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1. Introduction

Mather variational principle, introduced by John N. Mather in [18, 19], is an important tool in
Lagrangian dynamic. In recent years, several authors have studied this topic in connections with
various fields such as weak Kam Theory ([5, 7, 10, 11]), Monge-Kantorovich mass transportation
and geometric measure theory ([3, 4, 6, 13, 14]). In this paper we discuss a finite dimensional
approximation of Mather variational problem on the flat torus TN , following a linear programming
interpretation of Mather’s variational principle outlined in [9].

1.1. Mather’s Problem. We will consider a compact Riemannian manifold (M, g) without bound-
ary and a Lagrangian L : TM → R which satisfies the following properties:

(1) L is regular (at least C2),
(2) L(x, ·) is superlinear in the fiber uniformly on x ∈ M ,
(3) L(x, ·) is strictly convex in the fiber for all x ∈ M .

The regularity requirement on L is crucial to consider regular solutions of the Hamilton-Jacobi
equation (see Section 3.1).

A measure µ ∈M(TM) is said to be closed if for all exact forms ω it results∫
TM

〈ω(x), v〉dµ = 0. (1.1)

According to this definition we set

Mc = {µ ∈M(TM) | µ is closed, with compact support, µ ∈ P(TM)} ,

where P(TM) stands for probability measures, i.e. µ ≥ 0 and µ(TM) = 1. To each measure µ ∈Mc

we can associate the homology class of µ which we will denote by [µ] ∈ H1(M, R) (by duality with
H1). Indeed, µ acts in a natural way on the set of the closed 1-forms on M by

ω 7→
∫

TM

〈ω(x), v〉dµ (1.2)

and thanks to condition (1.1) this action passes to the quotient by the exact forms.
Once we fix an homology class [h], Mather’s variational problem amounts to:

min
Mc

{∫
TM

L(x, v)dµ | [µ] = [h]

}
. (1.3)
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We also define the action of µ by

A(µ) :=

∫
TM

L(x, v)dµ.

A remarkable property of problem (1.3) is the following: we minimize an action functional which
depends on L on measures which are merely closed. However, it turns out that the minimal measures
are also invariant for the flow associated to the Lagrangian L, see for example [3, 5, 11, 17].

Consider the N -dimensional flat torus TN . In this case it is known that the homology H1(TN , R)
and the cohomology H1(TN , R) are N -dimensional vector spaces. Moreover, the cohomology on TN

is generated by the classes [dx1], [dx2], . . . , [dxN ]. In other words, for every closed 1-forms ω on TN

there exists P ∈ RN and f ∈ C1(TN) such that ω = P + df . For details we refer for instance to
[15]. Fixed Q ∈ RN , denoted by Mc the space of measures having compact support, in this setting
Mather’s problem can be formulated as follows:

Minimize
{
A(µ) | µ ∈Mc(TN × RN)

}
under the following constraints:

(1) µ ∈ P(TN × RN),
(2) ∀f ∈ C1(TN) :

∫
TN×RN 〈df, v〉 dµ = 0,

(3)
∫

TN×RN v dµ = Q.

Observe that the second constraint in the above list correspond to the closedness of µ while the third
one is equivalent to fix the homology class [µ]. Therefore, Mather’s problem corresponds to minimize
the functional P defined as

µ ∈Mc(TN × RN) 7→ P(µ) = A(µ) + IK(µ), (1.4)

where IK is the indicator function of the set K of measures which satisfy the above constraints.

1.2. Linear programming problems. A finite dimensional linear programming problem is a min-
imizing problem of the following form  min 〈c, x〉

x ≥ 0
Ax = b,

(1.5)

for c ∈ RN , b ∈ RM and A a N × M matrix. Here we write x ≥ 0 to mean xi ≥ 0 for every
i = 1, . . . , N . We can associate to problem (1.5) a dual problem in the following canonical way{

max 〈b, y〉
Aty ≤ c,

(1.6)

where At denotes the transpose matrix of A. Observe that in the dual problem (1.6) we do not ask
for positive solutions. Denoting respectively by K, H the set of constraints of problem (1.5) and
(1.6) one has

∀x ∈ K, ∀y ∈ H : 〈b, y〉 ≤ 〈c, x〉.
Therefore, if we denote by P the minimum value of problem (1.5) and by D the maximum value of
problem (1.6) we have the following comparison

D ≤ P. (1.7)

We have the equality sign in the above inequality if the following complementary slackness condition
holds.
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Lemma 1.1 (Slackness condition). Let x0 ∈ K and y0 ∈ H such that

〈b, y0〉 = 〈c, x0〉. (1.8)

Then x0 is a solution of problem (1.5), while y0 is a solution of problem (1.6). Moreover it results
P = D.

A remarkable fact in finite linear programming is the following duality theorem

Theorem 1.1 (Strong Duality). If one among the problems (1.5) and (1.6) admits a solution then
also the other problem admits a solution. Moreover, it results P = D.

As references for linear programming problems we refer for instance to [2, 21]. An infinite di-
mensional linear programming problem could be stated for real topological vector spaces X, Y . We
assume X endowed with a partial ordering, compatible with the linear structure, which induces a
partial ordering on the dual space X∗. Given c∗ ∈ X∗, b ∈ Y and A : X → Y a continuous linear
operator, denoting by 〈, 〉 the pairing between a space and its dual, a linear programming problem
could be stated as follows  min 〈c∗, x〉

x ≥ 0
Ax = b.

(1.9)

Denoting by A∗ : Y ∗ → X∗ the adjoint operator of A, the dual problem of (1.9) amounts to{
max 〈y∗, b〉
A∗y∗ ≤ c∗.

(1.10)

In general, in this setting a strong duality assertion like Theorem 1.1 does not hold. However, The
slackness condition remains true. Denoting by H, K the set of constraints of problem (1.9) and (1.10)
respectively, we have the following

Theorem 1.2 (Weak duality). For every x ∈ K, y∗ ∈ K it results

〈y∗, b〉 ≤ 〈c∗, x〉. (1.11)

Moreover, if for some x0 ∈ K, y∗0 ∈ K it results

〈y∗0, b〉 = 〈c∗, x0〉, (1.12)

then x0 is a solution of problem (1.9), while y∗0 is a solution of problem (1.10).

1.3. Description of the results. In the paper [9] the authors outline a linear programming formu-
lation of Mather problem. In a large heuristic way they discuss some formal implications of linear
programming duality to the Mather theory. Following these guide-lines, in this paper we provide an
approximation of Mather problem by finite dimensional minimization problems. We perform this ap-
proximation in the framework of Γ-convergence. In particular, discretizing the phase-space TN ×RN ,
we find a sequence of finite dimensional linear programming problems Pn which Γ-converge to the
Mather problem. Therefore we can recover a Mather minimizing measure by solving finite dimen-
sional linear programming problems (see Theorem 2.2). As a consequence of recent developments
of Hamilton-Jacobi and Mather theory ([5, 9, 10, 11, 17, 18]) we state a duality results for Mather
problem (see Section 3.1). Moreover, the finite dimensional duality provide also an approximation
result for the dual problem (see Theorem 3.2).
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2. Discrete approximation of Mather problem

Following Mather we restrict to consider measures with compact support. To pursue variational
arguments, one need a notion of convergence which preserves the constraints. Therefore we get the
following

Definition 2.1. Let µn, µ ∈M(TM) We say that µn ⇀ µ if µn
∗
⇀ µ and

∫
TM

|v| dµn →
∫

TM
|v| dµ

as n → +∞.

Given a continuous function f : TM → R we say that f grows at most linearly if there exist two
constant A, B ≥ 0 such that for every (x, v) ∈ TM it results |f(x, v)| ≤ A + B|v|. For the reader
convenience we state the following (see also [17])

Lemma 2.1. Let µn, µ ∈ Pc(TM) be probability measures having compact support. If µn ⇀ µ then

lim
n→+∞

∫
TM

f dµn =

∫
TM

f dµ

for every continuous function which grows at most linearly.

Proof. Fix a large compact set K such that supp(µ) ⊂ K and µ(∂K) = 0. Given a continuous
functions f which grows at most linearly we set ϕ(v) = A + B|v|. We evaluate∣∣∣∣∫

TM

f d(µ− µn)

∣∣∣∣ ≤ ∣∣∣∣∫
K

f d(µ− µn)

∣∣∣∣+ ∣∣∣∣∫
Kc

f d(µ− µn)

∣∣∣∣ ≤
≤
∣∣∣∣∫
K

f d(µ− µn)

∣∣∣∣+ ∫
Kc

|f | dµn ≤
∣∣∣∣∫
K

f d(µ− µn)

∣∣∣∣+ ∫
Kc

ϕ(v) dµn =

∣∣∣∣∫
K

f d(µ− µn)

∣∣∣∣+
+

∫
TM

ϕ(v) dµn −
∫
K

ϕ(v) dµn −
(∫

TM

ϕ(v) dµ−
∫
K

ϕ(v) dµ

)
.

Observe that in the above computation we have used the condition supp(µ) ⊂ K to infer∣∣∣∣∫
Kc

f d(µ− µn)

∣∣∣∣ =

∣∣∣∣∫
Kc

f dµn

∣∣∣∣ ; ∫
TM

ϕ(v) dµ−
∫
K

ϕ(v) dµ =

∫
Kc

ϕ(v) dµ = 0

respectively in the second and the third line. We can now estimate∣∣∣∣∫
TM

f d(µ− µn)

∣∣∣∣ ≤ ∣∣∣∣∫
K

f d(µ− µn)

∣∣∣∣+ ∫
K

ϕ d(µ− µn) +

∫
TM

ϕ d(µn − µ). (2.1)

By standard properties of weak-star convergence (see for example Proposition 1.62 of [1]) we get

lim
n→+∞

∫
K

f d(µ− µn) = 0 = lim
n→+∞

∫
K

ϕ d(µ− µn).

Moreover, since we are dealing with probability measures, µn ⇀ µ ⇒
∫

TM
ϕ(v) dµn →

∫
TM

ϕ(v) dµ
as n → +∞. Therefore, by (2.1) the statement follows. �

To realize a discrete approximation, we will allow to a measure µ to have an atom of negative
mass at the origin. If the measure µ is not positive we consider the total variation |µ| given by
|µ| = µ+ + µ−, where µ+ and µ− denote the positive and negative parts corresponding to the Hahn
decomposition of µ. However, since Mather problem deals with probability measures, by adding a
constant to the Lagrangian L(x, v) we may assume L(0, 0) = 0 without changing the minimizing
problem. Therefore, throughout the rest of this paper M = TN and L(0, 0) = 0.
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2.1. Formulation of the discrete functional Pn. Let n ≥ 1 be the discretization step. We
consider the following discretization of TN

I =

{
(i1, ..., iN) | ih ∈ {0,

1

n
, . . . ,

n− 2

n
,
n− 1

n
}
}

.

The number of elements of I (which is nN) will be denoted by |I|. The discretization of RN is given
by

J =

{
(j1, ..., jN) | jh ∈ {−n, . . . ,− 1

n
, 0,

1

n
, . . . , n}

}
,

We define the set C as the set of atomic measures µ =
∑

i,j µi,jδi,j ∈ Mc(TM) which satisfy the
constraints: 

µi,j ≥ 0, (i, j) 6= (0, 0),∑
i,j µi,j = 1,∑
i,j jµi,j = Q,

∀ i ∈ I :
∑

j

∑N
h=1 jh(µi−eh/n,j − µi,j) = 0.

(2.2)

We define the functional Pn on Mc(TM) as

Pn(µ) =

∫
TM

L(x, v) dµ + Φn(µ) + IC(µ), (2.3)

where Ic(µ) is the indicator function of the set C, while

Φn(µ) = O(n)µ−0,0 +
∑

i,|j|=n

|j|µi,j −
∑

i,|j|=n

L(i, j)µi,j, (2.4)

where |j| denotes the norm, for instance the maximum norm, of the vector j, O(n) is a strictly positive

function such that limn→+∞O(n) = +∞ and limn→+∞
O(n)

n
= 0, while µ−i,j = max(−µi,j, 0). The

introduction of the penalization term Φn(µ) is motivated by the construction of discrete measures
which approximate a given Mather’s measure µ performed in Lemma 2.4. Indeed, to realize this
approximation, a crucial step is to consider discrete measures which satisfy all the constraints (2.2).
If such discrete measures do not satisfy all the constraints, we get a modified sequence of measures
by adding suitable terms at the origin and on the points of the discretization such that |j| = n. The
term Φn, see formula (2.27) and (2.28), ensures that these changes do not affect the approximation
process.

We observe that the constraint

∀ i ∈ I :
∑

j

∑
h

jh(µi−eh/n,j − µi,j) = 0, (2.5)

where (eh)h=1,...,N denotes the canonical basis of RN , corresponds to the closedness condition, while∑
i,j

jµi,j = Q (2.6)

is the discrete version of the momentum constraint of Mather’s measure, which is equivalent to fix
the homology class of the measure µ.

Of course, we have C 6= ∅. Indeed, setting for every (i, j) 6= (0, 0)
µi,eh

= 1
|I| max(Qh, 0),

µi,−eh
= 1

|I| max(−Qh, 0),

µi,j = 0 for j 6= ±eh,

and µ0,0 = 1−
∑N

h=1 |Qh|, it results µ =
∑

i,j µi,jδi,j ∈ C.

Lemma 2.2. For every n ≥ 1 Pn admits minimizers.
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Proof. Let µk be a minimizing sequence. Since C 6= ∅, we have Pn(µk) < +∞ and we may assume
that µk are atomic measures. It follows that the sequence |µk| is uniformly bounded. Therefore, by
weak-star compactness of measures, there exists a convergent subsequence to a measure µ having
compact support. Since C is a closed convex subset of a finite dimensional simplex, it results µ ∈ C.
Since the point of the discretization are fixed, it turns out that Pn is continuous along µk. Therefore,
µ is a minimum point for Pn. �

2.2. Approximation. The main results of this Section is Theorem 2.2 which allow to recover a
Mather minimizing measure by solving finite dimensional minimization problems. We state the
following approximation result

Theorem 2.1. Pn
Γ→ P with respect to the ⇀ convergence.

We refer to [16] for an introduction to the Γ-convergence. To simplify reading, we divide the proof
of the above Theorem in two Lemmas.

Lemma 2.3. Let µ ∈Mc(TM). Then, for every sequence µn ∈Mc(TM) we have

µn ⇀ µ ⇒ P(µ) ≤ lim inf
n→+∞

Pn(µn).

Proof. Suppose that lim infn→+∞ Pn(µn) < +∞. Hence, we may assume that µn ∈ C. To simplify
notation we denote µn

i,j := (µn)i,j. If there are infinitely many µn
0,0 < 0, the penalization term Φn

forces (µn
0,0)

− → 0 as n → +∞. Therefore, we get |µn|
∗
⇀ µ. This implies µ ≥ 0. Since (µn

0,0)
− → 0

as n → +∞, it follows that actually µ is a probability measure. Indeed, by weak-star convergence
µ(TM) ≤ 1. On the other hand, fixed a large compact set K such that supp(µ) ⊂ K, µ(∂K) = 0 and
|v| ≥ 1 for every (x, v) ∈ Kc we get

0 ≤ µn(Kc) ≤
∫
Kc

|v| dµn =

∫
Kc

|v| d(µn − µ) =

∫
TM

|v| d(µn − µ)−
∫
K
|v| d(µn − µ).

Since µn ⇀ µ it results µn(Kc) → 0 as n → +∞. Therefore

µ(TM) = µ(K) ≥ lim sup
n→+∞

|µn|(K) = lim sup
n→+∞

(
1− µn(Kc) + 2(µn

0,0)
−) = 1.

Since µn ⇀ µ and (µn
0,0)

− → 0, Lemma 2.1 still holds and then we deduce that the measure µ verifies
the momentum constraint. It remains to test the closedness constraint. If we denote Dn

hφ(x) =
φ(x+eh/n)−φ(x)

1/n
, by changing variables, the constraint (2.5) for µn is equivalent to

∀φ ∈ C1(M) : n
∑

i

φ(i)
N∑

h=1

jh(µ
n
i−eh/n,j − µn

i,j) =
∑
i,j

N∑
h=1

jhD
n
hφ(i)µn

i,j =

∫
TM

〈v, Dnφ(x)〉 dµn = 0,

(2.7)
where Dnφ(x) = (Dn

1 φ(x), . . . , Dn
Nφ(x)). We evaluate

0 =

∫
TM

〈v, Dnφ(x)〉 dµn =

∫
TM

〈v, Dφ(x)〉 dµn −
∫

TM

〈v, Dφ(x)−Dnφ(x)〉 dµn ≤

≤
∫

TM

〈v, Dφ(x)〉 dµn + ‖Dφ−Dnφ‖∞
∫

TM

|v| dµn.

Passing to the limit as n → +∞, because of Lemma 2.1, we obtain∫
TM

〈v, Dφ〉 dµ ≥ 0.
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By the arbitrariness of φ it follows that µ is a closed measure. Finally, since L is superlinear, without
loss of generality we may assume that L is positive on Kc. Recalling that L(0, 0) = 0, by the weak-star
convergence of measures we obtain

P(µ) =

∫
TM

L(x, v)dµ =

∫
K

L(x, v)dµ = lim
n→+∞

∫
K

L(x, v) dµn =

= lim
n→+∞

(∫
TM

L(x, v)dµn −
∫
Kc

L(x, v)dµn+

+
∑

i,|j|=n

|j|µn
i,j −

∑
i,|j|=n

|j|µn
i,j + O(n)(µn

0,0)
− −O(n)(µn

0,0)
−

 =

= lim
n→+∞

Pn(µn)−
∫
Kc\|j|=n

L(x, v)dµn −O(n)(µn
0,0)

− −
∑

i,|j|=n

|j|µn
i,j

 ≤ lim inf
n→+∞

Pn(µn).

�

Lemma 2.4. For every µ ∈Mc(TM) there exists a sequence µn ∈Mc(TM) such that µn ⇀ µ and
satisfying P(µ) = limn→+∞ Pn(µn).

Proof. We may assume that P(µ) < +∞, namely that µ satisfy the constraints of Mather Problem.
For every (i, j) ∈ I × J consider disjoint squares Qi,j with center in the points (i, j) and size 1/n,
in such a way, for large n, they cover the supp(µ). We set µi,j = µ(Qi,j) and µn =

∑
i,j µi,jδi,j. We

Claim that
∫

TM
f(x, v)dµn →

∫
TM

f(x, v)dµ as n → +∞ for every uniformly continuous function f .
Indeed ∣∣∣∣∫

TM

f(x, v)dµ−
∫

TM

f(x, v)dµn

∣∣∣∣ =

∣∣∣∣∣∑
i,j

∫
Qi,j

f(x, v)dµ−
∑
i,j

f(i, j)µi,j

∣∣∣∣∣ =

=

∣∣∣∣∣∑
i,j

∫
Qi,j

(f(x, v)− f(i, j)) dµ

∣∣∣∣∣ ≤∑
i,j

∫
Qi,j

|f(x, v)− f(i, j)| dµ → 0

as n → +∞ since f is uniformly continuous and µ is a probability measure. Therefore, it also results
µn ⇀ µ. Although µn are probability measures, in general µn does not belong to the constraints set
C. Therefore, we have to modify this construction. With respect to the closedness constraint, we
look for coefficients αi,j ≥ 0 such that the discrete measure µ′n defined by (µ′n)i,j = µi,j +αi,j satisfies
the following conditions

∀i ∈ I :
∑

j

∑N
h=1 jh(µ

′
i−eh/n,j − µ′i,j) = 0 (2.8)

|µn − µ′n| → 0. (2.9)

For every i ∈ I, condition (2.8) is equivalent to∑
j

N∑
h=1

jh(αi−eh/n,j − αi,j) = ci :=
∑

j

N∑
h=1

jh(µi,j − µi−eh/n,j), (2.10)

while condition (2.9) is equivalent to ∑
i,j

αi,j → 0 (2.11)

Setting c = (ci)i∈I , z = µi,j, α = αi,j, condition (2.10) can be written as

Bα = c, (2.12)
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for a suitable matrix B. We search solutions α of (2.12) supported on supp(µ), i.e. αi,j = 0 whenever
|j| > R for a suitable large R > 0. By definition of the coefficients ci, −z is a such solution of (2.12).
Therefore, all the solutions of (2.12) are of the form β − z with β ∈ ker(B). Since the vectors whose
components are all equals belong to ker(B), we can find positive solutions of (2.12). Denoting by I
the vector whose components are all equal to 1, we take α as a solution of the following minimization
problem  min 〈α, I〉

α ≥ 0
Bα = c.

(2.13)

By duality we also have a solution y = (yi)i∈I of the problem{
max 〈c, y〉
Bty ≤ I. (2.14)

We use duality to compute Bt as follows

〈Bty, x〉 = 〈y, Bx〉 =
∑

i

yi

(∑
j

N∑
h=1

jh(xi−eh/n,j − xi,j)

)
=
∑
i,j

N∑
h=1

jh(yi+eh/n
− yi)xi,j

Therefore, the (i, j)th component of Bty is

N∑
h=1

jh(yi+eh/n
− yi).

Hence, the constraint of problem (2.14) yields

∀(i, j) ∈ I × J :
N∑

h=1

jh(yi+eh/n
− yi) ≤ 1.

Choosing j = ±eh in the above formula we obtain

∀i ∈ I,∀h = 1, . . . , N : |yi+eh/n
− yi| ≤ 1. (2.15)

By the slackness condition we have

∑
i,j

αi,j = 〈α, I〉 = 〈c, y〉 =
∑

i

yici =
∑

i

yi

(∑
j

N∑
h=1

jh(µi,j − µi−eh/n,j)

)
= (2.16)

=
∑
i,j

N∑
h=1

jh(yi − yi+eh/n
)µi,j.

In particular, the above computation shows that
∑

i ci = 0 (choose yi = constant). Therefore, by
adding a constant, we may assume that yi = 0 for some i ∈ I. We have to prove that actually∑

i yici → 0. First, because of (2.15), it results that the function φn(i) = yi is a Lipschitz function
on the discrete grid I. Therefore, by standard extension theorems for Lipschitz functions, we obtain
a Lipschitz function φn on the whole flat torus TN whose Lipschitz constant grows as the discrete
step n, i.e. Lip(φn) ≈ n. Therefore, the sequence of functions ϕn = 1

n
φn is equi-Lipschitz and equi-

bounded. By the Ascoli-Arzelà Theorem, by passing to a subsequence, we find a Lipschitz function
ϕ such that ‖ϕn − ϕ‖∞ → 0. On the other hand, since µ is a closed measure and µn ⇀ µ, with the
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same notation of the proof of Lemma 2.3, for every φ ∈ C1 we get

− n
∑

i

φ(i)ci =
∑
i,j

N∑
h=1

nφ(i)jh(µi−eh/n,j − µi,j) =
∑
i,j

N∑
h=1

jhD
n
hφ(i)µn

i,j =

∫
TM

〈v, Dnφ(x)〉 dµn ≤

≤ ‖Dφ−Dnφ‖∞
∫

TM

|v|dµn +

∫
TM

〈Dφ(x), v〉 dµn → 0

(2.17)

as n → +∞. Consider the linear operator on the space (Lip(M), ‖·‖∞) of Lipschitz functions defined
by Ln(f) := n

∑
i f(i)ci. By the uniform boundedness principle on the space of C1 functions, taking

into account the computation (2.17), for every f ∈ C1 it results

|Ln(f)| ≤ K(‖f‖∞ + Lip(f)).

If f is a Lipschitz function, by standard approximation results (using for instance convolution kernels)
we find fn ∈ C1 such that ‖f − fn‖∞ ≤ 1/n and Lip(fn) ≤ Lip(f). Since µ ∈ Pc(TM), it follows∑

i |ci| ≤ M . Hence we compute

|Ln(f)| ≤ |Ln(f − fn)|+ |Ln(fn)| ≤ n‖f − fn‖∞
∑

i

|ci|+ K(‖f‖∞ + Lip(f)) ≤ C(f).

Applying again the Banach-Steinhaus Theorem we find

n
∑

i

|ci| = ‖Ln|| ≤ C. (2.18)

If f ∈ Lip(M), for every φ ∈ C1 we have the estimate

|n
∑

i

f(i)ci| ≤ n
∑

i

|ci|‖f − φ‖∞ + |n
∑

i

φ(i)ci| ≤ C‖f − φ‖∞ + |n
∑

i

φ(i)ci|.

Using the boundedness condition (2.18), by (2.17) and by density of C1 functions in Lip(M), for
every Lipschitz function f it results

n
∑

i

f(i)ci → 0

as n → +∞. Now we come back to the estimation of the coefficient αi,j. By (2.16) we have∑
i,j

αi,j =
∑

i

yici = n
∑

i

ϕn(i)ci ≤ n‖ϕ−ϕn‖∞
∑

i

|ci|+n
∑

i

ϕ(i)ci ≤ C‖ϕ−ϕn‖∞+n
∑

i

ϕ(i)ci → 0

as n → +∞. Therefore, condition (2.11) holds. Without loss of generality, normalizing we may
assume that µ′n(TM) = 1. At this point we need another modification to satisfy the momentum
constraint. To this aim we look for coefficients si,j ≥ 0 such that the discrete measure µ̄n defined by
(µ̄n)i,j = µ′i,j + si,j has the right momentum . For h = 1, . . . , N , denoting by

Rh =
∑
i,j

jhµi,j (2.19)

R′
h =

∑
i,j

jhµ
′
i,j (2.20)

sh =
Qh −R′

h

n|I|
, (2.21)

for every (i, j) ∈ I × J , we set  si,neh
= max(sh, 0)

si,−neh
= max(−sh, 0)

si,j = 0 for j 6= ±neh.
(2.22)
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Therefore, the momentum of µ̄n is given by∑
i,j

jh(µ̄n)i,j = R′
h +

∑
i,j

jhsi,j = R′
h + n|I|sh = R′

h + Qh −R′
h = Qh.

Observe that the choice of si,j does not modify the closedness constraint. Indeed, for every i ∈ I we
have ∑

j

N∑
h=1

jh

(
(µ̄n)i−eh/n,j − (µ̄n)i,j

)
= ±n

∑
j=±neh

N∑
h=1

(
µ′i−eh/n,j + sh − µ′i,j − sh

)
+

+
∑

j 6=±neh

N∑
h=1

jh

(
µ′i−eh/n,j − µ′i,j

)
=
∑

j

N∑
h=1

jh

(
µ′i−eh/n,j − µ′i,j

)
= 0.

Since

|Qh −Rh| =

∣∣∣∣∣∑
i,j

∫
Qi,j

(vh − jh) dµ

∣∣∣∣∣ ≤ K

n
, (2.23)

for a constant K > 0 which depends only on the dimension N of the space, we can evaluate∑
i,j

si,j = |I|
N∑

h=1

|sh| =
1

n

N∑
h=1

|Qh −R′
h| ≤

1

n

N∑
h=1

|Qh −Rh|+
1

n

∑
i,j

|j|αi,j ≤

≤ NK

n2
+

1

n

∑
i,j

|j|αi,j → 0, (2.24)

∑
i,j

|j|si,j = n
∑
i,j

si,j ≤
NK

n
+
∑
i,j

|j|αi,j → 0, (2.25)

as n → +∞ because of (2.11) and since α has compact support. Moreover, we estimate

|µ̄n − µn| =
∑
i,j

|(µ̄n)i,j − µi,j| ≤
∑
i,j

αi,j +
∑
i,j

si,j.

By (2.11) and (2.24) we infer
lim

n→+∞
|µn − µ̄n| = 0. (2.26)

It remains to satisfy the probability constraint. This can be done by subtracting the mass needed
at the origin, without changing neither the momentum or the closedness constraint. More precisely,
since ∑

i,j

(µ̄n)i,j =
∑
i,j

µ′i,j +
∑
i,j

si,j = 1 +
∑
i,j

si,j,

if we put (µ̄n)0,0 = µ′0,0 −
∑

i,j si,j we also have
∑

i,j(µ̄n)i,j = 1. Condition (2.26) still holds since

by (2.24) we have added infinitesimal quantities. At this point it is easy to verify the weak-star
convergence. Indeed, if f ∈ Cc(TM) we have∣∣∣∣∫

TM

f(x, v)dµ−
∫

TM

f(x, v)dµ̄n

∣∣∣∣ ≤ ∣∣∣∣∫
TM

f(x, v)dµ−
∫

TM

f(x, v)dµn

∣∣∣∣+
+

∣∣∣∣∫
TM

f(x, v)dµn −
∫

TM

f(x, v)dµ̄n

∣∣∣∣ ≤ ∣∣∣∣∫
TM

f(x, v)dµ−
∫

TM

f(x, v)dµn

∣∣∣∣+ ‖f‖∞|µ̄n − µn| → 0.

In order to verify the convergence µ̄n ⇀ µ, we need to check the convergence of momentum. By (2.9)
and (2.25) we get∣∣∣∣∫

TM

|v|dµ−
∫

TM

|v|dµ̄n

∣∣∣∣ ≤ ∣∣∣∣∫
TM

|v|dµ−
∫

TM

|v|dµ′n

∣∣∣∣+∑
i,j

|j|si,j → 0.
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Finally, recalling that L(0, 0) = 0, we evaluate

|P(µ)− Pn(µ̄n)| =
∣∣∣∣∫

TM

L(x, v)dµ−
∫

TM

L(x, v) dµ̄n − Φn(µ̄n)

∣∣∣∣ ≤
≤

∣∣∣∣∣
∫

TM

L(x, v)dµ−
∑
i,j

L(i, j)µ′i,j

∣∣∣∣∣+ ∑
i,|j|=n

|j|si,j + O(n)((µ̄n)0,0)
−. (2.27)

Using (2.9), (2.24) and (2.25) it follows

|P(µ)− Pn(µ̄n)| ≤

∣∣∣∣∣
∫

TM

L(x, v)dµ−
∑
i,j

L(i, j)µ′i,j

∣∣∣∣∣+ ∑
i,|j|=n

|j|si,j + O(n)((µ̄n)0,0)
− ≤

=

∣∣∣∣∣
∫

TM

L(x, v)dµ−
∑
i,j

L(i, j)µ′i,j

∣∣∣∣∣+ ∑
i,|j|=n

|j|si,j + O(n)
∑
i,j

si,j → 0. (2.28)

�

Theorem 2.2. Let µn be minimum points of Pn. Then there exists a sequence of discrete measures
µ̄n and a Mather minimizing measure µ such that µ̄n ⇀ µ. Moreover, by passing to a subsequence,
it results

P(µ) = lim
n→+∞

Pn(µn).

Proof. Let K = max{L(x, v) : (x, v) ∈ TM, ‖v‖ = 1}. Without loss of generality we may assume

that 0 ≤ K ≤ 1/
√

N . By superlinearity, there exists k > 1 such that for every x ∈ M it results

L(x, v) >
√

NK|v| whenever |v| > k. For every (i, j) ∈ I × J we set
(µ̄n)i,eh

= (µn)i,eh
+
∑

|j|>k max(jh(µn)i,j, 0)

(µ̄n)i,−eh
= (µn)i,−eh

+
∑

|j|>k max(−jh(µn)i,j, 0)

(µ̄n)i,j = (µn)i,j for j 6= ±eh, 0 < |j| ≤ k
(µ̄n)i,j = 0 for |j| > k or |j| = 0.

(2.29)

By the above modification it results that the new discrete measures µ̄n is positive in TM and,
since we may assume µn ∈ C, they still satisfy the momentum and closedness constraints (2.6) and
(2.5). We need at most to check the probability constraint. Let M =

∑
i,j(µ̄n)i,j. If M < 1, we

add the needed mass at the origin. If M > 1 we normalize by considering the measure µ̄n/M . This
normalized measure is still closed but the momentum amounts to Q

M
. Following the construction

performed in the proof of Lemma 2.4, we can obtain the right momentum by adding the quantities

sh =
Qh −Qh/M

n|I|
as done in (2.22). It remains to subtract the mass in excess, which is an infinitesimal quantity, at
the origin. Setting εn = O(n)

∑
i,j si,j, because of (2.24) it results εn → 0 as n → +∞. In any case,

for every ν ∈Mc(TM) we get

Pn(µ̄n) ≤
∑

i,|j|≤k

L(i, j)(µn)i,j +
∑

i,|j|>k

N∑
h=1

L(i,±eh)|jh|(µn)i,j + εn ≤∑
i,|j|≤k

L(i, j)(µn)i,j +
√

NK
∑

i,|j|>k

|j|(µn)i,j + εn < Pn(µn) + εn ≤ Pn(ν) + εn.

(2.30)

Therefore, µ̄n is an εn-minimizer for Pn. Furthermore, Since |µ̄n| is equibounded and the supports
are contained in a same large compact set, by passing to a convergent subsequence we have µ̄n ⇀ µ.
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Moreover, for every ν ∈ Mc(TM), by Lemma 2.4 we find a sequence νn ∈ Mc(TM) such that
Pn(νn) → P(ν) as n → +∞. By (2.30) we get Pn(µ̄n) ≤ Pn(νn) + εn. Letting n → +∞, by Lemma
2.3 we infer

P(µ) ≤ lim inf
n→+∞

Pn(µ̄n) ≤ lim
n→+∞

Pn(νn) = P(ν).

Therefore µ is a Mather minimizing measure. Moreover, again by Lemma 2.4, we find a sequence µ′n
such that Pn(µ′n) → P(µ) as n → +∞. Since µn are minimum points of Pn we have

lim sup
n→+∞

Pn(µn) ≤ lim
n→+∞

Pn(µ′n) = P(µ).

On the other hand, by (2.30) we get

P(µ) ≤ lim inf
n→+∞

Pn(µ̄n) ≤ lim inf
n→+∞

Pn(µn).

�

3. Linear Programming Interpretation

The discrete problems of minimizing Pn can be reformulate into a linear programming framework.
Indeed, splitting µ0,0 = µ+

0,0 − µ−0,0, therefore increasing the dimension of the problem, we set

λi,j = L(i, j) |j| 6= n
λ+

0,0 = 0, λ−0,0 = O(n)
λi,j = |j| for every |j| = n.

Therefore, minimize the functional Pn is equivalent to

minimize

(∑
i,j

λi,jµi,j

)
subject to the following constraints

µi,j, µ
+
0,0, µ

−
0,0 ≥ 0

∀i ∈ I :
∑N

h=1

∑
j jh(µi−eh/n,j − µi,j) = 0∑

i,j µi,j + µ+
0,0 − µ−0,0 = 1∑

i,j jµi,j = Q.

In this problem we have h = |I|+ N + 1 equality constraints for k = |I||J |+ 1 unknowns. Denoting
respectively by µ and λ the vectors of k unknown components µi,j and λi,j, and the vector

b = (0, . . . , 0,︸ ︷︷ ︸
|I| zeros

1, Q1, . . . , QN), (3.1)

the above problem can be written in the form minimize 〈λ, µ〉
µ ≥ 0
Aµ = b

(3.2)

for a suitable h × k matrix A. As standard in linear programming, problem (3.2) admits the dual
formulation {

maximize 〈y, b〉
Aty ≤ λ

(3.3)

where At is the transpose matrix of A.
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3.1. The infinite dimensional dual problem. In [9] it is proposed a linear programming inter-
pretation of Mather’s problem, while a linear programming interpretation is a well known fact for
the Monge-Kantorovich problem (see for example [8]). In particular, for µ ∈Mc(TM) define:

φ ∈ C1(M) 7→ Lµ(φ) =

∫
TM

〈Dφ(x), v〉dµ,

and consider the continuous linear operator

A : Mc(TM) → C1(M)∗ × R× RN

defined by

Aµ =

(
Lµ, µ(TM),

∫
TM

vdµ

)
.

If we denote by c∗, the linear functional associated to L by µ 7→
∫

TM
L(x, v)dµ, fixed Q ∈ RN and

setting (0, 1, Q) = b, Mather’s problem can be reformulated as the following infinite dimensional
linear programming problem  min〈c∗, µ〉

µ ≥ 0
Aµ = b.

(3.4)

The dual formulation of Problem (3.4) amounts to{
max〈y∗, b〉
A∗y∗ ≤ c∗.

(3.5)

However, for infinite dimensional linear programming problems, the dual problem could not admit
solutions despite the existence of solutions of the primal one. Moreover, since the space C1(M) is not
reflexive, to a solution y∗ of the dual problem does not correspond in general a C1 function. Actually,
in [9] it is shown that there is no duality gap between the two problem and that if we have a solution
y∗ of (3.5) such that y∗ = (u, ω0, P ) ∈ C1(M)× R× RN then u solve the Hamilton-Jacobi equation

H(x, P + dxu) = H̄(P ) on supp(πx(µ)),

where H is the Hamiltonian associated to the Lagrangian L(x, v), while H̄(P ) = −ω0, µ is a solution
of (3.4) and πx(µ) is the push-forward of µ through the projection of TM on M . Hence the dual
of Mather’s problem predict the weak KAM equation (see [5, 7, 10, 11]). Although in this abstract
framework only a weak duality result holds, we can justify a strong duality relation for the Mather’s
problem by the following considerations. First we recall that Mather’s problem can be formulated in
terms of merely closed measures. Precisely we have the following (see [17, 18])

Theorem 3.1. For every Mather minimizing measure µ with [µ] = Q there exists P ∈ RN such that

A(µ) + P ·Q = −c(L + P ),

where −c(L + P ) = min{
∫

(L + P )dν | ν ∈ Mc} is the Mañé critical value (see also [5, 10, 14])
corresponding to the Lagrangian (L + P )(x, v) = L(x, v) + 〈P, v〉.

We state the following approximation theorem for the dual problem (3.5)

Theorem 3.2. Let yn be solutions of the finite dimensional linear programming problems (3.3). Then
there exists a solution y∗ of problem (3.5) such that, by passing to a subsequence,

lim
n→+∞

〈yn, b〉 = 〈y∗, b〉.
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Proof. Let µn be solutions of problems (3.2). By Theorem 2.2, passing to a subsequence, we find a
Mather minimizing measure µ such that limn→+∞ Pn(µn) = P(µ). By Theorem 3.1 we find P ∈ RN

such that
A(µ) + P ·Q = −c(L + P ). (3.6)

Setting w0 = −c(L + P ) and w = −P , as shown in [11] we find u ∈ C1 such that

H(x, w + Du) ≤ −w0 ⇔ w0 + v · (w + Du(x)) ≤ L(x, v).

Consider y∗ = (u, w0, w). We check that such y∗ satisfies the constraint A∗y∗ ≤ c∗ of the dual problem
(3.5). Indeed, it results

〈A∗y∗, µ〉 = 〈y∗, Aµ〉 =

∫
TM

(w0 + 〈w + Du, v〉) dµ ≤
∫

TM

L(x, v) dµ = 〈c∗, µ〉.

Taking in account (3.6), we evaluate

〈y∗, b〉 = w0 + w ·Q = −c(L + P )− P ·Q = A(µ) = 〈c∗, µ〉.
By weak duality, it follows that y∗ is optimal for the dual problem (3.5). Finally, recalling the
discrete approximation for the primal problem and by the finite dimensional duality, we deduce a
discrete approximation for the dual problem. In fact, if yn are solutions of the finite dimensional
dual problems (3.3), by passing to a subsequence we have

lim
n→+∞

〈yn, b〉 = lim
n→+∞

Pn(µn) = P(µ) = A(µ) = 〈c∗, µ〉 = 〈y∗, b〉.

�

It would be interesting to investigate if also yn → y∗. This question is related to the numerical
approximation of the Hamilton-Jacobi equations and to the computing of the effective Hamiltonian.
For an account on numerical results linked to these questions we refer to [12, 20].
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