composite media and, specifically,
biological tissues. The classical governing equation is

−div(κ∇ut + σ∇u) = 0 , (1-1)

which is derived from the Maxwell equations in the quasi-stationary approximation (see e.g.,
[31]). Here, u is the electrical potential and κ, σ are the permittivity and the conductivity of the
material, respectively. The geometry of the composite media we have in mind is a periodic array
of the unit cell depicted in Figure 1. More precisely, we look at a phase Eη

1 , modelling the cell
cytosol, coated by a shell Γ η, modelling the cell membrane, included in a phase Eη

2 , modelling
the extracellular fluid ([20]). In particular, the permittivity κ (respectively, the conductivity σ)
in Eη

1 and Eη
2 is lower (respectively, greater) than in Γ η. The diameter of the cell is of the order

of tens of micrometers, while the width of the membrane is of the order of ten nanometers. This
suggests that the thin shell Γ η could be preferably modelled as a two dimensional interface Γ ,
in order to get a simpler model, and, possibly, a better understanding of the effect of the geo-
metric features of the microscopic structure. This simpler model can be obtained from equation
(1-1) via a concentration-of-capacity procedure [5], leading to Problem (2-1)–(2-6), below. In
particular, equation (2-3) takes into account the conductive/capacitive behaviour of the concen-
trated membrane. As shown in (2-3), the electric potential jumps across the interface Γ , and its
jump satisfies a dynamical condition (roughly speaking, in the form of a hyperbolic differential
equation on the interface itself).

Our model is designed to investigate the response of biological tissues to the injection of elec-
trical currents in the radiofrequency range, that is the Maxwell–Wagner interfacial polarization
effect [12], [20], at higher frequencies than those considered in [1, 3, 4, 5, 6]. This effect is relevant
in clinical applications like electric impedance tomography and body composition [14, 16].

Problem (2-1)–(2-6) contains a small parameter ε, coinciding with the period of the microstruc-
ture. The typical structure of the periodic array we have in mind is given in Figure 2. Applications
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Figure 1. The periodic cell Y . Left: before concentration; Γ η is the dark gray
region, and Eη = Eη

1 ∪Eη
2 is the union of the light gray and white regions. Right:

after concentration; Γ η shrinks to Γ as η → 0.

Figure 2. Left: an example of admissible periodic unit cell Y = E1 ∪E2 ∪ Γ in
R2. Here E1 is the light gray region and Γ is its boundary. The remaining part of
Y (the white region) is E2. rRight: the corresponding domain Ω = Ωε

1 ∪Ωε
2 ∪Γ ε.

Here Ωε
1 is the light gray region and Γ ε is its boundary. The remaining part of Ω

(the white region) is Ωε
2.

deal with measurements of the electric potential at the macroscopic (body) scale: this suggests
to investigate the homogenization limit of Problem (2-1)–(2-6) when we let ε → 0. Extensive
surveys on this topic are, e.g., in [9, 10, 11, 13, 15, 24, 28, 32, 33, 34]. It turns out that the
partial differential equation obtained in the limit is nonstandard (see (3-39) below). Indeed, it
is an equation exhibiting memory effects, i.e., it contains explicitly the history of the unknown,
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hence it is markedly different from the Laplace equation presently used as a standard in the
bioelectrical impedance literature [14].

Our model can be compared to some papers where homogenization theory is applied to linear
stationary elliptic problems involving imperfect interfaces, arising in fields like elasticity [27] or
heat conduction [29]. See also papers [17, 34], where hyperbolic problems with interfaces are
considered in the framework of elastodynamics and electrodynamics.

In view of the applications, it is also of interest to study the evolution in time of the homog-
enized potential (see Section 2C). In particular, it is of interest to show that a time-harmonic
boundary data elicits a time-harmonic solution for large times. In this regard, reasoning as in [6],
it is enough to prove that the solution u0 of (3-39) exponentially decays to zero as time increases,
provided that a zero Dirichlet boundary condition is assigned (see Theorem 2.1 and Corollary
2.2).

From a mathematical point of view, the asymptotic behaviour of evolutive equations with
memory is a classical problem [19, 35, 18, 26], currently drawing much interest in the literature
[21, 25, 22, 30, 8]. We note that the exponential decay of the memory kernel, in general, does not
imply the existence of bounded solutions, as shown by a counterexample presented in Section 5
(see, also, [19, 18]).

We finally note that our methods could be easily applied to study the homogenization problem
and the time-asymptotic behaviour of Kelvin-Voigt viscoelastic composites with coated inclu-
sions.

2. Position of the problem and main results

We look at the homogenization limit (ε ց 0) of the following problem for uε(x, t):

−div(κ∇uεt + σ∇uε) = 0 , in (Ωε
1 ∪ Ωε

2) × (0, +∞); (2-1)

[(κ∇uεt + σ∇uε) · ν] = 0 , on Γ ε × (0, +∞); (2-2)

α

ε

∂

∂t
[uε] +

β

ε
[uε] = ((κ∇uεt + σ∇uε) · ν)(2) , on Γ ε × (0, +∞); (2-3)

uε(x, t) = 0 , on ∂Ω × (0, +∞); (2-4)

∇uε(x, 0) = Gε(x) , in Ωε
1 ∪ Ωε

2; (2-5)

[uε](x, 0) = Sε(x) , on Γ ε. (2-6)

The operators div and ∇ act with respect to the space variable x; Ω = Ωε
1 ∪ Ωε

2 ∪ Γ ε, where Ωε
1

and Ωε
2 are two disjoint open subsets of Ω, and Γ ε = ∂Ωε

1 ∩ Ω = ∂Ωε
2 ∩ Ω; ν is the normal unit

vector pointing into Ωε
2; the typical geometry we have in mind is depicted in Figure 2. We refer

to Section 2A for a precise definition of the structure of Ωε
1, Ωε

2, Γ ε.
Moreover, we assume that:

α > 0 ; β ≥ 0 ; κ = κ1 > 0 , σ = σ1 > 0 in Ωε
1;

κ = κ2 > 0 , σ = σ2 > 0 in Ωε
2;

(2-7)

where κ1, κ2, σ1, σ2, α and β are constants. From a physical point of view, Γ ε represents the cell
membranes, having capacitance α/ε and conductance β/ε per unit area, whereas Ωε

1 (resp., Ωε
2)

is the intracellular (resp., extracellular) space, having permittivity κ1 (resp., κ2) and conductivity
σ1 (resp., σ2).

Since uε is not in general continuous across Γ ε we have set

u(2)
ε := trace of uε|Ωε

2
on Γ ε , u(1)

ε := trace of uε|Ωε

1
on Γ ε , and [uε] := u(2)

ε − u(1)
ε .
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A similar convention is employed for the current flux density across the membrane (κ∇uεt +
σ∇uε) · ν.

We assume that the restrictions of Gε to Ωε
1 and Ωε

2 are gradients of scalar fields and Gε

strongly converges in L2. Moreover, we assume that Sε ∈ H1(Ω) and Sε/ε strongly converges in
L2. These assumptions are introduced in order to rule out the appearance of an initial layer (see
[7]). Further assumptions on Gε and Sε are introduced in Section 2B.

2A. Geometry. Following [3], we introduce a periodic open subset E of RN , so that E +z = E
for all z ∈ ZN . For all ε > 0 we define Ωε

1 = Ω ∩ εE, Ωε
2 = Ω \ εE, Γ ε = Ω ∩ ∂(εE). We

assume that Ω, E have regular boundary, say of class C∞ for the sake of simplicity. We also
employ the notation Y = (0, 1)N , and E1 = E ∩ Y , E2 = Y \E, Γ = ∂E ∩ Y . We stipulate that
E1 is a connected smooth subset of Y such that dist(E1, ∂Y ) > 0. Some generalizations may be
possible, but we do not dwell on this point here. Finally, we assume that dist(Γ ε, ∂Ω) > γε for
some constant γ > 0 independent of ε, by dropping the inclusions contained in the cells ε(Y +z),
z ∈ ZN which intersect ∂Ω (see Figure 2). For later usage, we introduce the set:

ZN
ε := {z ∈ ZN : ε(Y + z) ⊆ Ω} . (2-8)

2B. Energy estimate. Multiply (2-1) by uε and integrate by parts. Using (2-2)–(2-6), we
arrive, for all t > 0, to the energy estimate

∫

Ω

κ

2
|∇uε(x, t)|2 dx +

∫ t

0

∫

Ω
σ|∇uε(x, τ)|2 dx dτ +

α

2ε

∫

Γ ε

[uε(x, t)]2 dσ

+
β

ε

∫ t

0

∫

Γ ε

[uε(x, τ)]2 dσ dτ =

∫

Ω

κ

2
|Gε(x)|2 dx +

α

2ε

∫

Γ ε

S2
ε (x) dσ . (2-9)

We assume that ∫

Ω

κ

2
|Gε(x)|2 dx +

α

2ε

∫

Γ ε

S2
ε (x) dσ < γ , (2-10)

for a constant γ independent of ε. In fact (2-9), coupled with the Poincaré’s inequality (Lemma 4.1),
is a main tool in the rigorous proof of convergence of uε to its limit. In particular, up to a sub-
sequence, uε weakly converges in L2(Ω × (0, T )) as ε → 0 to a limit u0, for every T > 0. The
equation satisfied by u0 will be formally derived via a homogenization procedure in Section 3.

2C. Exponential decay.

Theorem 2.1. Let Ωε
1, Ω

ε
2, Γ

ε be as before. Assume that (2-7) holds and the initial data Gε are

gradients of scalar fields and together with Sε satisfy (2-10). Let uε be the solution of (2-1)–(2-6).
Then

‖uε(·, t)‖L2(Ω) ≤ C(ε + e−λt) a.e. in (0, +∞), (2-11)

where C and λ are positive constants independent of ε. Moreover, if β > 0, or else if Sε has null

mean average over each connected component of Γ ε, it follows that

‖uε(·, t)‖L2(Ω) ≤ C e−λt a.e. in (0, +∞). (2-12)

This result easily yields the following exponential time-decay estimate for the limit u0 under
homogeneous Dirichlet boundary data:

Corollary 2.2. Under the assumptions of Theorem 2.1, if uε → u0 weakly in L2(Ω × (0, T )) for

every T > 0, then

‖u0(·, t)‖L2(Ω) ≤ C e−λt a.e. in (0, +∞). (2-13)
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3. Formal homogenization

We summarize here, to establish the notation, some well known asymptotic expansions needed
in the two-scale method (see, e.g., [11], [34]). Introduce the microscopic variables y ∈ Y , y = x/ε,
assuming

uε = uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . . (3-1)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral average over
Y . Recalling that

div =
1

ε
divy + divx , ∇ =

1

ε
∇y + ∇x , (3-2)

we compute, e.g.,

∇uε =
1

ε
∇yu0 +

(
∇xu0 + ∇yu1

)
+ ε

(
∇yu2 + ∇xu1

)
+ . . . . (3-3)

We also stipulate

Gε =Gε(x, y) =G0(x, y) + εG1(x, y) + ε2G2(x, y) + . . . ; (3-4)

Sε = Sε(x, y) = S0(x, y) + εS1(x, y) + ε2S2(x, y) + . . . , (3-5)

where the restrictions of G0(x, ·), G1(x, ·), . . . to E1 and E2 are the gradient of scalar fields.
According to equation (2-10), recalling that |Γ ε|N−1 ∼ 1/ε, we assume S0 ≡ 0 in (3-5); moreover,
according to the assumption on the strong convergence of Gε and Sε/ε, the functions G0(x, y)
and S1(x, y) do not depend on y, i.e. G0(x, y) = G0(x) and S1(x, y) = S1(x).

For the sake of brevity, we introduce the operator:

D := κ
∂

∂t
+ σ . (3-6)

Applying (3-2)–(3-3) to Problem (2-1)–(2-6), one readily obtains by matching corresponding
powers of ε, that u0 solves,

−D∆y u0 = 0 , in (E1 ∪ E2) × (0, +∞); (3-7)

[D∇yu0 · ν] = 0 , on Γ × (0, +∞); (3-8)

α
∂[u0]

∂t
+ β[u0] = (D∇yu0 · ν)(2) , on Γ × (0, +∞). (3-9)

∇yu0|t=0 = 0 , on E1 ∪ E2; (3-10)

[u0]|t=0 = 0 , on Γ . (3-11)

Reasoning as in Section 2B we obtain an energy estimate for (3-7)–(3-11), which implies that
[u0] = 0 for all times, and

u0 = u0(x, t) .

Next we find for u1:

−D∆y u1 = 0 , in (E1 ∪ E2) × (0, +∞); (3-12)

[D(∇yu1 + ∇xu0) · ν] = 0 , on Γ × (0, +∞); (3-13)

α
∂[u1]

∂t
+ β[u1] = (D(∇yu1 + ∇xu0) · ν)(2) , on Γ × (0, +∞). (3-14)

∇yu1|t=0 + ∇xu0|t=0 = G0 , on E1 ∪ E2; (3-15)

[u1]|t=0 = S1 , on Γ . (3-16)

Since both u0 and G0 do not depend on y, equation (3-15) implies ∇yu1|t=0 = 0 on E1 ∪ E2.
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In order to represent u1 in a suitable way, let g ∈ L2(E1∪E2) and s ∈ L2(Γ ) be assigned, such
that the restrictions of g to E1 and E2 are gradients of scalar fields, and consider the problem

−D∆y v = 0 , in (E1 ∪ E2) × (0, +∞); (3-17)

[D∇yv · ν] = 0 , on Γ × (0, +∞); (3-18)

α
∂[v]

∂t
+ β[v] = (D∇yv · ν)(2) , on Γ × (0, +∞). (3-19)

∇yv|t=0 = g , on E1 ∪ E2; (3-20)

[v]|t=0 = s , on Γ . (3-21)

where v is a periodic function in Y , such that
∫
Y v(y, t) dy = 0. Define the transform T by

T (g, s)(y, t) = v(y, t) , y ∈ Y , t > 0 .

Then, introduce the cell functions χ0 : Y → RN and χ1 : Y × (0, +∞) → RN , whose
components χ0

h and χ1
h(·, t), h = 1, . . . , N , are required to be periodic functions with vanishing

integral average over Y for t ≥ 0. The function χ0
h of the components of χ0 satisfies

−κ ∆y χ0
h = 0 , in E1 ∪ E2; (3-22)

[κ(∇yχ
0
h − eh) · ν] = 0 , on Γ ; (3-23)

α[χ0
h] = (κ(∇yχ

0
h − eh) · ν)(2) , on Γ . (3-24)

The initial value χ1
h(·, 0) of the components of χ1 satisfies

−κ ∆y χ1
h(·, 0) − σ ∆y χ0

h = 0 , in E1 ∪ E2; (3-25)

[(κ∇yχ
1
h(·, 0) + σ(∇yχ

0
h − eh)) · ν] = 0 , on Γ ; (3-26)

((κ∇yχ
1
h(·, 0) + σ(∇yχ

0
h − eh)) · ν)(2) = α[χ1

h(·, 0)] + β[χ0
h] , on Γ . (3-27)

Finally, χ1
h is defined for t > 0 by

χ1
h = T

(
∇yχ

1
h(·, 0), [χ1

h(·, 0)]
)

. (3-28)

Straightforward calculations show that u1 may be written in the form

u1(x, y, t) = −χ0(y) · ∇xu0(x, t) −

∫ t

0
χ1(y, t − τ) · ∇xu0(x, τ) dτ

+ T
(
∇y(χ

0 · G0(x)), S1(x) + [χ0] · G0(x)
)
(y, t) , (3-29)

so that

Du1(x, y, t) = −κχ0(y) · ∇xu0t(x, t) − (κχ1(y, 0) + σχ0(y)) · ∇xu0(x, t)

−

∫ t

0
(Dχ1)(y, t − τ) · ∇xu0(x, τ) dτ

+ DT
(
∇y(χ

0 · G0(x)), S1(x) + [χ0] · G0(x)
)
(y, t) . (3-30)
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Next we find for u2:

−D

(
∆y u2 + 2

∂2u1

∂xj∂yj
+ ∆x u0

)
= 0 , in (E1 ∪ E2) × (0, +∞); (3-31)

[D(∇yu2 + ∇xu1) · ν] = 0 , on Γ × (0, +∞); (3-32)

(D(∇yu2 + ∇xu1) · ν)(2) = α
∂[u2]

∂t
+ β[u2] , on Γ × (0, +∞). (3-33)

∇yu2|t=0 + ∇xu1|t=0 = G1 , on E1 ∪ E2; (3-34)

[u2]|t=0 = S2 , on Γ . (3-35)

Let us find the solvability conditions for this problem. Integrating by parts the partial differential
equations (3-31) solved by u2, both in E1 and in E2, adding the two contributions, and using
(3-32), we get

[ ∫

E1

+

∫

E2

]
D

{
∆x u0(x, t) + 2

∂2u1

∂xj∂yj

}
dy = −

∫

Γ
[D∇xu1 · ν] dσ . (3-36)

Thus we obtain(
κ0

∂

∂t
+ σ0

)
∆x u0 = 2

∫

Γ
[D∇xu1 · ν] dσ −

∫

Γ
[D∇xu1 · ν] dσ =

∫

Γ
[D∇xu1 · ν] dσ , (3-37)

where

κ0 = κ1|E1| + κ2|E2| ; σ0 = σ1|E1| + σ2|E2| . (3-38)

Then we substitute the representation (3-29) into equation (3-37) and, after simple algebra,
obtain the homogenized equation for u0 in Ω × (0, +∞) as

−div

(
K∇xu0t + A∇xu0 +

∫ t

0
B(t − τ)∇xu0(·, τ) dτ −F

)
= 0 , (3-39)

where the matrices K, A, B(t) and the vector F(x, t) are defined as follows:

K = κ0I +

∫

Γ
ν ⊗ [κχ0(y)] dσ , A = σ0I +

∫

Γ
ν ⊗ [κχ1(y, 0) + σχ0(y)] dσ ,

B(t) =

∫

Γ
ν ⊗ [(Dχ1)(y, t)] dσ ,

F(x, t) =

∫

Γ
[DT

(
∇y(χ

0 · G0(x)), S1(x) + [χ0] · G0(x)
)
(y, t)]ν dσ . (3-40)

Equation (3-39) is complemented with the initial condition

∇xu0|t=0 = G0 , on Ω. (3-41)

Finally, integrating in time equation (3-39), changing the order in the double integral thus
appearing and using (3-41), we obtain also the following formulation

−div

(
K∇xu0 +

∫ t

0

(
A +

∫ t−s

0
B(τ) dτ

)
∇xu0(·, s) ds − KG0 −

∫ t

0
F(·, τ) dτ

)
= 0 , (3-42)

which shows that the homogenized equation has exactly the form of an equation with memory
of the type derived in [1, 3] and studied in [2].
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4. Time-exponential asymptotic decay: proof of Theorem 2.1

The case β > 0 is quite simple. We introduce the space

H1
ε (Ω) := {v ∈ L2(Ω) : v|Ωε

i
∈ H1(Ωε

i ), i = 1, 2; v = 0 on ∂Ω} . (4-1)

It turns out that, for all v ∈ H1
ε (Ω),

∫

Ω
σ|∇v|2 dx +

β

ε

∫

Γ ε

[v]2 dσ ≥ λ

(∫

Ω

κ

2
|∇v|2 dx +

α

2ε

∫

Γ ε

[v]2 dσ

)
, (4-2)

for λ = min{2σ1/κ1, 2σ2/κ2, 2β/α}. Taking v = uε(·, t) in the previous estimate and using
equations (2-9), (2-10) and the differential version of Gronwall’s Lemma, we obtain:

∫

Ω

κ

2
|∇uε(·, t)|

2 dx +
α

2ε

∫

Γ ε

[uε(·, t)]
2 dσ ≤ γ e−λt , a.e. in (0, +∞), (4-3)

and (2-12) follows from Poincaré’s inequality (Lemma 4.1).

Now we consider the case β = 0. We introduce the space H̃1/2(Γ ε) ⊂ H1/2(Γ ε) of the
functions which have null average over each connected component of Γ ε, i.e. on ε(Γ + z), for
each z belonging to the set ZN

ε defined in (2-8). We decompose the initial datum Sε(x) in (2-6)

as Sε(x) = Sε(x) + S̃ε(x), where

Sε(x) =

∫

ε(Γ+z)

Sε dσ =: Cεz on each ε(Γ + z), z ∈ ZN
ε ;

S̃ε(x) ∈ H̃1/2(Γ ε) ,

(4-4)

and the initial datum Gε(x) in (2-5) as Gε(x) = Gε(x) + G̃ε(x), where Gε(x) = 0 and G̃ε(x) =
Gε(x). Accordingly, the solution uε of Problem (2-1)–(2-6) is decomposed as uε + ũε. Clearly,

uε(x, t) =





0 for (x, t) ∈ Ωε
2 × (0, +∞) ,

−Cεz for (x, t) ∈ (ε(E1 + z)) × (0, +∞), z ∈ ZN
ε .

(4-5)

Using the previous equation, we compute:

∫

Ω
|uε|

2 dx =
∑

z∈Z
N
ε

∫

ε(E1+z)
|uε|

2 dx = εN |E1|
∑

z∈Z
N
ε

∣∣∣∣∣∣∣

∫

ε(Γ+z)

Sε dσ

∣∣∣∣∣∣∣

2

. (4-6)

On the other hand, by Hölder’s inequality, we estimate:

∑

z∈Z
N
ε

∣∣∣∣∣∣∣

∫

ε(Γ+z)

Sε dσ

∣∣∣∣∣∣∣

2

≤
γ

εN−1

∫

Γ ε

S2
ε dσ . (4-7)

Hence, as a consequence of (2-10), it follows that

‖uε(·, t)‖L2(Ω) ≤ Cε , (4-8)

where C is a constant independent of ε.
In order to obtain an estimate for ũε, we introduce the space

H̃1
ε (Ω) := {v ∈ H1

ε (Ω) : [v] ∈ H̃1/2(Γ ε)} , (4-9)
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and, using Lemma 4.2 and Remark 4.3 below, we compute, for every v ∈ H̃1
ε (Ω):

∫

Ω
σ|∇v|2 dx ≥

∑

z∈Z
N
ε

∫

ε(Y +z)
σ|∇v|2 dx ≥

αλ̃

ε

∑

z∈Z
N
ε

∫

ε(Γ+z)
[v]2 dσ =

αλ̃

ε

∫

Γ ε

[v]2 dσ , (4-10)

where λ̃ is defined in (4-15) and is independent of ε. Hence,
∫

Ω
σ|∇v|2 dx ≥ λ

(∫

Ω

κ

2
|∇v|2 dx +

α

2ε

∫

Γ ε

[v]2 dσ

)
, (4-11)

for λ = (max{κ1/(2σ1), κ2/(2σ2)} + 1/(2λ̃))−1.
On the other hand, reasoning as in Section 2B and using (4-4) and (2-10), we get that ũε

satisfies the following energy estimate:

∫

Ω

κ

2
|∇ũε(x, t)|2 dx +

∫ t

0

∫

Ω
σ|∇ũε(x, τ)|2 dx dτ +

α

2ε

∫

Γ ε

[ũε(x, t)]2 dσ < γ . (4-12)

Hence, by using (4-11) written for ũε(·, t) and the differential version of Gronwall’s Lemma, we
obtain: ∫

Ω

κ

2
|∇ũε(·, t)|

2 dx +
α

2ε

∫

Γ ε

[ũε(·, t)]
2 dσ ≤ γ e−λt , a.e. in (0, +∞), (4-13)

and (2-11) follows from Poincaré’s inequality (Lemma 4.1) and (4-8).

Lemma 4.1. Poincaré’s inequality. [23, 3]. Let v belong to the space H1
ε (Ω) introduced in

equation (4-1). Then,

∫

Ω
v2 dx ≤ C

{ ∫

Ω
|∇v|2 dx + ε−1

∫

Γ ε

[v]2 dσ

}
. (4-14)

Here C depends only on Ω and E.

Lemma 4.2. [6]. Set H̃1(Y ) := {v ∈ L2(Y ) : v|Ei
∈ H1(Ei), i = 1, 2, [v] ∈ H̃1/2(Γ )}, where

H̃1/2(Γ ) is comprised by the functions of H1/2(Γ ) with null integral average. Then,

λ̃ := min
v∈H̃1(Y ), [v]6≡0

∫

Y
σ|∇v|2 dy

α

∫

Γ
[v]2 dσ

> 0 . (4-15)

Remark 4.3. [6]. The change of variables y = x/ε applied to equation (4-15) yields:

min
v∈H̃1(εY ), [v]6≡0

∫

εY
σ|∇v|2 dx

α

ε

∫

εΓ
[v]2 dσ

= λ̃ > 0 , (4-16)

where H̃1(εY ) := {v ∈ L2(εY ) : v|εEi
∈ H1(εEi), i = 1, 2, [v] ∈ H̃1/2(εΓ )}, H̃1/2(εΓ ) is

comprised by the functions of H1/2(εΓ ) with null integral average, and λ̃ is the positive constant

introduced in Lemma 4.2.



10 MICOL AMAR, DANIELE ANDREUCCI, PAOLO BISEGNA, AND ROBERTO GIANNI

5. A counterexample

As pointed out in the Introduction, the structure of equation (3-39) is not enough to imply
the exponential decay of the solution to zero or its boundedness, even if exponentially decaying
memory kernel and source are considered. Indeed, let Ω = (−1, 1), µ > 0, a > 0, b ∈ R, and
f(x), h(x) be smooth functions. Consider the problem





−

(
u0xt + au0x + b

∫ t

0
e−µ(t−τ)u0x(x, τ) dτ + f(x)e−µt

)

x

= 0 ,

u0(±1, 0) = 0 ,

u0x = h(x) .

(5-1)

Multiplying the previous equation by eµt, we obtain

u0xxte
µt + au0xxeµt + b

∫ t

0
eµτu0xx(x, τ) dτ = f ′(x) . (5-2)

Setting v(x, t) = u0xxeµt and differentiating with respect to t, equation (5-2) can be rewritten as

vtt + (a − µ)vt + bv = 0 ,

which must be complemented with the initial conditions
{

v(x, 0) = h′(x) ,

vt(x, 0) = f ′(x) + (µ − a)h′(x) .

This last equation has an explicit solution of the form, if (µ − a)2 − 4b > 0,

v(x, t) = C1(x) exp
(µ − a +

√
(µ − a)2 − 4b

2
t
)

+ C2(x) exp
(µ − a −

√
(µ − a)2 − 4b

2
t
)
,

where C1(x) and C2(x) are easily determined by using the initial conditions, thus implying that

u0xx(x, t) = C1(x) exp
(−µ − a +

√
(µ − a)2 − 4b

2
t
)

+ C2(x) exp
(−µ − a −

√
(µ − a)2 − 4b

2
t
)
.

Hence, u0 can be obtained by integrating twice with respect to x and using the previous mentioned
boundary conditions.

Note that, in general, if b is negative and −b > µa, the first exponential tends to infinity as
t → +∞. Taking into account that, except for a very particular choice of the initial data, C1 is
different from zero, we have that solutions to Problem (5-1) do not exponentially decay in time,
in general.
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