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Abstract

We present an analytical framework to study the motion of micro-swimmers

in a viscous fluid. Our main result is that, under very mild regularity assump-

tions, the change of shape determines uniquely the motion of the swimmer. We

assume that the Reynolds number is very small, so that the velocity field of the

surrounding, infinite fluid is governed by the Stokes system and all inertial ef-

fects can be neglected. Moreover, we enforce the self propulsion constraint (no

external forces and torques). Therefore, Newton’s equations of motion reduce

to the vanishing of the viscous drag force and torque acting on the body. By ex-

ploiting an integral representation of viscous force and torque, the equations of

motion can be reduced to a system of six ordinary differential equations. Vari-

ational techniques are used to prove the boundedness and measurability of its

coefficients, so that classical results on ordinary differential equations can be

invoked to prove existence and uniqueness of the solution.
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1 Introduction

The study of swimming strategies of living organisms is attracting increasing

attention, starting from seminal works by G. I. Taylor [19], M. J. Lighthill [14],

and S. Childress [6]. We refer the reader to the recent review [13] for a com-

prehensive list of references. Among the more mathematical contributions we

quote [12], [17], and [4].
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1 Introduction 2

Swimming consists in the ability to change position by changing shape pe-

riodically and exploiting the interaction with the surrounding liquid. Shape

change induces a flow in the fluid. The propulsive effect arises from the action

and reaction principle: the swimmer must exert forces to set the fluid in mo-

tion and hence it receives from the fluid a propulsive force. In the absence of

other actions on its body, this is the only force the swimmer can exploit (self

propulsion). In what follows we will focus on the case in which the swimmer is

completely immersed in the liquid.

Flows generate both inertial and viscous forces. In a Newtonian fluid, their

relative importance is measured by the Reynolds number. Typical swimmers

move with a speed which is of the order of some body-lengths per second, so the

Reynolds number of a swimming induced flow in a given fluid is determined

only by the swimmer’s size: at small sizes viscous effects dominate, at large

scales the opposite is true.

Thus, a fish swims by accelerating the surrounding water, while bacteria

and other unicellular organisms move by exploiting viscous resistance. The

striking difference between these two strategies and the subtleties that follow

are beautifully illustrated in [16].

In this paper we deal with micro-swimmers immersed in a viscous liquid,

therefore the fluid dynamics is governed by the Stokes system. We assume

self propulsion and neglect all external forces acting on the fluid and on the

swimmer, including gravity. By a suitable choice of the units, we may assume

that the viscosity of the fluid is equal to 1.

Our point of view is similar to the one proposed in [18] where the authors

exploit a gauge field theory approach in the space of shapes. They give explicit

examples in the two-dimensional case and in the case of infinitesimal defor-

mations of a sphere. In the same spirit, axisymmetric swimmers described

by finitely many shape parameters have been studied in [2], [3], [1], where

energetically optimal strokes are also computed numerically. The novelty in

the present work is that we develop a theoretical framework to study swim-

mers whose shape changes are completely general and genuinely infinite di-

mensional.

The motion of a swimmer is described by a map t 7→ ϕt , where, for every

fixed t, the state ϕt is an orientation preserving bijective C2 map from the ref-

erence configuration A ⊂ R
3 into the current configuration At ⊂ R

3.

Given a distinguished point x0 ∈ A , for every fixed t, we consider the fol-

lowing factorization

ϕt = rt ◦ st , (1.1)

where the position function rt is a rigid deformation and the shape function st
is such that

st(x0) = x0 , (1.2a)

∇st(x0) is symmetric. (1.2b)

In the applications we have in mind, one can choose the map t 7→ st in a suitable

class of admissible shape changes and use it as a control to achieve propulsion

as a consequence of the viscous reaction of the fluid. By contrast, t 7→ rt is

a priori unknown and it must be determined by imposing that the resulting

ϕt = rt ◦ st satisfies the equations of motion.

The factorization (1.1) of the motion into data (the freely adjustable shapes

st) and unknowns (the position and orientation rt achieved by the swimmer

as a consequence of having executed some strokes) is conceptually appealing

and has far reaching consequences in the analysis of biological and engineered

systems. Moreover, it simplifies the problem, reducing it to a system of ordinary
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differential equations since rt(z) = yt+Rtz is finite dimensional; here yt and Rt

are the translation and rotation characterizing the rigid motion rt. Finally it is

natural, because t 7→ st represents the motion as seen by an observer moving

with the swimmer, while t 7→ rt represents the motion of this observer with

respect to a fixed frame. To establish a link with the language of [18], notice

that conditions (1.2) select one special gauge for the description of the system,

that st describes the standard (unlocated) shape of the swimmer, and ϕt gives

its located shape.

The equations of motion that the map t 7→ ϕt must satisfy are the balance of

linear and angular momentum, which, since inertia is negligible, reduce to the

vanishing of total force and total torque acting on the swimmer At . Since we

assume self propulsion, there are no external forces applied to At , so that the

total force and torque reduce to the ones arising from the viscous drag exerted

by the fluid on the boundary ∂At :

0 = FAt,ϕ̇t :=

∫

∂At

σt(y)n(y) dS(y), (1.3a)

0 =MAt,ϕ̇t :=

∫

∂At

y×σt(y)n(y) dS(y). (1.3b)

Here σt is the stress tensor, n is the outer unit normal to ∂At , dS indicates the

integration with respect to the surface measure, and × is the cross product in

R
3. Since the Reynolds number is low, stresses are computed by solving the

outer Stokes problem in Aext
t := R

3 \At





∆ut(y) = ∇pt(y) in Aext
t ,

div ut(y) = 0 in Aext
t ,

ut(y) = ϕ̇t(x)|x=ϕ−1
t (y) on ∂At ,

ut(y) → 0 for |y| → ∞,

where ut is the velocity and pt is the pressure, so that σtn = −ptn + (∇ut +
(∇ut)

T )n (recall that the viscosity is assumed to be 1).

Our main result is Theorem 6.4 stating that for every sufficiently smooth

shape change t 7→ st , the position functions t 7→ rt are uniquely determined

by the initial conditions at t = 0. More precisely, there exists a unique family

of rigid motions t 7→ rt such that the state functions t 7→ ϕt := rt ◦ st satisfy

the equations of motion (1.3), and ϕt (or equivalently rt) takes a prescribed

value at t = 0. This result provides a rigorous mathematical justification for

the viewpoint pioneered in [18]: the motion of a micro-swimmer is uniquely

determined by the history of its shapes.

The main ingredients in the proof are the following. By exploiting the lin-

earity of the Stokes system, we reduce the equations of motion (1.3) to (4.6),

namely,

ẏt = Rtbt , Ṙt = RtΩt ,

a system of ordinary differential equations involving the translational and ro-

tational velocities associated with the rigid motion t 7→ rt . The coefficients bt
and Ωt of these equations, given in (4.5), depend only on st and ṡt. They are

obtained from the shape function t 7→ st by solving some auxiliary outer Stokes

problems on Aext
t .

The main difficulty is to prove the continuity, or at least the measurability,

of these coefficients. To this aim, we have to obtain the continuous dependence

of the solutions of the outer Stokes problems on their domains and on their

boundary data; the main technical issue is the fact that they both depend on

time.

Preprint SISSA 44/2010/M (July 2, 2010)
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Once continuity of the coefficients and measurability of the data of the equa-

tions of motion are proved, our existence and uniqueness problem can be solved

by using classical techniques for ordinary differential equations.

2 Stokes problem

In this section we recall some known results on the Stokes problem. In ad-

dition, we introduce a weak definition of the viscous drag force and torque,

which does not require any regularity assumption on the velocity field. Finally,

we prove that the solutions depend continuously on the domains for special

boundary conditions.

We begin with the case of a bounded open set Ω ⊂ R
3 with Lipschitz bound-

ary ∂Ω. Given a function U defined on ∂Ω, the strong formulation of the Stokes

problem in Ω is 




∆u = ∇p in Ω ,
div u = 0 in Ω ,

u = U on ∂Ω .

The corresponding weak formulation is given by




u ∈ H1(Ω;R3), div u = 0 in Ω, u = U on ∂Ω,∫

Ω

Eu : Ew dx = 0, for every w ∈ H1
0 (Ω) with divw = 0 in Ω,

(2.1)

where Eu denotes the symmetric gradient of u, defined by Eu := 1
2 (∇u+(∇u)T ).

The following theorem holds [21, Lemma 2.1 and Theorem 2.4].

Theorem 2.1. Let Ω be a bounded connected open subset of R3 with Lipschitz

boundary. Given U ∈ H1/2(∂Ω;R3) such that
∫

∂Ω

U · n dS = 0, (2.2)

there exists a unique solution u to the Stokes problem (2.1). Moreover, there

exists p ∈ L2(Ω) such that ∆u = ∇p in D′(Ω;R3).

In the rest of this section Ω will be an exterior domain with Lipschitz bound-

ary, i.e., Ω is an unbounded, connected open set whose boundary ∂Ω is bounded

and Lipschitz. In this case, the strong formulation of the Stokes problem is





∆u = ∇p in Ω ,
div u = 0 in Ω ,

u = U on ∂Ω ,
u = 0 at ∞,

(2.3)

which includes a decay condition at infinity.

To write the weak formulation of this problem, we consider the Deny-Lions

space

D1,2(Ω;R3) := {u ∈ L6(Ω;R3) : ∇u ∈ L2(Ω;M3×3)},

where M
3×3 is the Hilbert space of 3×3 real matrices endowed with the Eu-

clidean norm σ : ξ :=
∑

i,j σijξij . The space D1,2(Ω;R3) is endowed with the

norm

‖u‖D1,2(Ω;R3) := ‖∇u‖L2(Ω;M3×3) . (2.4)

It is well known that D1,2(Ω;R3) is a Hilbert space and that there exists a

constant C(Ω) such that

‖u‖L6(Ω;R3) 6 C(Ω) ‖u‖D1,2(Ω;R3) ,
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for all u ∈ D1,2(Ω;R3). For a thorough exposition on these spaces, see the

classical work by Deny and Lions [7].

The inequality

‖∇u‖
2
L2(Ω;M3×3) 6 C(Ω) ‖Eu‖

2
L2(Ω;M3×3) , (2.5)

proved in Appendix A, equation (A.5), shows that ‖Eu‖L2(Ω;M3×3) is an equiva-

lent norm on D1,2(Ω;R3). Since ∂Ω is bounded, for every u ∈ D1,2(Ω;R3) the

trace of u on ∂Ω, still denoted by u, belongs to H1/2(∂Ω;R3) and the trace oper-

ator is continuous between these two spaces.

We also use the space

D1,2
0 (Ω;R3) := {u ∈ D1,2(Ω;R3) : u = 0 on ∂Ω},

which is closed in D1,2(Ω;R3). The following density result, proved in [11],

plays a crucial role in the theory.

Theorem 2.2 (Density). Let Ω ⊂ R
3 be an exterior domain with Lipschitz

boundary. Then the space

{u ∈ C∞
c (Ω;R3) : div u = 0 in Ω}

is dense in {u ∈ D1,2
0 (Ω;R3) : div u = 0 in Ω} for the norm (2.4).

To write the weak formulation of the exterior Stokes problem, we introduce

the spaces

V(Ω) := {u ∈ D1,2(Ω;R3) : div u = 0 in Ω},

V0(Ω) := {u ∈ V(Ω) : u = 0 on ∂Ω}.

Given a function U ∈ H1/2(∂Ω;R3), which plays the role of the boundary

condition, the weak formulation of (2.3) is given by




u ∈ V(Ω), u = U on ∂Ω,∫

Ω

Eu : Ew dx = 0 for every w ∈ V0(Ω).
(2.6)

We now prove the following trace result.

Proposition 2.3. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary,

and let γ : D1,2(Ω;R3) → H1/2(∂Ω;R3) be the trace operator. Then γ(V(Ω)) =
H1/2(∂Ω;R3). Moreover there exists a continuous linear operator T : H1/2(∂Ω;R3) →
V(Ω) such that γ(T (ψ)) = ψ for every ψ ∈ H1/2(∂Ω;R3).

Proof. Let ψ ∈ H1/2(∂Ω;R3). Consider a sufficiently large open ball Σρ such

that ∂Ω ⊂ Σρ , and let Ωρ := Ω ∩ Σρ . We apply Theorem 2.1 to the Stokes

problem 



∆v = ∇p in Ωρ ,
div v = 0 in Ωρ ,

v = ψ on ∂Ω,

v = λx/ |x|
3

on ∂Σρ ,

(2.7)

where

λ := −
1

4π

∫

∂Ω

ψ · n dS. (2.8)

Problem (2.7) admits a unique solution v ∈ H1(Ωρ ;R
3) since its boundary condi-

tion satisfies (2.2) by the choice of λ. We extend v to Ω by setting v(x) = λx/ |x|
3

for x ∈ Ω \ Σρ . It is easy to see that v ∈ L6(Ω;R3), ∇v ∈ L2(Ω;M3×3), and

div v = 0. We define T : H1/2(∂Ω;R3) → V(Ω) by T (ψ) = v. Then T is linear and

continuous and γ(T (ψ)) = ψ for every ψ ∈ H1/2(∂Ω;R3).
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For Stokes problems in exterior domains condition (2.2) is not needed, as

shown in the following theorem.

Theorem 2.4. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary and

let U ∈ H1/2(∂Ω;R3). Then problem (2.6) has a solution. Moreover, there exists

p ∈ L2
loc(Ω), with p ∈ L2(Ω ∩ Σρ) for every ball Σρ centered at the origin and of

radius ρ > 0, such that ∆u = ∇p in D′(Ω;R3).

Proof. By Proposition 2.3 there exists w ∈ V(Ω) such that w = U on ∂Ω. Setting

u = v + w, our problem is equivalent to finding v such that




v ∈ V0(Ω),∫

Ω

Ev : Ez dx = −

∫

Ω

Ew : Ez dx for every z ∈ V0(Ω).

The solution can be obtained by using the Lax-Milgram Lemma in V0(Ω), taking

into account (2.5). The existence of p can be deduced as in [21, Theorem 2.3].

If u and p are the velocity and pressure fields of problem (2.3), the stress

tensor is given by

σ := −p I+2Eu, (2.9)

where I is the identity matrix (recall, again, that the viscosity is equal to 1).

Note that if u satisfies (2.6), then

div σ = −∇p+∆u+∇(div u) = 0. (2.10)

If σn has a trace in L1(∂Ω;R3), then the drag force, defined as the resultant

of the forces acting on the boundary ∂Ω, is given by

F :=

∫

∂Ω

σ(x)n(x) dS(x), (2.11)

while the torque, defined as the resultant of the corresponding momenta with

respect to the origin, is given by

M :=

∫

∂Ω

x×σ(x)n(x) dS(x). (2.12)

A technical problem arises from the fact that σn has not, in general, a trace

in L1(∂Ω;R3), even if u satisfies the outer Stokes problem as in Theorem 2.1,

so that F and M cannot be defined via (2.11) and (2.12). Thanks to (2.10),

the following definition allows us to introduce the trace of σn as an element of

H−1/2(∂Ω;R3). Through this we can define in a consistent way the power of the

drag force and of the torque.

Let M
3×3
sym be the space of 3×3 symmetric matrices. Every σ ∈ M

3×3
sym can be

orthogonally decomposed as

σ = trσ
3 I+σD ,

where the deviatoric part σD satisfies trσD = 0.

Definition 2.5. Let Ω be an exterior domain with Lipschitz boundary and let

σ ∈ L1
loc(Ω;M

3×3
sym) be such that σD ∈ L2(Ω;M3×3

sym) and div σ ∈ L6/5(Ω;R3).
We define the trace of σn on ∂Ω, still denoted by σn, as the unique element of

H−1/2(∂Ω;R3) satisfying

〈σn, V 〉Ω :=

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx, (2.13)

where 〈·, ·〉Ω denotes the duality pairing betweenH−1/2(∂Ω;R3) andH1/2(∂Ω;R3)
and v is any function in V(Ω) such that v = V on ∂Ω.
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We will drop the subscript Ω whenever the domain of integration is under-

stood. If σ is sufficiently smooth, then an integration by parts shows that

〈σn, V 〉Ω =

∫

∂Ω

σn · V dS,

for every V ∈ H1/2(∂Ω;R3).
Returning to the general case, it is easy to see that the right-hand side of

(2.13) is well defined, since div σ ∈ L6/5(Ω;R3), v ∈ L6(Ω;R3), σ : Ev = σD : Ev,

σD ∈ L2(Ω;M3×3
sym), and Ev ∈ L2(Ω;M3×3

sym). Moreover, the definition of σn does

not depend on the choice of v, since the right-hand side of (2.13) vanishes when-

ever v ∈ V0(Ω). This follows from the distributional definition of div σ whenever

v ∈ C∞
c (Ω;R3) and div v = 0, and can be obtained by approximation in the gen-

eral case using the Density Theorem 2.2. Finally, by choosing v = T (V ), where

T is the lifting operator introduced in Proposition 2.3, we conclude that (2.13)

defines a continuous linear functional on H1/2(∂Ω;R3).
Let U ∈ H1/2(∂Ω;R3) and let u be the solution to the Stokes problem (2.6)

with boundary datum U and let σ be the corresponding stress tensors defined

by (2.9). Since σ ∈ L2
loc(Ω;M

3×3), σD ∈ L2(Ω;M3×3
sym), and div σ = 0 by (2.10), we

can apply Definition 2.5 and for every V ∈ H1/2(∂Ω;R3) we obtain

〈σn, V 〉 =

∫

Ω

σ : Ev dx =

∫

Ω

[−pI : Ev + 2Eu : Ev] dx

= −

∫

Ω

p div v dx+ 2

∫

Ω

Eu : Ev dx = 2

∫

Ω

Eu : Ev dx,

(2.14)

where v is an arbitrary element of V(Ω) such that v = V on ∂Ω. In particular,

we can take as v the solution to the Stokes problem (2.6) with boundary datum

V . This leads to the reciprocity condition,

〈σn, V 〉 = 〈τn, U〉,

where τ is the stress tensor corresponding to v. By taking U = V in (2.14), we

get

〈σn, U〉 = 2 ‖Eu‖2L2(Ω;M3×3
sym) . (2.15)

We now show that the quadratic form 〈σn, U〉 is positive definite. Indeed, if

〈σn, U〉 = 0, by (2.15) we obtain Eu = 0 almost everywhere on Ω. This implies

that that u(x) = c + Ax, where c ∈ R
3 and A is a skew symmetric 3×3 matrix.

Since u ∈ L6(Ω;R3), we have c = 0 and A = 0, so that U = 0.

By using the duality product 〈σn, V 〉 for a suitable choice of V , one can define

the viscous force F and the torque M in a rigorous way, extending (2.11) and

(2.12) to the general case where the trace σn is not necessarily integrable on

∂Ω.

Definition 2.6. Let Ω be an exterior domain with Lipschitz boundary, let u ∈
V(Ω) be the solution of the Stokes problem (2.6) with boundary datum U ∈
H1/2(∂Ω;R3), let σ be the corresponding stress tensor defined by (2.9), and let

σn ∈ H−1/2(∂Ω;R3) be the trace on ∂Ω introduced in Definition 2.5. The drag

force exerted by the fluid on the boundary ∂Ω is defined as the unique vector

F ∈ R
3 such that

F · V = 〈σn, V 〉 for every V ∈ R
3. (2.16)

The torque exerted by the fluid on the boundary ∂Ω is defined as the unique

vector M ∈ R
3 such that

M · ω = 〈σn,Wω〉 for every ω ∈ R
3, (2.17)

where Wω(x) := ω×x is the velocity field generated by the angular velocity ω.
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We conclude this section by proving the continuous dependence on the do-

mains of the solutions to the Stokes problems. To this aim, we introduce a

notion of convergence for subsets of R3. We say that a sequence of sets (Sk)k
converges to S∞ , and we write Sk → S∞ , if for every ε > 0 there exists m such

that for every k > m
S−ε
∞ ⊂ Sk ⊂ S+ε

∞ , (2.18)

where S−ε
∞ = {y∈R

3 : dist(y,R3 \ S∞) > ε} and S+ε
∞ = {y∈R

3 : dist(y, S∞) 6 ε}.

Theorem 2.7. For k = 1, 2, . . . ,∞, let Sk be a bounded connected open set of

class C1, and let wk be the solution to the minimum problem

min

{∫

R3

|Ew|
2
dx : w ∈ V(R3), w =W on ∂Sk

}
, (2.19)

where W denotes either a constant vector a ∈ R
3 or the affine function Wω(x) =

ω×x, for some ω ∈ R
3. Assume that Sk → S∞ in the sense of (2.18). Then

wk → w∞ strongly in V(R3).

Notice that wk coincides in Sext
k := R

3 \ Sk with the solution to the Stokes

problem (2.6) in Ω = Sext
k with boundary condition wk = W on ∂Sk , while

wk =W in Sk .

Proof. Consider a ball Σρ centered at 0 and containing the closures of all the

Sk ’s. It is possible to find a solenoidal function Ψ ∈ C∞
c (R3;R3) such that Ψ =W

in ∂Sk .

When W is a constant vector a, we consider a smooth closed curve Γ passing

through the origin, whose tangent vector coincides with a in all points of Γ∩Σρ ,

and with curvature less than 1/(2ρ). In the tubular neighborhood Γ + Σ2ρ, we

consider the vector field Ψ(x) := ψ(dist(x,Γ))τ(πΓ(x)), where πΓ is the projection

on Γ, τ returns the tangential component, and ψ ∈ C∞
c ([0, 2ρ[) with ψ(r) = 1

for 0 6 r 6 ρ. It is easy to see that Ψ is solenoidal, coincides with a on Σρ ,

and vanishes near the boundary of the tubular neighborhood. Its extension by

0 provides the required function in C∞
c (R3;R3).

In the case W = Wω , it is enough to take Ψ(x) = ω×φ(x)x, with φ a radial

scalar function with compact support such that φ(x) = 1 for x ∈ Σρ .

By minimality,

∫

R3

|Ewk|
2
dx 6

∫

R3

|EΨ|
2
dx, for k = 1, 2, . . . ,∞.

It follows that the sequence (wk)k admits a weak limit w∗ in V(R3).
Notice that ∆W = 0 and divW = 0 on Sk , hence wk = W on Sk for k =

1, 2, . . . ,∞. Since S−ε
∞ ⊂ Sk for k large enough by the first inclusion in (2.18),

we get w∗ = W on S−ε
∞ . As ε is arbitrary, we conclude w∗ = W on S∞ , which

implies that the same equality holds for the traces on ∂S∞ . Therefore, w∗ is a

competitor in the problem for ∂S∞ .

We now show it is also the minimum. For this, consider an admissible func-

tion v for the problem (2.19) for k = ∞. Then v − Ψ ∈ V(R3); it follows that

v − Ψ = 0 on ∂S∞. In particular, v − Ψ ∈ V0(S
ext
∞ ) and by Theorem 2.2 there

exist functions ϕη ∈ C∞
c (Sext

∞ ;R3) such that ϕη → v −Ψ when η → 0. For every

η > 0 the function vη := ϕη +Ψ coincides with W in a neighborhood of ∂S∞ . By

(2.18), this implies that vη is a competitor for problem (2.19) on ∂Sk , for k large

enough. Therefore, by the minimality of wk

∫

R3

|Ewk|
2 dx 6

∫

R3

|Evη|
2 dx.
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Taking the limit first as k → ∞ and then as η → 0, we get

lim sup
k→∞

∫

R3

|Ewk|
2
dx 6

∫

R3

|Ev|
2
dx.

By the lower semicontinuity of the norm in V(R3), we have

∫

R3

|Ew∗|
2
dx 6 lim inf

k→∞

∫

R3

|Ewk|
2
dx 6 lim sup

k→∞

∫

R3

|Ewk|
2
dx 6

∫

R3

|Ev|
2
dx,

thus proving the minimality of w∗. By uniqueness, we have w∞ = w∗. The

last chain of inequalities, applied with v = w∞ , shows also that ‖wk‖D1,2 →
‖w∞‖D1,2 , hence wk → w∞ strongly in V(R3).

3 Kinematics

In this section we fix the notation and the assumptions for the kinematics of

the swimmer. As mentioned in the introduction, we show that it is possible

to decompose the deformation into a pure shape change followed by a time-

dependent rigid motion, whose rotations and translations are Lipschitz contin-

uous with respect to time.

The reference configuration A ⊂ R
3 is a bounded connected open set of class

C2. The time-dependent deformation of A from the point of view of an external

observer is described by a function ϕt : A→ R
3. We assume that, for every t,

ϕt ∈ C2(A;R3), (3.1a)

ϕt is injective, (3.1b)

det∇ϕt(x) > 0 for all x ∈ A. (3.1c)

Here and henceforth ∇ denotes the gradient with respect to the space variable.

Under these hypotheses the set At := ϕt(A) is a bounded connected open set of

class C2 and

the inverse ϕ−1
t : At → A belongs to C2(At;R

3).

We assume in addition that

the sets R
3 \At are connected for all t ∈ [0, T ]. (3.2)

Concerning the regularity in time, we require that

the map t 7→ ϕt belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)), (3.3)

so that ‖ϕt+h − ϕt‖C1 6 L |h|, for a suitable constant L > 0.

We now prove that for almost every t there exists ϕ̇t ∈ Lip(A;R3) such that

ϕt+h − ϕt

h
→ ϕ̇t , uniformly on A as h→ 0. (3.4)

Indeed, condition (3.3) implies that t 7→ ϕt belongs to Lip([0, T ];W 1,4(A;R3)).
Therefore, the general theory of Lipschitz functions with values in reflexive

Banach spaces (see, e.g., [5, Appendix]) implies that for almost every t the dif-

ference quotient in (3.4) converges strongly in W 1,4(A;R3) to some element ϕ̇t

of W 1,4(A;R3). The embedding of W 1,4(A;R3) into C0(A;R3) implies the uni-

form convergence considered in (3.4). Finally the bound ‖ϕt − ϕs‖C1 6 L |t− s|

implies that Lip(ϕ̇t) = L in A, where, for every function f , Lip(f) denotes the

Lipschitz constant of f .
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3 Kinematics 10

It turns out that the Eulerian velocity on the boundary ∂At, defined by

Ut := ϕ̇t ◦ ϕ
−1
t

belongs to Lip(∂At;R
3) with Lipschitz constant independent of t.

We now describe the kinematics from the point of view of the swimmer. We

fix a point x0 ∈ A and we look for a factorization of ϕt of the form (1.1), where

st : A → R
3 satisfies properties (1.2) and rt : R3 → R

3 is a rigid motion of the

form

rt(z) = yt +Rtz, (3.5)

with yt ∈ R
3 and Rt ∈ SO(3), the set of orthogonal matrices with positive

determinant. Conditions (1.2) allow us to interpret st as a pure shape change

from the point of view of an observer located at x0. Therefore, the deformation

ϕt, from the point of view of an external observer, is decomposed into a shape

change followed by a rigid motion.

It follows from (1.1), (3.1), and (3.5) that, for every t,

st ∈ C2(A;R3), (3.6a)

st is injective, (3.6b)

det∇st(x) > 0 for all x ∈ A, (3.6c)

and, consequently, that

the inverse s−1
t : Bt → A belongs to C2(Bt;R

3), (3.7)

where Bt := st(A), see Fig. 1. Note that Bt is a bounded connected open set

x y
A

A
t

B
t

s
t

r
t

φ
t

z

Figure 1: Notation for the kinematics.

of class C2 and that st(Bt) = At and st(∂Bt) = ∂At . Notice that, since A is

bounded and st is continuous, there exists a ball Σρ centered at 0 with radius ρ
such that

A ⊂⊂ Σρ−1 and Bt ⊂⊂ Σρ−1 . (3.8)

It follows from (3.2) that

the sets Σρ \Bt are connected for all t ∈ [0, T ]. (3.9)

Conditions (1.1), (1.2), and (3.5) imply that

Rt = ∇ϕt(x0)
[√

∇ϕt(x0)T∇ϕt(x0)
]−1

, (3.10a)

yt = ϕt(x0)−Rtx0 . (3.10b)
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4 The equations of motion 11

The existence of a factorization (1.1) satisfying (1.2) and (3.5) is obtained by

setting st := r−1
t ◦ϕt , where rt is given by (3.5) with yt and Rt defined by (3.10).

Moreover, (3.3) together with (3.10), implies that

t 7→ Rt and t 7→ yt are Lipschitz continuous. (3.11)

Finally, since st = r−1
t ◦ ϕt,

the map t 7→ st belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)), (3.12)

so that ‖st+h − st‖C1 6 L |h|, for a suitable constant L > 0. Properties (3.6c)

and (3.12) imply that ∥∥s−1
t

∥∥
C2(Bt;R3)

6 C, (3.13)

where C < +∞ is a constant independent of t.
As for function ϕt , we can exploit condition (3.12) to prove that there exists

ṡt ∈ Lip(A;R3) such that

st+h − st
h

→ ṡt , uniformly on A, as h→ 0.

Notice that

the map t 7→ ṡt belongs to L∞([0, T ];W 1,p(A;R3)) for every p ∈ [2,∞[,

therefore, by the Sobolev immersions,

the map t 7→ ṡt belongs to L∞([0, T ];C0(A;R3)),

and, by the continuous immersion of H1(A;R3) into H1/2(∂A;R3),

the map t 7→ ṡt belongs to L∞([0, T ];H1/2(∂A;R3)).

Again as for ϕ̇t , we can prove that

Lip(ṡt) 6 L, with L independent of t. (3.14)

Moreover, for any fixed x ∈ A, the map t 7→ ṡt(x) is measurable.

Define now Vt(z) := RT
t Ut(rt(z)) and Wt(z) := ṡt(s

−1
t (z)), for every z ∈ ∂Bt .

An elementary computation shows that for almost every t ∈ [0, T ]

Vt(z) = RT
t ẏt +RT

t Ṙtz +Wt(z) for every z ∈ ∂Bt .

4 The equations of motion

The motion t 7→ ϕt determines for almost every t ∈ [0, T ] the Eulerian velocity

Ut through the formula

Ut(y) := ϕ̇t(ϕ
−1
t (y)) for almost every y ∈ ∂At .

As shown in Section 3, At is of class C2 and

Ut ∈ H1/2(∂At;R
3) for almost every t ∈ [0, T ].

We can apply Theorem 2.4 with Ω = Aext
t := R

3 \ At and, for almost every

t ∈ [0, T ], we obtain a unique solution ut to the problem





ut ∈ V(Aext
t ), ut = Ut on ∂At ,∫

Aext
t

Eut : Ew dy = 0 for every w ∈ V0(A
ext
t ).
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4 The equations of motion 12

Let FAt,Ut and MAt,Ut be the drag force and torque determined by the veloc-

ity field Ut according to (2.16) and (2.17). Since we are neglecting inertia and

imposing the self-propulsion constraint, the equations of motion reduce to the

vanishing of the viscous force and torque, i.e.,

FAt,Ut = 0 and MAt,Ut = 0 for almost every t ∈ [0, T ]. (4.1)

We assume that ϕt is written as ϕt = rt ◦ st , where rt is a rigid motion as

in (3.5) and t 7→ st is a prescribed shape function. Our aim is to find t 7→ rt
so that the equations of motion (4.1) are satisfied. More precisely, we prove

Theorem 4.1 below, which shows that (4.1) is equivalent to a system of ordinary

differential equations where the unknown functions are the translation t 7→ yt
and the rotation t 7→ Rt appearing in (3.5).

To define the coefficients of these differential equations, we consider the sets

Bt = st(A) introduced in Section 3 and the 3×3 matrices Kt , Ct , Jt , depending

only on the geometry of Bt , whose entries are defined by

(Kt)ij := 〈σ[ej ]n, ei〉Bext
t
, (4.2a)

(Ct)ij := 〈σ[ej ]n, ei×z〉Bext
t
, (4.2b)

(Jt)ij := 〈σ[ej×z]n, ei×z〉Bext
t
, (4.2c)

where Bext
t := R

3 \ Bt , the duality product is given in Definition 2.5, and σ[W ]
denotes the stress tensor associated to the outer Stokes problem in Bext

t with

boundary datum W . The notation σ[W ] emphasizes that, by the linearity of

Stokes system, the dependence of σ on W is linear. Formula (2.14) shows that

Kt and Jt are symmetric. The matrix

[
Kt CT

t

Ct Jt

]

is often called in the literature grand resistance matrix, and is invertible. Let

[
Ht DT

t

Dt Lt

]
:=

[
Kt CT

t

Ct Jt

]−1

(4.3)

be its inverse. For almost every t ∈ [0, T ], let Wt := ṡt ◦ s
−1
t , and let F sh

t and

M sh
t be the drag force and torque on ∂Bt determined by the boundary value Wt.

According to (2.16) and (2.17), the components of F sh
t and M sh

t are given by

(F sh
t )i = 〈σ[Wt]n, ei〉Bext

t
, (4.4a)

(M sh
t )i = 〈σ[Wt]n, ei×z〉Bext

t
. (4.4b)

Let A : R3 → M
3×3 be the linear operator that associates to every ω ∈ R

3 the

only antisymmetric matrix A(ω) such that A(ω)z = ω×z. In other words, ω is

the axial vector of A(ω). Finally, we define

bt := HtF
sh
t +DT

t M
sh
t , Ωt := A(DtF

sh
t + LtM

sh
t ), (4.5)

which depend on st via (4.4) and the definition of Wt.

Theorem 4.1. Assume that the shape function t 7→ st satisfies (3.6), (3.7), and

(3.12) and that the position function t 7→ rt satisfies (3.5) and (3.11). Then the

following conditions are equivalent:

(i) the deformation function t 7→ ϕt := rt ◦ st satisfies the equations of motion

(4.1);
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4 The equations of motion 13

(ii) the functions t 7→ yt and t 7→ Rt satisfy the system

ẏt = Rtbt , Ṙt = RtΩt , for almost every t ∈ [0, T ], (4.6)

where bt and Ωt are defined in (4.5).

Proof. It is convenient to set the problem in the intermediate configuration Bt ,

thus assuming the point of view of the coordinate system of the shape functions.

After performing the change of variables y = rt(z), z ∈ Bext
t , it turns out

that the velocity field vt(z) := RT
t ut(rt(z)) is the solution of the Stokes problem





vt ∈ V(Bext
t ), vt = Vt on ∂Bt ,∫

Bext
t

Evt : Ew dz = 0, for every w ∈ V0(B
ext
t ),

where Vt(z) = RT
t Ut(rt(z)), see Fig. 2.

Figure 2: Notation for the boundary velocities.

Let FBt,Vt and MBt,Vt be the drag force and torque on ∂Bt determined by vt
according to (2.16) and (2.17), with Ω = Bext

t . It is easy to check that FBt,Vt =
RT

t FAt,Ut and MBt,Vt = RT
t MAt,Ut , so that the equations of motion (4.1) reduce

to

FBt,Vt = 0 and MBt,Vt = 0 for almost every t ∈ [0, T ]. (4.7)

Let ωt be the axial vector of ṘtR
T
t , i.e., the unique vector ωt ∈ R

3 such that

ωt×z = ṘtR
T
t z. It is easy to see that RT

t Ṙtz = (RT
t ωt)×z, so that

Vt(z) =Wt(z) +RT
t ẏt + (RT

t ωt)×z for almost every z ∈ ∂Bt,

where Wt(z) = ṡt(s
−1
t (z)). Let (F tr

t ,M
tr
t ) and (F rot

t ,M rot
t ) be the pairs drag

force–torque on ∂Bt corresponding to the boundary values RT
t ẏt and (RT

t ωt)×z,

respectively. It is well known, see, e.g., [10] that

F tr
t = −KtR

T
t ẏt , F rot

t = −CT
t R

T
t ωt ,

M tr
t = −CtR

T
t ẏt , M rot

t = −JtR
T
t ωt ,

where Kt , Ct , and Jt are the matrices defined in (4.2). Recalling the linearity

of the equations, we get

[
FBt,Vt

MBt,Vt

]
= −

[
KtR

T
t CT

t R
T
t

CtR
T
t JtR

T
t

] [
ẏt
ωt

]
+

[
F sh
t

M sh
t

]
,
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hence the equations of motion (4.7) become
[
Kt CT

t

Ct Jt

] [
RT

t 0
0 RT

t

] [
ẏt
ωt

]
=

[
F sh
t

M sh
t

]
. (4.8)

It follows from (4.3) and (4.8) that the equations of motion (4.7) are equivalent

to
[
ẏt
ωt

]
=

[
Rt 0
0 Rt

] [
Ht DT

t

Dt Lt

] [
F sh
t

M sh
t

]
for almost every t ∈ [0, T ].

The first equation reads

ẏt = Rtbt , with bt = HtF
sh
t +DT

t M
sh
t . (4.9)

To write the second equation in the form (4.6), we use the equality A(ωt) =
ṘtR

T
t . In order to rewrite the second equation

ωt = Rt(DtF
sh
t + LtM

sh
t ) (4.10)

in a more useful way, we need a formula for A(Rω) when R is an arbitrary

rotation. In view of the following equalities

A(Rω)z = (Rω)×z = Rω×RRT z = R(ω×RT z) = RA(ω)RT z,

we can conclude that A(Rω) = RA(ω)RT . Therefore, by applying A to both

members of (4.10), we get

ṘtR
T
t = A(ωt) = A(Rt(DtF

sh
t + LtM

sh
t )) = RtA(DtF

sh
t + LtM

sh
t )RT

t ,

so that, eventually, equation (4.10) reads

Ṙt = RtΩt , with Ωt = A(DtF
sh
t + LtM

sh
t ). (4.11)

This concludes the proof.

Remark 4.2. We claim that every absolutely continuous solution to the second

equation in (4.6) belongs to SO(3), whenever R0 ∈ SO(3). Indeed, by differenti-

ating RtR
T
t with respect to time, we get

(RtR
T
t )

· = ṘtR
T
t +RtṘ

T
t = RtΩtR

T
t −RtΩtR

T
t = 0,

where we used the fact that Ωt is skew symmetric. This shows that the matrix

RtR
T
t is constant in time and the claim follows.

The standard theory of ordinary differential equations with possibly discon-

tinuous coefficients [9], ensures that the Cauchy problem for (4.6) has one and

only one Lipschitz solution t 7→ Rt , t 7→ yt , provided that the functions t 7→ Ωt

and t 7→ bt are measurable and bounded. By (4.9) and (4.11), this happens when

the functions

t 7→ Ht , t 7→ Dt , t 7→ Lt , t 7→ F sh
t , t 7→ M sh

t (4.12)

are measurable and bounded. This property for the first three functions follows

from the continuity of the block elements of the grand resistance matrix

t 7→ Kt , t 7→ Ct , t 7→ Jt , (4.13)

which will be proved in the last part of this section. The proof of the mea-

surability and boundedness of the last two functions in (4.12) requires some

technical tools that will be developed in Sections 5 and 6.

To prove the continuity of the function in (4.13) we will use Theorem 2.7. To

this aim, in the next lemma, we prove a continuity property of the set-valued

function t 7→ Bt .
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Lemma 4.3. Let st satisfy (3.12). Then if t → t∞ the sets Bt converge to the set

Bt∞ in the sense of (2.18).

Proof. We recall thatBt = st(A) for all t ∈ [0, T ]. Let us prove the two inclusions

separately. To see that st(A) ⊂ (st∞(A))+ε, consider a point y ∈ st(A): then,

there exists a point x ∈ A such that y = st(x). We conclude if we prove that

|st∞(x) − st(x)| 6 ε, for all x ∈ A and for all t sufficiently close to t∞ .

sup
x∈A

|st(x) − st∞(x)| 6 ‖st − st∞‖C1(A;R3) 6 L |t− t∞| 6 ε,

provided that |t− t∞| 6 ε/L. For the inclusion (st∞(A))−ε ⊂ st(A), a simple

topological degree argument can be applied, so we can conclude the proof.

We are now in a position to prove the continuity of the elements of the grand

resistance matrix.

Proposition 4.4. Assume that st satisfies (3.6), (3.7), and (3.12). Then the

functions

t 7→ Kt , t 7→ Ct , t 7→ Jt , (4.14a)

t 7→ Ht , t 7→ Dt , t 7→ Lt (4.14b)

are continuous.

Proof. Recalling (4.2) and (2.14), we can write

(Kt)ij = 2

∫

R3

Evjt :Ev
i
t dz, (4.15a)

(Ct)ij = 2

∫

R3

Evjt :Ev̂
i
t dz, (4.15b)

(Jt)ij = 2

∫

R3

Ev̂jt :Ev̂
i
t dz, (4.15c)

where vjt and v̂jt are the solutions to problem (2.19) for Sk = Bt, with W = ej
and W = ej×z, respectively. Since the convergence of the sets Bt is guaranteed

by Lemma 4.3, we can now apply Theorem 2.7 and we obtain that the functions

in (4.14a) are continuous. The continuity in (4.14b) follows from (4.3).

The proof of the measurability and boundedness of t 7→ F sh
t and t 7→ M sh

t

requires much more work, due to the fact that both the domains Bt and the

boundary data Wt = ṡt ◦ s
−1
t depend on time. Moreover, the boundary value Wt

might be discontinuous with respect to t, so that we cannot expect the functions

t 7→ F sh
t and t 7→M sh

t to be continuous.

To prove the measurability we start from an integral representation of F sh
t

and M sh
t , similar to (4.15). As

∫
∂Bt

Wt · n dS is not necessarily zero, we have

to replace R
3 in (4.15) by the complement of an open ball Σ0

ε ⊂⊂ Bt . Since,

in general, this inclusion holds only locally in time, we first fix t0 ∈ [0, T ] and

z0 ∈ Bt0 and select δ > 0 and ε > 0 so that the open ball Σ0
ε := Σε(z

0) of radius

ε centered at z0 satisfies

Σ0
ε ⊂⊂ Bt , for all t ∈ Iδ(t0) := [0, T ] ∩ (t0 − δ, t0 + δ). (4.16)

This is possible thanks to the continuity properties of t 7→ st listed in the previ-

ous Section.

Next we consider the solution wt to the problem

min

∫

Σ0,ext
ε

|Ew|
2
dz,
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where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w =Wt

on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0
ε , where

λt := −
1

4π

∫

∂Bt

Wt · n dS.

The value of λt is chosen so that the flux condition (2.2) on ∂Bt∪∂Σ
0
ε is satisfied.

Finally, recalling (4.4) and (2.14), we can write the following explicit integral

representation of F sh
t and M sh

t

(F sh
t )i = 2

∫

Bext
t

Ewt :Ev
i
t dz = 2

∫

Σ0,ext
ε

Ewt :Ev
i
t dz, (4.17a)

(M sh
t )i = 2

∫

Bext
t

Ewt :Ev̂
i
t dz = 2

∫

Σ0,ext
ε

Ewt :Ev̂
i
t dz, (4.17b)

where vit and v̂it have been defined in the proof of Proposition 4.4 and where the

last equalities are due to the fact that Evit = Ev̂it = 0 in Bt . We deduce from

Theorem 2.7 and Lemma 4.3 that the functions t 7→ vit and t 7→ v̂it are continu-

ous from Iδ(t0) into V(Σ0,ext
ε ). Therefore, the measurability and boundedness of

t 7→ F sh
t and t 7→ M sh

t will be proved if we show that the function t 7→ wt from

Iδ(t0) into V(Σ0,ext
ε ) is measurable and bounded.

Even the boundedness of ‖∇wt‖L2 is an issue, since all estimates for a

solenoidal extension of Wt considered so far in the literature depend on the

geometry of ∂Bt . In Section 5 we make this dependence explicit and conclude

that under our assumptions on t 7→ st the L2 bound for the gradient of the

solenoidal extension is uniform with respect to t. This result will be used in

Section 6 to prove the measurability of the function t 7→ wt .

5 Extension operators

We give now two extension results of a function defined on ∂Bt to an open region

containing ∂Bt . Lemma 5.2 is classical, but for our future purposes we need a

solenoidal version, as stated in Proposition 5.3. Its proof requires a number of

preliminary lemmas that are proved beforehand. The next lemma shows that,

locally in time, the sets Σρ \Bt are C2 diffeomorphic to each other.

Lemma 5.1. Assume that st satisfies (3.6), (3.7), and (3.12), and let Σρ be as

in (3.8). Let t0 ∈ [0, T ]. Then, there exists a neighborhood Iδ(t0) = [0, T ] ∩ (t0 −
δ, t0 + δ) of t0 with the following property: for every t ∈ Iδ(t0) there exists a C2

diffeomorphism Φt0
t : Σρ → Σρ , coinciding with the identity on Σρ \ Σρ−1 , such

that Φt0
t = st0 ◦ s

−1
t on Bt. In particular, we have

Φt0
t (Bt) = Bt0 and Φt0

t (Σρ \Bt) = Σρ \Bt0 . (5.1)

Moreover, ∥∥Φt0
t

∥∥
C2(Σρ;R3)

+
∥∥(Φt0

t )−1
∥∥
C2(Σρ;R3)

6 C, (5.2)

where C is a constant independent of t0, t.

Proof. Recall that Bt ⊂⊂ Σρ−1 by (3.8), so that Bt ∪ (Σρ \ Σρ−1) has a C2

boundary. Therefore, it is possible to find a function Ψt0
t ∈ C2(Σρ;R

3) such

that Ψt0
t = st0 ◦ s−1

t − I on Bt, Ψt0
t = 0 on Σρ \ Σρ−1 , and

∥∥Ψt0
t

∥∥
C2(Σρ;R3)

6

C
∥∥st0 ◦ s−1

t − I
∥∥
C2(Bt;R3)

, where I is the identity map and C is a constant de-

pending only on ρ and t0 (see, e.g., [8, Theorem 6.37, page 136]). Since st0 ◦
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s−1
t − I → 0 in C2(Bt;R

3) as t→ t0 , there exists a neighborhood Iδ(t0) of t0 such

that
∥∥Ψt0

t

∥∥
C2(Σρ;R3)

6 1/2.

For every t ∈ Iδ(t0) let us define Φt0
t := I + Ψt0

t . Then Φt0
t = I on Σρ \ Σρ−1

and Φt0
t = st0 ◦ s−1

t on Bt, which proves the first equality in (5.1). Notice that∣∣Φt0
t (x) − x

∣∣ 6 1/2 for every x ∈ Σρ ; this implies Φt0
t (Σρ−1) ⊂ Σρ. Since Φt0

t (Σρ \

Σρ−1) = Σρ \ Σρ−1 , we conclude that Φt0
t (Σρ) ⊂ Σρ.

Let us prove that Σρ ⊂ Φt0
t (Σρ). Since Φt0

t = I on Σρ \ Σρ−1 , it is enough

to show that Σρ−1 ⊂ Φt0
t (Σρ). To this aim we fix y ∈ Σρ−1 . We want to show

that there exists x ∈ Σρ such that x + Ψt0
t (x) = y. This is equivalent to solve

the fixed point problem x = y − Ψt0
t (x). Since

∥∥Ψt0
t

∥∥
C1(Σρ;R3)

6 1/2, the map

x 7→ y − Ψt0
t (x) is a contraction of Σρ−1/2 into itself. This implies the existence

of a fixed point and concludes the proof of the inclusion Σρ−1 ⊂ Φt0
t (Σρ).

The injectivity of Φt0
t follows easily from the inequality

∥∥Ψt0
t

∥∥
C1(Σρ;R3)

6 1/2.

Therefore, Φt0
t : Σρ → Σρ is bijective. Its inverse is of class C2 by the Local

Invertibility Theorem. The second equality in (5.1) follows now from the first

one.

Estimate (5.2) is a consequence of (3.12) and (3.13).

Given two Banach spaces X and Y , the symbol L(X ;Y ) denotes the Ba-

nach space of continuous linear maps from X into Y . Given a function Φ ∈
H1/2(∂A;R3), recalling (2.8), let us define

λt := −
1

4π

∫

∂Bt

(Φ ◦ s−1
t ) · n dS,

for every t ∈ [0, T ]. The constant λt is chosen so that if u|∂Bt = Φ ◦ s−1
t and

u|∂Σρ = λtz/ |z|
3
, then ∫

∂(Bext
t ∩Σρ)

u · n dS = 0.

Lemma 5.2 (Extension operators). Under the assumptions of Lemma 5.1, there

exists a continuous function t 7→ St from Iδ(t0) into L(H1/2(∂A;R3);H1(Σρ;R
3))

such that

St(Φ) = Φ ◦ s−1
t on ∂Bt ,

St(Φ) = λt
z

|z|3
on ∂Σρ ,

‖St(Φ)‖H1(Σρ;R3) 6 C ‖Φ‖H1/2(∂A;R3) ,

where the constant C is independent of t and Φ.

Proof. By known results on Sobolev spaces [15, Theorem 5.7, page 103], there

exists St0 ∈ L(H1/2(∂A;R3);H1(Σρ;R
3)) such that St0(Φ) = Φ ◦ s−1

t0 on ∂Bt0 .

Let Φt0
t be the function given in the proof of Lemma 5.1. It is easy to show that

[St0(Φ)] ◦ Φ
t0
t = Φ ◦ s−1

t on ∂Bt . It is enough to define St(Φ) = [St0(Φ)] ◦ Φ
t0
t .

Proposition 5.3 (Solenoidal extension operators). Under the assumptions of

Lemma 5.1, let t0 ∈ [0, T ] and let z0 ∈ Bt0 . Let δ > 0 and ε > 0 be such that

(4.16) holds true. Then there exists a uniformly bounded family (Tt)t∈Iδ(t0) of

continuous linear operators

Tt : H
1/2(∂A;R3) → H1(Σρ \Σ

0
ε;R

3)

such that

Preprint SISSA 44/2010/M (July 2, 2010)



5 Extension operators 18

(i) for all t ∈ Iδ(t0) and for all Φ ∈ H1/2(∂A;R3),

Tt(Φ) = Φ ◦ s−1
t on ∂Bt , (5.3a)

Tt(Φ) = λt
z

|z|3
on ∂Σρ , (5.3b)

div(Tt(Φ)) = 0 in Σρ \ Σ
0
ε ; (5.3c)

(ii) for every Φ ∈ H1/2(∂A;R3) the map t 7→ Tt(Φ) is continuous from Iδ(t0) into

H1(Σρ \ Σ
0
ε;R

3).

In particular, the following estimate holds

‖Tt(Φ)‖H1(Σρ\Σ0
ε;R

3) 6 C ‖Φ‖H1/2(∂A;R3) , (5.4)

where the constant C is independent of t and Φ.

The proof of Proposition 5.3 requires the estimates contained in the follow-

ing lemmas.

Lemma 5.4. For every bounded open set Ω ⊂ R
3 with Lipschitz boundary, there

exists a constant C1(Ω) > 0 such that

‖p‖L2(Ω) 6 C1(Ω)
(
‖∇p‖H−1(Ω;R3) + ‖p‖H−1(Ω)

)

for every p ∈ L2(Ω).

The proof can be found in Lemma 7.1 in [15, page 187].

Lemma 5.5. For every bounded connected open set Ω ⊂ R
3 with Lipschitz

boundary, there exists a constant C2(Ω) > 0 such that

inf
t∈R

‖p− t‖H−1(Ω) 6 C2(Ω) ‖∇p‖H−1(Ω;R3) , (5.5)

for every p ∈ L2(Ω).

Proof. First, let us notice that the infimum in (5.5) is attained. Indeed,

‖p− t‖H−1(Ω) = |t|
∥∥∥
p

t
− 1

∥∥∥
H−1(Ω)

→ +∞ as t→ ±∞.

Let us assume that (5.5) does not hold. Then, there exists a sequence (pk)k such

that

‖pk − tk‖H−1(Ω) > k ‖∇pk‖H−1(Ω;R3) ,

where tk is the optimal constant for pk. It is not restrictive to assume the left

hand side of the last inequality to be equal to 1, and that tk = 0 for every k.

Indeed, we can take p̃k := ‖pk − tk‖
−1
H−1(Ω) (pk−tk) and for every τ ∈ R we obtain

‖p̃k − τ‖H−1(Ω) =

∥∥∥∥∥
pk − tk

‖pk − tk‖H−1(Ω)

− τ

∥∥∥∥∥
H−1(Ω)

=
1

‖pk − tk‖H−1(Ω)

∥∥∥pk − tk − τ ‖pk − tk‖H−1(Ω)

∥∥∥
H−1(Ω)

>
‖pk − tk‖H−1(Ω)

‖pk − tk‖H−1(Ω)

= 1 = ‖p̃k‖H−1(Ω) ,

(5.6)

so that the minimum for p̃k is attained at τ = 0. Moreover, we have

1 = ‖p̃k‖H−1(Ω) > k ‖∇p̃k‖H−1(Ω;R3) .
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Therefore, ‖∇p̃k‖H−1(Ω;R3) → 0, ‖p̃k‖H−1(Ω) = 1, and ‖p̃k‖L2(Ω) 6 C < +∞ by

Lemma 5.4. This implies that (p̃k)k converges strongly inH−1(Ω) and weakly in

L2(Ω) to a function p̃ with ‖p̃‖H−1(Ω) = 1. Notice that ∇p̃k → ∇p̃ in H−1(Ω;R3).

We conclude that ∇p̃ = 0, so that p̃ = K, a constant. If K = 0, this contradicts

the equality ‖p̃‖H−1(Ω) = 1. Without loss of generality, we may assume K > 0.

From (5.6) we get

(K − τ) ‖1‖H−1(Ω) = ‖p̃− τ‖H−1(Ω) > ‖p̃‖H−1(Ω) = K ‖1‖H−1(Ω) ,

and this is clearly false for 0 < τ < K. The lemma is proved.

Lemma 5.6. For every bounded connected open set Ω ⊂ R
3 with Lipschitz

boundary, there exists a constant C3(Ω) > 0 such that

‖p‖L2(Ω) 6 C3(Ω) ‖∇p‖H−1(Ω;R3) ,

for every p ∈ L2(Ω) with
∫
Ω p dx = 0.

Proof. Let us fix p ∈ L2(Ω) with
∫
Ω
p dx = 0. By Lemma 5.4 for every t ∈ R, we

have

‖p‖L2(Ω) 6 ‖p− t‖L2(Ω) 6 C1(Ω)
(
‖∇p‖H−1(Ω;R3) + ‖p− t‖H−1(Ω)

)
.

Taking the infimum with respect to t and using Lemma 5.5, we obtain

‖p‖L2(Ω) 6 C3(Ω) ‖∇p‖H−1(Ω;R3) ,

where C3(Ω) := C1(Ω)(1 + C2(Ω)).

The constantC3(Ω) plays a crucial role in the following result concerning the

estimate of a particular solution of the equation div u = g in Ω with Dirichlet

boundary conditions u = 0 on ∂Ω.

Lemma 5.7. Let Ω ⊂ R
3 be a bounded connected open set with Lipschitz bound-

ary and let g ∈ L2(Ω) with
∫
Ω
g dx = 0. Then there exists a unique u ∈ H1

0 (Ω;R
3)

such that

(i) div u = g in Ω,

(ii)
∫
Ω
∇u :∇v dx = 0 for all v ∈ H1

0 (Ω;R
3) with div v = 0 in Ω.

Moreover, the following estimate holds

‖u‖H1
0 (Ω;R3) 6 C3(Ω) ‖g‖L2(Ω) , (5.7)

where C3(Ω) is the constant in Lemma 5.6.

Proof. Let X be the subspace of L2(Ω) determined by the condition
∫
Ω g dx = 0,

and let Y = H1
0 (Ω;R

3), endowed with the scalar product (u | v)Y :=
∫
Ω∇u :∇v dx,

so that Y ′ = H−1(Ω;R3). Let A : X → Y ′ be the operator defined by Ag = ∇g,

and let A′ : Y → X be its conjugate operator, given by A′u = − div u. Let

J : Y ′ → Y be the Riesz operator, defined by 〈f, u〉 = (Jf | u)Y for every

u ∈ Y and for every f ∈ Y ′, where 〈·, ·〉 denotes the duality product between

Y ′ = H−1(Ω;R3) and Y = H1
0 (Ω;R

3). Notice that in our case u = Jf if and only

if u is the weak solution of the Dirichlet problem

−∆u = f in Ω, u ∈ H1
0 (Ω;R

3). (5.8)

Preprint SISSA 44/2010/M (July 2, 2010)



5 Extension operators 20

Let (JA)∗ : Y → X be the Hilbert space adjoint of the operator JA : X → Y .

Let us prove that (JA)∗ = A′. For every g ∈ X and every u ∈ Y , we have

((JA)∗u | g)X = (JAg | u)Y = 〈Ag, u〉 = (A′u | g)X ,

where (· | ·)X denotes the scalar product of L2(Ω) onX . This implies (JA)∗ = A′.

By Lemma 5.6 the range R(A) of A is closed in Y ′ = H−1(Ω;R3). Since

R(JA) = J(R(A)), we conclude that R(JA) is closed in Y , hence R(JA) =
N((JA)∗)⊥, where N denotes the kernel and ⊥ denotes the orthogonal com-

plement in Y = H1
0 (Ω;R

3).
Since R(A) is closed, R(A′) = R((JA)∗) is closed too, by Banach’s Closed

Range Theorem [22, page 205].

We now want to prove that A′ = (JA)∗ is an isomorphism from R(JA) =
N((JA)∗)⊥ = N(A′)⊥ into X . Indeed, if u ∈ N((JA)∗)⊥, the equality (JA)∗u = 0
implies that u ∈ N((JA)∗), so that u = 0; this proves injectivity. Moreover,

it is clear that the image of N((JA)∗)⊥ under the map (JA)∗ coincides with

R((JA)∗). Since this is closed, we have R((JA)∗) = N(JA)⊥ = {0}⊥ = X ,

where the second equality follows from the injectivity of A, and ⊥ denotes now

the orthogonal complement in X .

This concludes the proof the fact that A′ is an isomorphism from N(A′)⊥

into X , and this implies (i) and (ii).

To achieve estimate (5.7), let us fix u and g satisfying (i) and (ii). By (i),

u ∈ N(A′)⊥ = R(JA), hence there exists h ∈ X such that u = JAh. It follows

that

‖u‖2H1
0 (Ω) = 〈Ah, u〉 = (h | A′u)L2(Ω) = (h | g)L2(Ω)

6 ‖h‖L2(Ω) ‖g‖L2(Ω)

6 C3(Ω) ‖∇h‖H−1(Ω;R3) ‖g‖L2(Ω) = C3(Ω) ‖u‖H1
0 (Ω) ‖g‖L2(Ω) ,

where the last equality follows from (5.8) with f = ∇h. This implies (5.7).

To prove Proposition 5.3 we have to show that the constants C3(Bt) and

C3(Σρ \ Bt) are uniformly bounded with respect to t. The following lemma will

be used, together with Lemma 5.1, to obtain a uniform bound for the constants

C3(Bt) and C3(Σρ \ Bt) under C2 diffeomorphisms. Let Ω ⊂ R
3 be a bounded

open subset with C2 boundary, and let Φ ∈ C2(R3;R3). Let Λ := Φ(Ω) and let

Ψ ∈ C2(R3;R3) be the inverse of Φ, so that Ω = Ψ(Λ). Then, the following

estimate holds.

Lemma 5.8. There exists a non decreasing function a : [0,+∞) → [0,+∞) such

that the constantsCi introduced in Lemmas 5.4, 5.5, and 5.6 satisfy the estimate

Ci(Λ) 6 a(CΦ + CΨ)Ci(Ω), for i = 1, 2, 3,

where CΦ := max{|Φ| , |∇Φ| ,
∣∣∇2Φ

∣∣} and CΨ := max{|Ψ| , |∇Ψ| ,
∣∣∇2Ψ

∣∣}.

Proof. We prove the lemma only for C2. The proof for C1 is similar. The result

for C3 follows from the equality C3 = C1(1 + C2). Let q = p ◦ Ψ and p = q ◦ Φ.

Then,

‖q − t‖H−1(Λ) = sup
g∈H1

0 (Λ)
‖g‖=1

〈q − t, g〉 = sup
g∈H1

0 (Λ)
‖g‖=1

〈p ◦Ψ− t, g〉

= sup
g∈H1

0 (Λ)
‖g‖=1

〈p− t, g(Φ) |det∇Φ|〉

6 b(CΦ) ‖p− t‖H−1(Ω) ,
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where b is a suitable increasing function. By (5.5), there exists an increasing

function a such that

inf
t∈R

‖q − t‖H−1(Ω) 6 b(CΦ)C2(Ω) ‖∇p‖H−1(Ω;R3)

6 a(CΦ + CΨ)C2(Ω) ‖∇q‖H−1(Λ;R3) .

This concludes the proof.

Let Σρ be as in (3.8) and t0, z0, δ, ε, Iδ(t0), and Σ0
ε be as in Proposition

5.3. For every t ∈ Iδ(t0) let Ut :
{
g ∈ L2(Bt \ Σ0

ε;R
3) :

∫
Bt\Σ0

ε
g dz = 0

}
→

H1
0 (Σρ \Σ

0
ε;R

3) be the linear operator defined by Ut(g) = u, where u|Bt\Σ0
ε

is the

unique function in H1
0 (Bt \ Σ

0
ε;R

3) such that

div u = g in Bt \ Σ
0
ε , (5.9a)∫

Bt\Σ0
ε

∇u :∇v dz = 0 for all v ∈ H1
0 (Bt \ Σ

0
ε;R

3) : div v = 0 in Bt \ Σ
0
ε , (5.9b)

and u = 0 in (Σρ \Bt). By Lemmas 5.1, 5.7, and 5.8, there exists a constant M ,

independent of t, such that

‖Ut‖Lt
6M, (5.10)

where Lt is the Banach space of continuous linear operators from
{
g ∈ L2(Bt \

Σ0
ε;R

3) :
∫
Bt\Σ0

ε
g dz = 0

}
into H1

0 (Σρ \ Σ
0
ε;R

3).

Lemma 5.9. Assume (3.6), (3.7), (3.9), and (3.12). Let t0 ∈ [0, T ] and let tk ∈
Iδ(t0), k = 1, 2, . . . ,∞ , and let g ∈ L2(Σρ \ Σ

0
ε) with

∫
Σρ\Σ0

ε
g dz = 0 and

supp(g) ⊂⊂ Btk \ Σ0
ε for every k. (5.11)

Assume that tk → t∞ as k → ∞. Then Utk(g) → Ut∞(g) strongly in H1
0 (Σρ \

Σ0
ε;R

3). A similar result holds if we exchange the roles of Btk \ Σ0
ε and Σρ \ Btk

in the definition of Ut and in (5.11).

Proof. For k = 1, 2, . . . ,∞ , let utk := Utk(g). By (5.10), the sequence (utk)k is

bounded in H1
0 (Σρ \ Σ0

ε;R
3). Therefore a subsequence, still denoted by (utk)k ,

converges weakly in H1
0 (Σρ \ Σ

0
ε;R

3) to some function u∗.

We claim that u∗ ∈ H1
0 (Bt∞ \ Σ0

ε;R
3). First notice that utk ◦ (stk ◦ s−1

t∞) = 0

on ∂Bt∞ , hence utk ◦ (stk ◦ s−1
t∞) ∈ H1

0 (Bt∞ \ Σ0
ε;R

3). Since stk ◦ s−1
t∞ → I in

C1(Bt∞ \ Σ0
ε;R

3) as k → ∞, and utk ⇀ u∗ weakly in H1(Σρ \ Σ
0
ε;R

3), we obtain

utk ◦ (stk ◦ s−1
t∞) ⇀ u∗ weakly in H1(Bt∞ ;R3). This implies that u∗ ∈ H1

0 (Bt∞ \

Σ0
ε;R

3) and proves the claim.

Since supp(g) ⊂⊂ Btk \ Σ0
ε for every k, condition (i) in Lemma 5.7 gives

div utk = g in Σρ \Σ
0
ε for every k, hence div u∗ = g in Σρ .

If v ∈ C∞
c (Bt∞ \ Σ0

ε;R
3) with div v = 0, from (ii) we have

∫

Btk
\Σ0

ε

∇utk :∇v dz = 0, for k large enough.

Passing to the limit as k → ∞, we get
∫

Bt∞\Σ0
ε

∇u∗ :∇v dz = 0.

An approximation argument based on Theorem 2.2 gives the same equality for

every v ∈ H1
0 (Bt∞ \ Σ0

ε;R
3) with div v = 0. By the uniqueness result proved in

Lemma 5.7, we have u∗ = ut∞ .
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To prove the strong convergence of (utk)k in H1
0 (Σρ \ Σ0

ε;R
3), we fix a con-

nected open set B with Lipschitz boundary such that supp(g) ⊂⊂ B ⊂⊂ Btk \Σ
0
ε

for every k. By Lemma 5.7, there exists w ∈ H1
0 (B;R3) such that






divw = g on B,∫

B

∇w :∇v dz = 0 for every v ∈ H1
0 (B;R3) with div v = 0.

We extend w by setting w = 0 on (Σρ \ Σ0
ε) \ B. Since supp(g) ⊂⊂ B, we have

divw = g on Σρ \Σ
0
ε .

We take v = utk − w as test function in condition (ii) and we obtain

∫

Σρ\Σ0
ε

|∇utk |
2
dz =

∫

Σρ\Σ0
ε

∇utk :∇v dz, for k = 1, 2, . . . ,∞.

Since ∇utk ⇀ ∇ut∞ in L2(Σρ \ Σ
0
ε;M

3×3), taking the limit as k → ∞ we get

∫

Σρ\Σ0
ε

|∇utk |
2
dz →

∫

Σρ\Σ0
ε

|∇ut∞ |
2
dz,

which concludes the proof of the strong convergence in H1
0 (Σρ \ Σ

0
ε;R

3).

Lemma 5.10. Under the hypotheses of Lemma 5.9, let t 7→ gt be a continuous

function from Iδ(t0) into L2(Σρ \ Σ
0
ε), endowed with the strong topology, and let

Ut be the operator defined in (5.9). Assume that

∫

Bt\Σ0
ε

gt dz = 0 for every t ∈ Iδ(t0). (5.12)

Then the function t 7→ Ut(gt) is continuous from Iδ(t0) into H1
0 (Σρ \ Σ0

ε;R
3),

endowed with the strong topology. A similar result holds if we exchange the

roles of Bt \ Σ
0
ε and Σρ \Bt in the definition of Ut and in (5.12).

Proof. Let us fix τ ∈ Iδ(t0) and η > 0. There exists h ∈ L2(Σρ \Σ
0
ε) with compact

support in Bτ such that

‖h− gτ‖L2(Bτ\Σ0
ε)
< η.

By continuity, for t sufficiently close to τ we have

‖h− gt‖L2(Bt\Σ0
ε)
< η,

and supp(h) ⊂⊂ Bt \ Σ
0
ε. By (5.10) we have

‖Ut(gt)− Uτ (gτ )‖H1

6 ‖Ut(gt − h)‖H1 + ‖Ut(h)− Uτ (h)‖H1 + ‖Uτ (h− gτ )‖H1

6 ‖Ut‖Lt
‖gt − h‖L2(Bt\Σ0

ε)
+ ‖Ut(h)− Uτ (h)‖H1 + ‖Uτ‖Lτ

‖h− gτ‖L2(Bτ\Σ0
ε)

6Mη + ‖Ut(h)− Uτ (h)‖+Mη.

Lemma 5.9 yields

lim sup
t→τ

‖Ut(gt)− Uτ (gτ )‖H1 6 2Mη.

As η is arbitrary, we have shown that Ut(gt) → Uτ (gτ ) strongly in H1(Σρ \
Σ0

ε;R
3).
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Proof of Proposition 5.3. For all t ∈ Iδ(t0), let ζt := St(Φ) be the extension

given by Lemma 5.2. Define gintt and gextt as div(ζt) restricted to Bt \ Σ0
ε and

Σρ \Bt , respectively. An easy computation shows that

∫

Bt\Σ0
ε

gintt dz =

∫

Σρ\Bt

gextt dz = 0.

Therefore, there exist functions uintt ∈ H1
0 (Bt \Σ

0
ε;R

3) and uextt ∈ H1
0 (Σρ \Bt;R

3)
satisfying conditions (i) and (ii) of Lemma 5.7. One can define ut = Ut(gt) as the

function defined by uintt on Bt \Σ
0
ε and by uextt on Σρ \Bt . Notice that ut agrees

with zero on ∂Bt , on ∂Σρ , and on ∂Σ0
ε .

Consider now Tt(Φ) := St(Φ) − Ut(gt) = ζt − ut . This extension is clearly

in H1(Σρ \ Σ0
ε;R

3) and agrees with (5.3) so that (i) is satisfied. Moreover, by

the continuity properties of St and Ut , also Tt is continuous from Iδ(t0) into

H1(Σρ \ Σ
0
ε;R

3), so that (ii) and estimate (5.4) follow.

6 Dependence on the data

Using the tools developed in the preceding section, we are finally ready to prove

some results concerning continuity and measurability properties of the solu-

tions to the Stokes problems. These, eventually, will lead us to the statement of

Theorem 6.4 about the existence, uniqueness, and regularity of the rigid motion

t 7→ rt that causes the swimmer’s displacement in the viscous fluid.

Proposition 6.1. Assume that st satisfies (3.6), (3.7), and (3.12). Let t0 ∈ [0, T ]
and z0 ∈ Bt0 , and let Σ0

ε and Iδ(t0) be as in (4.16). Suppose, in addition, that

Iδ(t0) satisfies Lemma 5.1. Let the map t 7→ Φt belong to C0(Iδ(t0);H
1/2(∂A;R3))∩

L∞(Iδ(t0); Lip(∂A;R
3)). Define

λt := −
1

4π

∫

∂Bt

(Φt ◦ s
−1
t ) · n dS.

Let wt be the solution of the problem

min

∫

Σ0,ext
ε

|Ew|
2
dz, (6.1)

where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w =

Φt ◦ s
−1
t on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0

ε . Then t 7→ wt belongs to

C0(Iδ(t0);V(Σ
0,ext
ε )).

Proof. Let (tk)k ⊂ Iδ(t0) be a sequence that converges to t∞ ∈ Iδ(t0). Let ψtk

be the extension of Φtk ◦ s−1
tk

provided by Proposition 5.3. It can be further

extended by λtz/ |z|
3

on R
3 \ Σρ, so that ψtk ∈ V(Σ0,ext

ε ) and is a competitor in

the minimum problem (6.1) corresponding to t = tk; therefore,

∫

Σ0,ext
ε

|Ewtk |
2
dz 6

∫

Σ0,ext
ε

|Eψtk |
2
dz 6 ‖ψtk‖

2
H1(Σρ\Σ0

ε;R
3)

6 C2(Lip(Φtk) + max |Φtk |)
2
6 (CM)2,

where C is the constant in (5.4) and M > 0 is a uniform upper bound of

Lip(Φtk) + max |Φtk |, whose existence is guaranteed by the fact that t 7→ Φt be-

longs to L∞(Iδ(t0); Lip(∂A;R
3)). Thus, the sequence (wtk )k is equi-bounded in

V(Σ0,ext
ε ) and, up to a subsequence, it converges weakly to some w∗ ∈ V(Σ0,ext

ε ).
We claim that w∗ is a competitor in problem (6.1) for t = t∞ . First, notice

that Φtk ◦ s−1
t∞ = wtk ◦ (stk ◦ s−1

t∞) on ∂Bt∞ . Let Φtk
t∞ be the extension of stk ◦ s−1

t∞
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considered in Lemma 5.1. Arguing as in the proof of that lemma, we find that

Φtk
t∞ → I in C1(Σρ;R

3) as tn → t∞ . Since wtk ⇀ w∗ weakly in H1(Σρ \ Σ
0
ε;R

3),

we obtain that wtk ◦ Φtk
t∞ ⇀ w∗ weakly in H1(Σρ \ Σ0

ε;R
3). This implies that

wtk ◦ (stk ◦ s
−1
t∞)⇀ w∗ weakly in H1/2(∂Bt∞ ;R3). On the other hand, Φtk ◦ s

−1
t∞ →

Φt∞ ◦ s−1
t∞ in H1/2(∂Bt∞ ;R3). As Φtk ◦ s

−1
t∞ = wtk ◦ (stk ◦ s

−1
t∞) on ∂Bt∞ , we deduce

that w∗ = Φt∞ ◦ s−1
t∞ on ∂Bt∞ . This concludes the claim.

Let v ∈ V(Σ0,ext
ε ) be another competitor in problem (6.1) for t = t∞ , and

let ζ := v − ψt∞ , where ψt∞ := Tt∞(Φt∞) is the extension provided by Propo-

sition 5.3, extended by zero on R
3 \ Σρ. The function ζ vanishes on ∂Bt∞ and

its restrictions to Bt∞ and Bext
t∞ belong to H1

0 (Bt∞ \Σ0
ε;R

3) and V0(B
ext
t∞ ;R3), re-

spectively. Then by the Density Theorem 2.2 and by a classical density result

in H1
0 (Bt∞ \ Σ0

ε;R
3), for every η > 0, there exist a function ζη ∈ V(Σ0,ext

ε ), van-

ishing in a neighborhood of ∂Bt∞ , such that ‖ζη − ζ‖D1,2(Σ0,ext
ε ;R3) 6 η. Define

now vηtk := ψtk + ζη, and observe that, for k large enough, it is a competitor in

the minimum problem (6.1) for t = tk . Therefore,

∫

Σ0,ext
ε

|Ewtk |
2
dz 6

∫

Σ0,ext
ε

∣∣Evηtk
∣∣2 dz =

∫

Σ0,ext
ε

|Eψtk + Eζη|
2
dz.

Taking the limit first as k → ∞ and then as η → 0, we get

∫

Σ0,ext
ε

|Ew∗|
2
dz 6 lim sup

k→∞

∫

Σ0,ext
ε

|Ewtk |
2
dz

6

∫

Σ0,ext
ε

|Eψt∞ + Eζ|
2
dz =

∫

Σ0,ext
ε

|Ev|
2
dz,

where the convergence of Eψtk to Eψt∞ is guaranteed as a consequence of (ii)

in Proposition 5.3. This proves that w∗ is a minimum, so that w∗ = wt∞ . By

taking v = w∗, we get the convergence of the D1,2 norms, therefore wtk → wt∞

strongly in V(Σ0,ext
ε ). This concludes the proof.

We notice that Theorem 2.7 turns out to be a particular case of Proposition

6.1, for special boundary data not depending on time. Nonetheless, we think it

is useful to present both results, since the technique of the proof is much easier

in Theorem 2.7.

As we have seen at the end of Section 4, Theorem 2.7 applied to purely

linear and purely angular boundary velocities guarantees the continuity of the

elements of the matrices in (4.3), while Proposition 6.1 will give the continuity

of the known terms F sh
t and M sh

t in (4.8).

Theorem 6.2. Assume that st satisfies (3.6), (3.7), (3.9), and (3.12), and let

t0 ∈ [0, T ] , z0 ∈ Bt0 , and let Σ0
ε and Iδ(t0) be as in (4.16). Assume, in addition,

that Iδ(t0) satisfies Lemma 5.1. Let wt be the solution of the problem

min

∫

Σ0,ext
ε

|Ew|
2
dz, (6.2)

where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w =

ṡt ◦ s
−1
t on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0

ε . Then the function t 7→ wt is

measurable and bounded from Iδ(t0) into V(Σ0,ext
ε ).

Proof. We approximate the functions ṡt with the sequence Φη
t defined by

Φη
t (x) :=

∫

R

κη(t− τ)ṡτ (x) dτ, (6.3)
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where κη is a regularizing kernel supported in the ball Ση of radius η and of

unit mass. Since the function τ 7→ ṡτ belongs to L∞(Iδ(t0);W
1,p(A;R3)) for

every 2 6 p < ∞, the integral in (6.3) can be seen as a Bochner integral in

W 1,p(A;R3). This implies that t 7→ Φη
t belongs to C0(Iδ(t0);W

1,p(A;R3)); in

particular, it belongs to C0(Iδ(t0);H
1/2(∂A;R3)). Moreover, by (3.14), we have

Lip(Φη
t ) 6 L. Therefore, the map t 7→ Φη

t belongs to C0(Iδ(t0);H
1/2(∂A;R3)) ∩

L∞(Iδ(t0); Lip(∂A;R
3)). Moreover, for almost every t ∈ Iδ(t0), Φ

η
t → ṡt strongly

in H1/2(∂A;R3).
Let wη

t be the solutions to problems (6.2), where the minimum is now taken

over all functions w ∈ V(Σ0,ext
ε ) such that w = Φη

t ◦ s−1
t on ∂Bt and w = λt(z −

z0)/ε3 on ∂Σ0
ε . By the properties of the functions t 7→ Φη

t mentioned above

and by Proposition 6.1, the functions t 7→ wη
t are continuous from Iδ(t0) into

V(Σ0,ext
ε ).

We recall that, for almost every t ∈ Iδ(t0), Φ
η
t → ṡt strongly in H1/2(∂A;R3).

This implies that Φη
t ◦s

−1
t → ṡt◦s

−1
t strongly inH1/2(∂Bt;R

3). By the continuous

dependence of the solutions on the data, we have wη
t → wt in V(Σ0,ext

ε ) for

almost every t ∈ Iδ(t0). This implies the measurability of t 7→ wt .

Theorem 6.3. Under the hypotheses of Theorem 6.2, the vector bt and the ma-

trix Ωt in (4.5) are bounded and measurable with respect to t. If, in addition,

the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then t 7→ (bt ,Ωt) belongs to

C0([0, T ];R3×M
3×3).

Proof. As noticed in Section 4, it is enough to prove that the functions in (4.12)

are bounded and measurable, and that they are continuous under the addi-

tional assumption on t 7→ st. Moreover, it is sufficient to prove the measurabil-

ity and boundedness of these functions in a subinterval of time; the measurabil-

ity and boundedness on the whole [0, T ] will easily follow. As for the first three

functions, this property is proved in Proposition 4.4. The function t 7→ wt from

Iδ(t0) into V(Σ0,ext
ε ) is bounded and measurable by Theorem 6.2. By Proposition

6.1 it is also continuous under the additional assumption. By formulas (4.17),

this yields the boundedness and measurability of t 7→ F sh
t and t 7→ M sh

t , and

the continuity under the additional assumption on t 7→ st, since the functions

t 7→ vit and t 7→ v̂it are continuous from Iδ(t0) into V(Σ0,ext
ε ) by Theorem 2.7 and

Lemma 4.3.

We are now in a position to prove the main result of the paper.

Theorem 6.4. Assume that t 7→ st satisfies (3.6), (3.7), (3.9), and (3.12). Let

y∗ ∈ R
3 and R∗ ∈ SO(3). Then (4.6) has a unique absolutely continuous solution

t 7→ (yt , Rt) defined in [0, T ] with values in R
3×SO(3) such that y0 = y∗ and

R0 = R∗. In other words, there exists a unique rigid motion t 7→ rt(z) = yt +Rtz
such that the deformation function t 7→ ϕt = rt ◦ st satisfies the equations of

motion (4.1).

Moreover this solution is Lipschitz continuous with respect to t. If, in ad-

dition, the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then the solution

t 7→ (yt , Rt) belongs to C1([0, T ];R3×SO(3)).

Proof. The existence and uniqueness of the solution of the Cauchy problem for

(4.6) follow immediately from Theorem 6.3, by standard results on ordinary dif-

ferential equations with bounded measurable coefficients, see, e.g., [9, Theorem

I.5.1]. The assertion concerning the deformation function t 7→ ϕt and the equa-

tion of motion (4.1) follows from the equivalence Theorem 4.1. The Lipschitz

continuity of the solution follows from the boundedness of the right-hand sides

of the equation in (4.6).
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If, in addition, the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then The-

orem 6.3 ensures that the coefficients of the equations in (4.6) are continuous

with respect to t, and therefore the solutions are of class C1.

We notice that assumptions (1.2) are not needed in Theorem 6.4. As a con-

sequence, the theorem holds in a more general setting, when st is not a pure

shape change. For instance, if st were a rigid motion for every t, the unique rt
given by the theorem would be rt = s−1

t . Consequently, ϕt would be the identity

for every t and the swimmer would not move.

A Remarks on Korn’s inequality

We prove here a version of Korn’s inequality in the space D1,2(Ω;R3) for an ex-

terior domain with Lipschitz boundary Ω ⊂ R
3. The classical version of Korn’s

inequality concerns bounded domains Ω ⊂ R
3 with Lipschitz boundary and

provides the existence of a constant γ(Ω) such that

‖u‖
2
L2(Ω;R3) + ‖∇u‖L2(Ω;M3×3) 6 γ(Ω)

[
‖u‖

2
L2(Ω;R3) + ‖Eu‖

2
L2(Ω;M3×3)

]
, (A.1)

for every u ∈ H1(Ω;R3), see [20, page 16]. Another version of Korn’s inequality

holds true in Ω = R
3 in the form

‖∇u‖
2
L2(R3;M3×3) 6 2 ‖Eu‖

2
L2(R3;M3×3) , (A.2)

for every u ∈ L2
loc(R

3;R3) with ∇u ∈ L2(R3;M3×3). This classical inequality can

be obtained from the identity ‖∇u‖
2
L2(R3;M3×3)+‖div u‖

2
L2(R3;R3) = 2 ‖Eu‖

2
L2(R3;M3×3) ,

which, in turn, can be proved by Fourier transform.

For the purpose of this paper we need to extend (A.2) to the case of an exte-

rior domain with Lipschitz boundary Ω.

The first step for the proof of this result is the following lemma concerning

the projections onto the space Π of infinitesimal rigid motions, defined as the

affine functions of the form v(x) = c + Ax, where c ∈ R
3 and A is a skew

symmetric 3×3 matrix.

Lemma A.1. Let Ω ⊂ R
3 be a bounded open set with Lipschitz boundary. Then,

there exists a constant c(Ω) > 0 such that

‖u− π(u)‖L2(Ω;R3) 6 c(Ω) ‖Eu‖L2(Ω;M3×3) for all u ∈ H1(Ω;R3), (A.3)

where π is the orthogonal projection from L2(Ω;R3) onto Π.

Proof. Suppose by contradiction that (A.3) does not hold. Then, for every k,

there exists a function uk ∈ H1(Ω;R3) such that

‖uk − π(uk)‖L2(Ω;R3) > k ‖Euk‖L2(Ω;M3×3) .

It is not restrictive to normalize, so that

1 = ‖uk − π(uk)‖L2(Ω;R3) > k ‖Euk‖L2(Ω;M3×3) . (A.4)

By applying the classical Korn’s inequality (A.1), we obtain that uk − π(uk)
is bounded in H1(Ω;R3); therefore a subsequence, not relabeled, of uk − π(uk)
converges weakly inH1(Ω;R3) and strongly in L2(Ω;R3) to a function v enjoying

the following properties: ‖v‖L2(Ω;R3) = 1 and, using (A.4), Ev = 0, so that v is
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an infinitesimal rigid motion. Invoking the minimality of the projection π and

once more (A.4), we are driven to

1 = ‖uk − π(uk)‖L2(Ω;R3) 6 ‖uk − π(uk)− v‖L2(Ω;R3) → 0,

which is clearly impossible.

We now in a position to prove a version of Korn’s inequality for an exterior

domain with Lipschitz boundary.

Theorem A.2. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary.

Then there exists a constant C(Ω) such that

‖∇u‖
2
L2(Ω;M3×3) 6 C(Ω) ‖Eu‖

2
L2(Ω;M3×3) , (A.5)

for every u ∈ D1,2(Ω;R3).

Proof. Let Σρ be an open ball of radius ρ centered at the origin such that Λ :=
R

3 \ Ω ⊂⊂ Σρ . Let Ωρ := Ω ∩ Σρ and let T : H1(Ωρ;R
3) → H1(Σρ;R

3) be a

continuous linear extension operator. Then

‖T (u)‖
2
H1(Λ;R3) 6 ‖T ‖ ‖u‖

2
H1(Ωρ;R3)

6 ‖T ‖ γ(Ωρ)
[
‖Eu‖

2
L2(Ωρ;M3×3) + ‖u‖

2
L2(Ωρ;R3)

]
,

(A.6)

where the last inequality follows from (A.1). Notice that all the preceding es-

timates hold true because every u ∈ D1,2(Ω;R3) is of class H1(V ;R3) for any

bounded open subset V ⊂ Ω.

We now introduce a slightly different extension operator S : H1(Ωρ;R
3) →

H1(Σρ;R
3), defined by S(u) := T (u − πΩρ(u)) + πΩρ(u), where πΩρ is the projec-

tion from L2(Ωρ;R
3) onto Π. Notice that E(S(u)) = E(T (u− πΩρ(u))); therefore,

by (A.6),

‖E(S(u))‖2L2(Λ;M3×3) 6
∥∥∇(T (u − πΩρ(u)))

∥∥2

L2(Λ;M3×3)

6 ‖T ‖ γ(Ωρ)
[
‖Eu‖

2
L2(Ωρ;M3×3) +

∥∥u− πΩρ(u)
∥∥2
L2(Ωρ;R3)

]
.

(A.7)

Define now a function v on the whole R
3 by

v =

{
u in Ω,
S(u) in Ωρ .

Now, combining together (A.1), (A.2), (A.3), and (A.7), we can prove the final

estimate

‖∇u‖2L2(Ω;M3×3) 6 ‖∇v‖2L2(R3;M3×3) 6 2 ‖Ev‖L2(R3;M3×3)

= 2 ‖E(S(u))‖2L2(Λ;M3×3) + 2 ‖Eu‖2L2(Ω;M3×3)

6 2 ‖T ‖ γ(Ωρ)
[
‖Eu‖

2
L2(Ωρ;M3×3) +

∥∥u− πΩρ(u)
∥∥2
L2(Ωρ;R3)

]
+ 2 ‖Eu‖

2
L2(Ω;M3×3)

6 C(Ω) ‖Eu‖
2
L2(Ω;M3×3) ,

where C(Ω) = 2(1 + ‖T ‖ γ(Ωρ) + ‖T ‖ γ(Ωρ)c(Ωρ)).
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