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Abstract. After presenting an overview about variational prob-
lems on probability measures for functionals involving transport
costs and extra terms encouraging or discouraging concentration,
we look for optimality conditions, regularity properties and ex-
plicit computations in the case where Wasserstein distances and
interaction energies are considered.

1. Introduction

As a starting point for the paper, we present a short overview of
possible variational problems involving transport costs between distri-
butions of mass and their concentrations. The general problem we are
interested in is

min
µ,ν∈P(Ω)

F(µ, ν) := T (µ, ν) + F (µ) + G(ν),

where the functional T quantifies in some way the distance between
the two probability measures µ and ν according to a transport cost
criterion, and F and G are functionals over the space P(Ω) (the space
of probability measures over a domain Ω) with opposite behaviour: the
first favours spread measures and penalizes concentration while the lat-
ter, on the other hand, favours concentrated measures. Obviously there
are several other sub-problems that may be of interest, for instance the
minimizations of the two separate functionals

Fν(µ) := T (µ, ν) + F (µ) and Fµ(ν) = T (µ, ν) + G(ν),

where each time one of the variables is frozen. Also imposing con-
straints like F (µ) ≤ H, G(ν) ≤ L . . . instead of adding penalizations
in the functionals may sometimes be considered (and this is in fact the
same as adding penalizations through some 0/ + ∞ functions).

These minimization problems are likely to appear in several phe-
nomena both in nature and in decision science. For instance in [3],
[5] and [8] these variational problems have been proposed for urban
planning models, where the spread measure µ stands for inhabitants,
the concentrated measure ν for services and they have to be close in a
transportation distance sense. We may say that the idea of considering
the distribution of population and firms in a city and the fact that
population prefers to be spread and firms to be next to each other has
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been brought into the mathematical community, in the optimal trans-
portation framework, through [4] and its authors. On the other hand,
a possible choice of the functional Fν has been proposed recently as
a model for the formation of a certain kind of leaves or in general for
ramified biological structures: if ν = δ0 represents the point where the
nutrient arrives to the leaf, then the shape of the leaf is modelled to
optimize the quantity of light it receives from the sun taking also into
account the effective transport cost for bringing the nutrient all over
its shape.

We present here some choices for the functionals T and G. The choice
of F is in fact easier since a very good class of concentration-penalizing
functionals is given by local convex functionals over measures, for in-
stance

F (µ) =

{

∫

Ω
f(u) dL if µ = u · L

+∞ otherwise,
(1.1)

for any convex function f with f(0) = 0 which is superlinear at infinity.
For these functionals we refer to [1]. Here L is a reference measure
that may be chosen as the Lebesgue measure Ld if Ω ⊂ R

d. By Jensen
inequality, spread measures with constant density are optimal for these
functionals.

Possible choices of T are the following:

• terms involving Monge-Kantorovich optimal transport cost, as
in Wasserstein distances T (µ, ν) = W p

p (µ, ν) (Wasserstein);
• terms taking into account traffic congestion effects, as in [5]

where T (µ, ν) = ||µ − ν||2X′ for a vector space X ⊂ H1(Ω) and
this choice is detailed and justified (congestion);

• terms reflecting the natural ramified structure of a transporta-
tion network (branching) as in [10], where a new distance on
probability measures is introduced according to this criterion,
or in [6], where the same quantity is introduced in a different
way, in the case µ = δx0

.

This last possibility is the most suitable for model involving natural
branching structures like leaves, while the first two seem to be quite
natural in urban planning.

For the functional G, before presenting a list of examples, we give a
possible definition of the concept of concentration-preferring.

Definition 1. We say that G : P(Ω) → R is a concentration-preferring
functional if it holds G(t]ν) ≤ G(ν) for any measure ν ∈ P(Ω) and any
1−Lipschitz continuous map t : Ω → Ω.

It is easy to show that any G with this property is minimized by any
measure δx0

, with x0 ∈ Ω. We list here some functionals satisfying this
definition:
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• G(ν) = ] spt(ν) (atomic), as in location problems, where the
corresponding T is usually of Wasserstein type;

• (subadditive, see [1])

G(ν) =

{

∑

k∈N
g(ak) if ν =

∑

k∈N
akδxk

+∞ otherwise

for a subadditive function g with g(0) = 0 and g′(0) = +∞ (if
g = 1 on (0, +∞) and g(0) = 0 we recover the previous case);

• G(ν) = inf {H1(Σ) |spt(ν) ⊂ Σ, Σ compact and connected } as
in the irrigation problem, [2], where T = W1 and a constraint
on G is considered (length);

• G(ν) =
∫

Ω×Ω
w(d(x, y))ν(dx)ν(dy) for an increasing function w

(interaction).

Actually the two first cases are functionals which decrease under the
effect of any map t and not only under 1−Lipschitz ones. The first
one has been presented separately and not as a particular case of the
second because of its large presence in literature. The last choice for
G is a well-known functional on probability measures which represents
the interaction energy (or cost) between the particles composing ν. It
has been first studied in a transportation framework by McCann in[7],
where displacement convexity results are given, with the aim of showing
uniqueness results for variational problems.

In [3] and [5] two combinations of these functional have been studied
for urban planning purposes: the Wasserstein + subadditive and the
congestion + interaction cases, respectively. The congestion + subad-
ditive case has been excluded in [5] since it leads to a trivially infinite
functional, and so in this paper we analyze the remaining one, i.e. the
Wasserstein + interaction case. Many ideas are taken from [5], up to
the fact that elliptic regularity is replaced by considerations on Monge-
Ampère equation. Moreover some extra devices are performed and a
careful use of Monge-Kantorovich theory is needed.

The main purpose of the paper is giving necessary optimality condi-
tions and trying to identify the global minimizers. Since most optimal-
ity conditions are obtained by small perturbations, several statements
are valid for local minima as well. Anyway in this paper we exploit an
approximation process which does not provide, a priori, information
on local minima which are not globally minimizing. At the end of the
paper a section is devoted to a specific example where explicit solutions
may be obtained.

2. Preliminaries on Optimal Transportation

In this section we recall some tools and definitions that are well-
known in the optimal transport community and that we will need in
the sequel. Our main reference is [9].
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Definition 2. Given two probability measures µ and ν on a space Ω
and an l.s.c. cost function c : Ω×Ω → [0, +∞] we consider the problem

(K) min

{
∫

Ω×Ω

c dγ |γ ∈ P(Ω × Ω), (π1)]γ = µ, (π2)]γ = ν

}

,

(2.1)
and the minimizers for this problem are called optimal transport plans
between µ and ν. Should γ be of the form (id × t)]µ for a measurable
map t : Ω → Ω, the map t would be called optimal transport map from
µ to ν.

An important tool will be duality theory and to introduce it we need
in particular the notion of c−transform (a kind of generalization of the
well-known Legendre transform).

Definition 3. Given a function χ : Ω → R we define its c−transform
(or c−conjugate function) by

χc(y) = inf
x∈Ω

c(x, y) − χ(x).

Moreover, we say that a function ψ is c−concave if there exists χ with
ψ = χc and we denote by Ψc(Ω) the set of c−concave functions.

It is well-known a duality result stating the following equality (see
Theorem 1 together with the following Remark on c−concavity in [9]),
also known as Duality Formula:

min(K) = sup
ψ∈Ψc(Ω)

∫

Ω

ψ dµ +

∫

Ω

ψc dν. (2.2)

Definition 4. The functions ψ realizing the maximum in (2.2) are
called Kantorovich potentials for the transport from µ to ν.

Since we will use c(x, y) = 1
2
|x − y|2, let us denote by Ψ2(Ω) the set

of c−concave functions with respect to this quadratic cost. It is not
difficult to check that

ψ ∈ Ψ2(Ω) ⇔ x 7→ x2

2
− ψ is a convex function on R

d restricted to Ω.

Notice that on a bouded Ω with diameter D any ψ ∈ Ψ2(Ω) is in fact
2D−Lipschitz continuous. We summarize here some useful results for
the quadratic case c(x, y) = 1

2
|x− y|2, which can be found in Theorem

15 of [9] or throughout its proof.

Theorem 2.1. Given µ and ν probability measures on a connected
Ω ⊂ R

d there exists unique an optimal transport plan γ and it is of
the form (id × t)]µ, provided µ is absolutely continuous. Moreover
there exists also at least a Kantorovich potential ψ, and the gradient
∇ψ is uniquely determined µ−a.e. (in particular ψ is unique up to
additive constants, provided the density of µ is positive a.e. on Ω).
The optimal transport map t and the potential ψ are linked by t(x) =
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x − ∇ψ(x) and so t is the gradient of a convex function. Moreover it
holds ψ(x) + ψc(t(x)) = c(x, t(x)) for µ−a.e. x.

Starting from the values of the problem (K) in (2.1) we can define
a set of distances over P(Ω). For any p ≥ 1 set

Wp(µ, ν) =
(

min(K) with c(x, y) = |x − y|p
)1/p

,

and for simplicity we will restrict our analysis to the case p = 2. We
recall that it holds (see also Theorem 13 in [9]), by the Duality Formula,

1

2
W 2

2 (µ, ν) = sup
ψ∈Ψ2(Ω)

∫

Ω

ψ dν +

∫

Ω

ψc dµ. (2.3)

The following result on Wasserstein distances can be obtained by putting
together Theorem 85 and Theorem 87 of [9].

Theorem 2.2. If Ω is compact, for any p ≥ 1 the function Wp is
in fact a distance over P(Ω) and the convergence with respect to this
distance is equivalent to the weak convergence of probability measures.
In particular any functional µ 7→ Wp(µ, ν) is continuous with respect
to weak topology.

The next step of our analysis is concerned with some regularity prop-
erties of t and ψ (the optimal transport map and the Kantorovich po-
tential, respectively) and their relations with the densities of µ and
ν. It is easy, just by a change-of-variables formula, to transform, in
the case of regular maps and densities, the equality ν = t]µ into the
PDE v(t(x)) = u(x)/|Jt|(x), where u and v are the densities of µ and
ν, respectively, and J denotes the determinant of the Jacobian ma-
trix. Recalling that we may write t = ∇φ with φ convex, we get the
Monge-Ampère equation

Mφ =
u

v(∇φ)
, (2.4)

where M denotes the determinant of the Hessian

Mφ = det Hφ = det

[

∂2φ

∂xi ∂xj

]

i,j

.

This equation up to now is satisfied by φ = id − ψ in a formal way
only.

Definition 5. We say that a function φ satisfies (2.4) in the Brenier
sense if (∇φ)]u · Ld = v · Ld (and this is actually the sense to be given
to this equation); on the other hand we say that φ satisfies (2.4) in the
classical sense if it is of class C2 and the equation holds pointwise.

Other notions of solutions (in the Alexandroff or viscosity sense, for
instance) are often used but we introduced here only those that we
actually need in order to present the following regularity result (which
is well summarized in Theorem 50 of [9]):
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Theorem 2.3. If u and v are C0,α(Ω) and are both bounded from
above and from below on the whole Ω by positive constants and Ω is a
convex open set, then the unique Brenier solution φ of (2.4) belongs to
C2,α(Ω) ∩ C1,α(Ω) and satisfies the equation in the classical sense.

3. Optimality Conditions for the Interaction Case

We are here concerned with the minimization problem for the func-
tional Fµ, when the transport term is given by T (µ, ν) = 1

2
W 2

2 (µ, ν)
and the concentration one is an interaction term of the form

G(ν) =

∫

Ω×Ω

V (|x − y|2)ν(dx)ν(dy), (3.1)

with V : [0, +∞[→ [0, +∞[ a regular increasing function. From now
on Ω will be the closure of a convex non-empty open set in R

d.
A priori, a minimizer for this functional may be an arbitrary proba-

bility measure on the set Ω, even a singular one. Our goal is to prove,
under suitable assumptions and by means of optimality conditions and
of an approximation process, that it is in fact an absolutely continuous
measure with bounded density.

We provide here an easy optimality condition for the minimization of
Fµ. We do not go into details in the computation because it follows the
same scheme as in [3]. The approximation by measures with positive
densities that we are going to use works in this case too, while the
alternative proof by convex analysis that may be found in [3] does not,
simply because there is no convexity in the term G.

Theorem 3.1. If a probability measure ν ∈ P(Ω) is a minimizer for
Fµ, then there exists a constant m such that

ψ + Tν ≥ m; ψ + Tν = m ν-a.e.,

where ψ is a Kantorovich potential for the transport from ν to µ and
we define

Tν(x) =

∫

Ω

2V (|x − y|2) ν(dy).

Proof. Let us start from the case when µ is absolutely continuous with
positive density. In this case we perform convex variations on an opti-
mal measure ν of the form νt = ν+t(ν1−ν) for an arbitrary ν1 ∈ P(Ω):
if we call ψt the unique Kantorovich potential from νt to µ which van-
ishes at a certain fixed point x0 ∈ Ω, we get (by means of Duality
Formula)

∫

Ω

ψt dνt +

∫

Ω

ψc
t dµ +

∫

Ω×Ω

V (|x − y|2)νt(dx)νt(dy)

≥
∫

Ω

ψt dν +

∫

Ω

ψc
t dµ +

∫

Ω×Ω

V (|x − y|2)ν(dx)ν(dy).
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After erasing the term
∫

Ω
ψc

t dµ and dividing by t we pass to the limit,
and we know that ψt converges uniformly (by Ascoli-Arzelà) to the
unique Kantorovich potential ψ from ν to µ vanishing at x0. This
provides, at the limit,

∫

Ω

(ψ + Tν) dν1 ≥
∫

Ω

(ψ + Tν) dν.

Being ν1 arbitrary we get that ν−a.e. the function ψ + Tν must be
equal to its infimum, and this is the thesis.

To generalize the result to an arbitrary measure µ, just proceed by
approximation. This can be performed as in [3] and provides the same
formula where ψ becomes just one of the possibly many Kantorovich
potentials instead of the only one. The main difference between this
case and the case of a measure µ with positive density is in fact the
lack of uniqueness (even up to additive constants) of the Kantorovich
potential. ¤

The problem in the condition of Theorem 3.1 lies in the fact that
the measure ν appears only in a very implicit way (both in ψ and in
Tν), and this does not allow to derive any estimate on it. We will
consequently need to pass through an approximation process, exactly
as in [5]. Fixed a minimizer ν̄ for Fµ, we will consider a sequence of
problems (Pε)ε given by the minimization of

P(Ω) 3 ν 7→ T (µε, ν) + G(ν) + δεA(ν) + εW 2
2 (ν, ν̄ε),

where

• (µε)ε is a sequence of probability measures approximating µ
with Lipschitz continuous strictly positive densities uε;

• the functional A is given by

A(ν) =

{

∫

Ω
a(v) dLd if ν = v · Ld,

+∞ otherwise,

for a convex function a : [0, +∞[→ [0, +∞] which is superlinear
at infinity and blowing up at 0, i.e. limt→0+ a(t) = +∞, but
finite and C2 with a′′ ≥ c > 0 on ]0, +∞[ (for instance a(t) =
t2 + 1/t);

• (δε)ε is a suitably chosen sequence with δε > 0 and δε → 0.
• (ν̄ε)ε is a suitably chosen sequence of measures with ν̄ε ⇀ ν̄.

We will prove, exactly as in [5], that this sequence of problems admits
an uniform L∞ bound for their solutions and that we can choose the
parameters so that these solutions converge to ν̄, thus obtaining an
L∞ estimate for ν̄. The existence of solutions for Pε is trivial by the
semicontinuity of each term in the sum with respect to the weak con-
vergence of probability measures on the compact set Ω (and moreover
any term but A is actually continuous, while A is semicontinuous by
convexity).
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Lemma 3.2. Suppose that µ = u · Ld with ||u||L∞ ≤ M and that V
is a C2 function with V ′ > 0. Then any solution νε to the problem
Pε is absolutely continuous and its density is bounded by a constant C
depending only on M, d and V .

Proof. First we notice that, thanks to the presence of the term A(ν)
in the minimization problem, νε must be absolutely continuous with
strictly positive density almost everywhere. Then we write the opti-
mality conditions for νε with respect to variations of the form νt =
νε + t(ν1 − νε). From easy computations we get

ψε + Tνε
+ δεa

′(νε) + εχε = mε a.e.,

where ψε is the Kantorovich potential for the transport from νε to
µε and χε from νε to ν̄ε (they are unique up to additive constants)
and mε is a suitable constant. We get equality almost everywhere due
to the fact that we already know that νε > 0 (we identify measures
and their densities in this context). Since Kantorovich potentials are
Lipschitz functions and Tνε

shares the same regularity of the integrand
(x, y) 7→ V (|x− y|2), which is C2 and then Lipschitz, we get that even
a′(νε) is Lipschitz continuous, and in particular it is bounded. This
prevents νε to be close to 0 since it holds limt→0+ a′(t) = −∞. Thus
we get νε ≥ cε > 0. Moreover, a′(νε) is Lipschitz continuous and, being
a′′ bounded from below by a positive constant, also the inverse of a′

is Lipschitz. This proves that νε is a Lipschitz continuous function.
We can now use regularity theory on Monge-Ampère equation to get
ψ ∈ C2,α(Ω) ∩ C1,α(Ω), since both νε and µε are bounded both from
above and from below by positive constants (depending on ε, anyway)
and are Lipschitz continuous. The same is true for the Kantorovich
potential χε by replacing µε by ν̄ε. What we can do now is looking for
a maximum point x0 of νε. Notice that such a point will be a minimum
point for ψε + Tνε

+ εχε. First we prove that x0 /∈ ∂Ω. To prove this
it is sufficient to prove that the gradient of ψε + Tνε

+ εχε is directed
outwards at any point of ∂Ω, i.e. ∇(ψε + Tνε

+ εχε)(x0) · n(x0) > 0 for
any x0 ∈ ∂Ω, where n is the outward normal vector. From the fact that
the optimal transport map t from νε to µε is given by t(x) = x−∇ψ(x)
we know that x −∇ψ(x) ∈ Ω for almost any x ∈ Ω (see Figure 1). In
this case, due to continuity up to the boundary of ∇ψ, this holds for
any x and also for x0 ∈ ∂Ω and implies ∇ψ(x0)·n(x0) ≥ 0. Analogously
we get ∇χ(x0) · n(x0) ≥ 0. For the gradient of Tνε

it holds

∇Tνε
(x0) =

∫

Ω

4V ′(|x0 − y|2)(x0 − y) νε(dy),

and so ∇Tνε
(x0) · n(x0) > 0 since V ′ > 0 and for almost any y ∈ Ω it

holds (x0 − y) · n(x0) > 0. This proves that x0 lies in the interior of Ω
and this allows us to look at the second derivatives. Taking Hessians

8



we have

Hψε(x0) + HTνε
(x0) + εHχε(x0) ≥ 0,

where the letter H denotes Hessians and the inequality is in the sense
of positive definite symmetric matrices. Thus we get

Hψε(x0) ≥ −I
(

2||V ||C2(Ω) + ε
)

,

since the second derivatives of Tνε
may be estimated by those of V

and from the fact that x2/2 − χ(x) is convex we deduce Hχ ≤ I.
This is a uniform estimate from below for Hψε(x0) and for the con-
vex function φ given by φ(x) = x2/2 − ψε(x) we have Hφ(x0) ≤
I

(

1 + ε + 2||V ||C2(Ω)

)

. This implies Mφ(x0) ≤ (1 + ε + 2||V ||C2(Ω))
d,

and, from νε = µε(∇φ)Mφ, we get, for ε ≤ 1,

max νε = νε(x0) ≤ 2dM
(

1 + ||V ||C2(Ω)

)d
,

which is the desired estimate. ¤

x0
− ψ(x )0

x− ψ(x)

n(x )0
Ω

x

x0

Figure 1. Behavior of ∇(ψ) near ∂Ω

Remark 1. The proof above of the fact that the gradient is directed
outwards (illustrated in figure 1 as well) and no maximum point is
allowed on the boundary could be used similarly in [5], thus getting
rid of the strict convexity assumption in Theorem 6.5 and of the heavy
proof of Lemma 6.6. Notice that it could be possible to get the same
result even without C1 regularity for the potentials, just making the
proof a bit trickier. It would be sufficient to evaluate the increments
of the potential in small balls around x0 where the gradient is almost
everywhere defined and such that x −∇ψ(x), x −∇χ(x) ∈ Ω a.e.

Lemma 3.3. It is possible to choose the parameters for the problem Pε,
i.e. the numbers δε and the measures ν̄ε and µε so that any sequence
of minimizers (νε)ε converges to ν̄.

Proof. It is sufficient to choose for ν̄ε a sequence of absolutely continu-
ous measures with Lipschitz continuous strictly positive densities such
that Fµ(ν̄ε) ≤ Fµ(ν̄) + ε2. Then we have A(ν̄ε) < +∞ and we may
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choose δε = ε2A(ν̄ε)
−1. For (µε)ε we can chose any sequence of abso-

lutely continuous measures with Lipschitz continuous strictly positive
densities approximating µ in such a way that W2(µε, µ) ≤ ε2. Then we
have

T (µε, νε)+G(νε)+δεA(νε)+εW 2
2 (νε, ν̄ε) ≤ T (µε, ν̄ε)+G(ν̄ε)+δεA(ν̄ε),

which implies

Fµ(νε) + δεA(νε) + εW 2
2 (νε, ν̄ε) ≤ Fµ(ν̄ε) + 4DW2(µε, µ) + δεA(ν̄ε)

≤ Fµ(ν̄) + ε2 + 4Dε2 + ε2

≤ Fµ(νε) + ε2(2 + 4D).

Finally, this implies W2(νε, ν̄ε) ≤ C
√

ε and, since ν̄ε ⇀ ν̄, we get
νε ⇀ ν̄. ¤

Remark 2. This is the point where global optimality of ν̄ plays a crucial
role. In fact, should ν̄ be only locally minimizing, we could not use the
inequality Fµ(ν̄) ≤ Fµ(νε), unless we already know that νε is in the
domain of minimality of ν̄, i.e. sufficiently close to it.

We can now state our main result and its consequence in the mini-
mization of the whole functional F.

Theorem 3.4. Given a compact convex set Ω ⊂ R
d with nonempty

interior and a probability measure µ ∈ L∞(Ω), if the function V ap-
pearing in the definition of the functional G is of class C2 and V ′ > 0,
then the minimization problem for the functional Fµ over the space
P(Ω) admits at least a solution and any minimizer belongs in fact to
the space L∞(Ω).

Proof. As usual the existence is trivial due to continuity and compact-
ness of P(Ω) while, for the L∞ regularity, just apply Lemma 3.2 and
Lemma 3.3 ¤

Corollary 3.5. Given a compact convex set Ω ⊂ R
d with nonempty

interior, a C1 strictly convex and superlinear function f and a C2

function V with V ′ > 0, then the minimization problem over the space
P(Ω)2 for the functional F(µ, ν) = 1

2
W 2

2 (µ, ν) + F (µ) + G(ν), where
F is defined by (1.1) and G by (3.1), admits a solution and, in any
minimizing pair (µ, ν), both µ and ν are in fact absolutely continuous
measures µ = u · Ld, ν = v · Ld, with u ∈ C0(Ω) and v ∈ L∞(Ω).

Proof. After the usual proof of existence by the direct method in Cal-
culus of Variations, we refer to [3] for the regularity results on µ. Since
such a measure turns out to be absolutely continuous with continu-
ous density (hence bounded), we may apply Theorem 3.4 to get the
regularity on ν. ¤
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4. An Explicit Example

In this section we come back to the whole problem of minimizing
the functional F in a very particular case, where we can provide almost
explicit densities for the solutions. We consider the case

• T (µ, ν) = 1
2
W 2

2 (µ, ν) and G(ν) =
∫

Ω×Ω
V (|x − y|2)ν(dx)ν(dy),

as in the previous Section;
• V (|x − y|2) = λ

2
|x − y|2 and so, setting bar(ν) =

∫

Ω
yν(dy), we

have Tν(x) = λ|x|2 − 2λx · bar(ν) + λ
∫

Ω
|y|2ν(dy);

• F (µ) = 1
2
||µ||2L2(Ω), a particular case of what considered in [3].

The framework we obtain is very similar to the one in [5].

Theorem 4.1. In the specific case described above, any pair of mini-
mizers (µ, ν) is shaped as follows:

• µ is concentrated on a ball B(x0, rλ) (intersected with Ω) and
has a density u given by

u(x) =
λ

2λ + 1
(r2

λ − |x − x0|2);

• ν is concentrated on the ball B(x0, rλ/(2λ + 1)) and it is the
image of µ under the homothety of ratio (2λ + 1)−1 and centre
x0, hence it has density v given by

v(x) = λ(2λ + 1)d−1(r2
λ − (2λ + 1)2|x − x0|2);

• x0 is the barycentre of both µ and ν.

Proof. First we write down the optimalty conditions given by Theorem
3.1 for the minimization in ν with fixed µ and by [3] for the minimiza-
tion in µ for fixed ν. We denote by u and v the densities of µ and ν,
respectively. We may suppose that the barycentre of ν is the origin,
thus obtaining Tν(x) = λ|x|2 + c. We have

{

u(x) + ϕ(x) = c1 a.e. on u > 0;

ψ(x) + λx2 = c2 a.e. on v > 0.

Here ϕ and ψ are Kantorovich potentials for the transport from µ to ν
and from ν to µ, respectively. From the second condition we can infer
∇ψ(x) = −2λx a.e. on v > 0. Being ν absolutely continuous, this
equality is valid ν−a.e.. This means that the optimal transport map t
from ν to µ is given by t(x) = x −∇ψ(x) = (2λ + 1)x. By uniqueness
of the optimal transport plan, which is in this case expressed both as
a transport map from ν to µ and viceversa, we know also the optimal
transport map s from µ to ν which will be s(x) = x/(2λ + 1). From
duality theory in optimal transportation we know the following equality

ϕ(x) + ϕc(s(x)) = c(x, s(x)) =
1

2
|x − s(x)|2,
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and thus we get u(x) = c1 − 1
2
|x − s(x)|2 + ϕc(s(x)). We do already

know that u is Lipschitz continuous (by [3]), and this implies that the
set {u > 0} is an open set. Consequently the same is true for {v > 0},
which is just an homothety of it. Since ϕc is a Kantorovich potential
from ν to µ, we know that it must agree (up to constants) with ψ on
any connected component of the open set {v > 0}. So, let ω ⊂ Ω be a
connected component of {u > 0}. On (2λ+1)−1ω we have ϕc = ψ + c3

and so we get

u(x) = c4 −
1

2
|x − s(x)|2 + ψ(s(x)) = c5 − |x|2 λ

2λ + 1
.

From this expression it is clear that ∂ω \ ∂Ω (where u must vanish) is
contained in a sphere around 0. This implies that 0 belongs in fact to
ω, since no boundary of ω is allowed in the interior of a certain ball
around 0. So there is in fact just one connected component for {u > 0}
and so we get

u(x) =

[

c − |x|2 λ

2λ + 1

]+

. (4.1)

From this it is easy to recover the density v of ν since ν = s]µ and we
get the thesis. The point x0 which turns out to be the centre of the
balls which are supports for µ and ν is in this notation 0, the barycentre
of ν, as in the thesis. It is clear that in this case µ and ν share the
same barycentre since they are homothetic. ¤

Ω

µ

ν

Figure 2. The solution for a small ball Ω

Remark 3. In the example of Theorem 4.1 the density v shares the
same regularity of u except at the points corresponding to boundary
points of Ω where u is positive, i.e. if at x0 ∈ ∂Ω it happens u(x0) > 0
then at s(x0) we have a jump for v. It is clear from the fact that u is
2λ/(2λ+1)−Lipschitz continuous (it follows from the explicit formula)

12



ν

µ
Ω

Figure 3. A solution for a larger ball

that we have, recalling also
∫

Ω
u dLd = 1,

1 ≤
(

inf u +
2λ

2λ + 1
D

)

|Ω|,

where D is the diameter of Ω. This implies, for small Ω, inf u > 0. In
this case u would be positive at any point of ∂Ω and v discontinuous
at any point of s(∂Ω). This gives examples when the L∞ regularity for
v cannot be improved up to v ∈ C0(Ω).

Remark 4. In the explicit example above there remain to be determined
both the constant c (or the radius rλ) and the position of the barycentre
x0 in the formula for u. In some simple cases this is possible too. Notice
that, once fixed x0, the constant c may always be recovered by imposing
the condition of being probability measures. For instance if Ω is a ball,
we may see that x0 may not be the barycentre of a density u shaped
as in (4.1) unless the set B(x0, 2λ

−1(2λ + 1)) ∩ Ω is a ball around x0.
This happens for large Ω whenever the ball B(x0, 2λ

−1(2λ + 1)) does
not touch the boundary ∂Ω or, in general, when x0 is the centre of the
ball Ω. In the first case (Ω a large ball, as in Figure 3, where the case
of a generic Ω is represented) we have several solutions for the problem
(non-uniqueness), obtained from each other under translations, and u
and v are continuous; in the second (Ω a small ball, Figure 2) we have
uniqueness of the solution, with u a radial continuous function around
the centre and v a rescaling of u on a smaller ball.

Remark 5. In general, if Ω is not a ball, the fact that 0 is the barycentre
of a distribution of mass which is radial around 0 itself imposes some
constraints on the position of 0 with respect to ∂Ω. If the domain Ω
cuts a part of the supporting ball from one side, then the centre of
the ball could be no longer the barycentre. Figure 4 shows this effect,
as well as a situation where the support touches the boundary on two
sides and the centre of the ball is actually the barycentre.

13



0
µbar(  )

Ω

Ω

0=bar(  )µ

Figure 4. The position of the centre and of the barycentre

Remark 6. It is interesting to see the behaviour of the solution (µ, ν)
as λ → 0, +∞. In the first case, as λ → 0, from (4.1), we easily get
that u tends to a constant density. This comes from the fact that the
importance of the functional G decreases, and this allows us to choose
ν under no concentration criteria; in particular at the limit we can
choose ν = µ, thus getting T (µ, ν) = 0: then the only thing to do
is choosing µ so that we minimize F , which exactly happens only for
constant density measures. On the other hand, as λ → +∞, the role
played by G is increasing and in the end we will get a Dirac measure
ν = δ0, (and Dirac masses are the only minimizers of G). This can be
seen from the fact that the homothety ratio between ν and µ tend to
0. The optimal µ can be retrieved from the formula in Theorem 4.1
and we can easily see that it holds u(x) = (r2 − |x − x0|2)/2.
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