
Homogenization and long time asymptotic of a
fluid-structure interaction problem
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Abstract

We study the homogenization of an unsteady fluid-structure inter-
action problem with a scaling corresponding to a long time asymptotic
regime. We consider oscillating initial data which are Bloch wave pack-
ets corresponding to tubes vibrating in opposition of phase. We prove
that the initial displacements follow the rays of geometric optics and
that the envelope function evolves according to a Schrödinger equation
which can be interpreted as an effect of dispersion.

1 Introduction

In this paper we revisit the homogenization of fluid-structure interaction
model proposed by Planchard [15, 16]. It corresponds to a periodic bundle
of rigid tubes immersed in a perfect incompressible fluid. Each tube can
vibrate around its equilibrium position but their displacements are coupled
through the pressure force exerted by the fluid flow. In the time harmonic
regime, the homogenization of this model has been extensively studied [1, 4,
9, 12] (see the books [10, 11] for more references). There are however fewer
works on the unsteady or time dependent problem, most notably Chapter
3 of [10]. This last work is concerned with tubes that all have the same
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macroscopic behavior. In other words the tubes vibrate in phase. From a
mathematical point of view the homogenized limit of the tubes displacement
is a macroscopic function which does not depend on the microscopic periodic
variable. In some sense the results of Chapter 3 of [10] can be viewed as
classical homogenization results in the spirit of the well known books [7, 8,
18]. However, let us explain why these results cannot be complete and fully
satisfactory. Indeed, it is known for the time harmonic problem that most
of the vibration frequencies and modes correspond to tubes which vibrate,
at least partly, in opposition of phase. As shown by numerical evidence in
[1], in particular the fundamental (i.e, smallest) frequency corresponds to
tubes which vibrate periodically in one direction but anti-periodically in the
other direction (in two space dimensions). From a mathematical point of
view the homogenization of the time harmonic problem relies on the theory
of Bloch waves, an ingredient which is absent in Chapter 3 of [10]. Therefore,
the goal of the present paper is to fill this obvious gap and to homogenize
the unsteady fluid-structure interaction model in a regime corresponding to
tubes in opposition of phase (described by Bloch waves). As we shall see in
Section 2, this new regime arises from a different time scaling from Chapter
3 of [10], which amounts to consider much longer times.

Before we explain the origin of our scaling and make a comparison with
Chapter 3 of [10], we now describe the model considered in this work. The
rigid and parallel tubes are assumed to be distributed on a periodic squared
array throughout the space. By translation invariance in the tube axis di-
rection we restrict ourselves to a cross-section of the bundle. Although the
physical problem is then two-dimensional, we more generally consider the
N -th dimensional case. As usual we denote by ε > 0 the period of the tube
bundle and by Y = (0, 1)N the unit cube in RN . The unit tube cross-section
is a smooth connected open set T ⊂ Y and we define the fluid domain
Y ∗ := Y \ T . The collection of tubes are then defined as T ε

j := ε(j + T ),
where j is a vector in ZN . The space occupied by the fluid is denoted by

Ωε := RN \
⋃

j∈ZN

T ε
j .

Each tube displacement is a function rε
j(t) : R+ → CN and the fluid potential

is uε(t, x) : R+ × Ωε → C. The fluid incompressibility, the continuity of the
normal velocity at the tube boundaries and the momentum equation for each
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tubes yield the following system of equations
∆uε(t, x) = 0 for t ∈ R+, x ∈ Ωε,
∂uε

∂n
(t, x) = ε ṙε

j(t) · n(x) for t ∈ R+, x ∈ ∂T ε
j, j ∈ ZN ,

mr̈ε
j(t) +

k

ε4
rε

j(t) = − ρ

εN+1

∫
∂T ε

j

u̇ε(t, x)ndσ(x) for t ∈ R+, j ∈ ZN ,

(1)
where n is the inward normal to ∂T ε

j (or outward normal to Ωε). System
(1) is complemented with initial data that are Bloch wave packets (see (20)),
i.e. eigenmodes of the tube displacements multiplied by an envelope function.
Under a technical assumption (14), we prove in Theorem 4.2 that the solution
of (1) is approximately given by

rε
j(t) ≈ e2iπθ·jsn (θ)

(
ei

ωn(θ)

ε2
tv+

(
t, εj +

V
ε
t

)
+ e−i

ωn(θ)

ε2
tv−
(
t, εj − V

ε
t

))
uε(t, x) ≈ iωn(θ)e2iπθ·x

εψn

(x
ε
, θ
)(

ei
ωn(θ)

ε2
tv+

(
t, x+

V
ε
t

)
− e−i

ωn(θ)

ε2
tv−
(
t, x− V

ε
t

))
(2)

where the envelope functions v±(t, x) are solutions of two homogenized prob-
lems

±i∂v
±

∂t
− div(A∗∇v±) = 0 in RN × R+ (3)

(see (19),(21)-(23) for the definitions of the effective coefficients). In (2) θ
is the Bloch parameter or reduced wave number which quantifies the phase
of tube oscillations, ωn(θ) is the time frequency, V = ∇ωn(θ)/2π is the
group velocity, A∗ = ∇∇ωn(θ)/8π2 is the dispersion effective tensor, sn(θ)
and ψn(y, θ) are the corresponding eigenmodes for the tube and the fluid
potential, respectively (see Section 3).

The interpretation of (2) goes as follows. The solution is approximately
the sum of two waves going into opposite directions. The phase factors
exp(2iπθ · j ± iωn(θ)ε−2t) and exp(2iπθ · x/ε± iωn(θ)ε−2t) are predicted by
geometric optic like in the case of high frequency solutions for the wave equa-
tion (see e.g. [8], [5]). Similarly, the large drift with velocity ±ε−1V of the
envelope functions is again a consequence of geometric optics and simply
means that high frequency tube displacements propagate along straight rays
in a periodic medium. Eventually, the Schrödinger equation (3) for the enve-
lope functions is a manifestation of the dispersive character, for long times, of
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this propagation. In other words, even if the wave packet is initially well lo-
calized in space and propagates along straight rays, it will inevitably diffract
and spread in space because of the dispersive character of the Schrödinger
equation. A similar situation has been studied for the wave equation in pe-
riodic media in [5], from which we heavily borrow. Other examples, like
parabolic systems, were also studied in [3].

The content of this paper is the following. Section 2 explains the scaling
of (1) and recalls, for the sake of comparison, the classical results of homog-
enization for this model in chapter 3 of [10]. In Section 3 we recall some
results on Bloch theory applied to the case at hand. In section 4 we rig-
orously prove the convergence of the homogenization process by the Bloch
waves method. Section 5 is devoted to the derivation of the homogenized
Schrödinger equation by the formal method of two-scale asymptotic expan-
sions. It turns out that this well-known (heuristic) method is quite delicate
to apply and in particular requires a subtle technical result in Lemma 5.4.
Surprisingly, the (rigorous) method of Bloch waves is much simpler, never-
theless we keep section 5, partly to be more convincing on the advantages of
the Bloch wave method, and partly because the two-scale asymptotic expan-
sions is conceptually simpler even if it leads to more involved calculations.
Clearly, knowing the correct result from the Bloch wave method beforehand
was an invaluable information for completing the asymptotic expansions.

Notations. We denote by dσ(x) the surface measure on the holes boundaries
∂T ε

j and by dσ(y) the surface measure on the unit hole boundary ∂T . The
same letter C denotes various positive constants which are all independent
of ε but whose precise value may change from place to place. Vector valued
functions are written with bold letters.

2 Classical homogenization

The goal of this section is twofold. First, it gives a justification of the scaling
of (1). Second, it recalls the previously known results of classical homoge-
nization for this system, as discussed in [10]. Before adimensionalization the
Planchard model [15, 16] of a coupled system of solid tubes immersed in a
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perfect incompressible fluid reads as
∆u(t̃, x̃) = 0 in Ω,
∂u

∂n
(t̃, x̃) = ṙj(t̃) · n on ∂Tj, j ∈ ZN ,

m̃r̈j(t̃) + k̃rj(t̃) = −ρ̃
∫

∂Tj

u̇(t̃, x̃)ndσ(x̃) on Tj, j ∈ ZN ,

(4)

where (Tj)j∈ZN is the periodic collection of tubes, Ω = RN \
⋃

j∈ZN Tj is the
fluid domain and n the inward normal to ∂Tj. System (4) is completed by
initial data for the tubes displacements and velocities

rj(0) = r0
j and ṙj(0) = r1

j , j ∈ ZN .

No initial data is required for the fluid potential since u(0, x̃) can be computed
in terms of the (r1

j)j∈ZN only.

Remark 2.1 The existence and uniqueness theory for (4) is simple [10],
[11]. We introduce auxiliary vector-valued functions χl(x̃) which are the
unique solutions (up to an additive constant) in D1,2(Ω; RN) of{

∆χl(t̃, x̃) = 0 in Ω,
∂χl

∂n
(t̃, x̃) = δjln on ∂Tj, j ∈ ZN .

(5)

(Recall that D1,2(Ω) is the space of functions φ such that ∇φ ∈ L2(Ω; RN).)
The fluid potential can be written as

u(t̃, x̃) =
∑
j∈ZN

ṙj(t̃) · χj(x̃). (6)

We introduce the added mass matrix M which is an infinite matrix whose
entries are N ×N matrices Mjl, j, l ∈ ZN , defined by

Mjl =

∫
Ω

∇χj · ∇χl =

∫
∂Tj

χl ⊗ n =

∫
∂Tl

χj ⊗ n.

Plugging (6) in (4) yields(
m̃Id + ρ̃M

)
r̈(t̃) + k̃Idr(t̃) = 0,

which is a standard discrete wave equation for the unknown r(t̃) = {rj(t̃)}j∈ZN ,
which admits a unique solution in C2(R+; `2(ZN)) for suitable initial data.
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If the ratio ε of the period of the structure with a macroscopic dimension
of Ω is small, the system (4) is adimensionalized as follows. The mass and
stiffness of each tube is proportional to its cross-section, so we take

m̃ := mεN , k̃ := kεN .

The time and space variables are also adimensionalized

x̃ :=
x

ε
, t̃ :=

t

εα
for α ≥ 0.

If α = 0 the time scale is not changed, while, if α > 0, we consider a longer
time scale. With these changes of variables, (4) becomes

∆uε(t, x) = 0 in Ωε,
∂uε

∂n
(t, x) = εα−1ṙε

j(t) · n(x) on ∂T ε
j, j ∈ ZN ,

mr̈ε
j(t) +

k

ε2α
rε

j(t) = − ρ

εN+α−1

∫
∂T ε

j

u̇ε(t, x)ndσ(x) on T ε
j , j ∈ ZN ,

(7)
System (4) admits a conservation of energy: multiplying its first and third
equation respectively by u̇ε(t, x) and ṙε

j(t), integrating with respect to t, we
obtain that the following energy

Eε(t) =
1

2

∑
j∈ZN

[
m|ṙε

j(t)|2 +
k

ε2α
|rε

j(t)|2
]

+
ρ

2εN

∫
Ωε

|∇uε(t)|2dx

is constant in time. For α = 2, (7) is exactly the considered system (1).
The case α = 1 corresponds to the so-called geometric optics scaling (see [8])
which turns out to be a sub-regime of our analysis for α = 2 (see Remark
4.3). For α = 0, changing the scale of the fluid potential, i.e., replacing εuε

by uε, (7) yields
∆uε(t, x) = 0 in Ωε,
∂uε

∂n
(t, x) = ṙε

j(t) · n(x) on ∂T ε
j, j ∈ ZN ,

mr̈ε
j(t) + krε

j(t) = − ρ

εN

∫
∂T ε

j

u̇ε(t, x)ndσ(x) on T ε
j , j ∈ ZN ,

(8)

which is precisely the scaling studied in Chapter 3 of [10]. By means of formal
two-scale asymptotic expansions the authors of [10] obtained the following
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limiting behavior for (8):

uε(t, x) ≈ u(t, x), rε
j(t) ≈ r(t, εj), j ∈ ZN , (9)

where u(t, x) and r(t, x) are solutions of a homogenized system for (8) which
reads as −div(A∇u) = div

(
(Id− A)ṙ

)
in R+ × RN ,(

mId + ρ(|Y ∗|Id− A)
)
r̈ + kr = ρ(Id− A)∇u̇ in R+ × RN ,

(10)

where A is a symmetric positive definite homogenized matrix defined by

Aij =

∫
Y ∗

(∇ywi + ei) · (∇ywj + ej) dy

where wi(y), for 1 ≤ i ≤ N , is the solution of the cell problem{
∆ywi = 0 in Y ∗,
(∇ywi + ei) · n = 0 on ∂T.

One can prove that, in the sense of quadratic forms, 0 < A < |Y ∗|Id. There-
fore, the matrix ρ(|Y ∗|Id − A) in (10) is positive definite and can be inter-
preted as the added mass of the fluid moved by the tubes. In other words,
(10) is a sort of non-local wave equation for r.

The asymptotic expansions of [10] could easily be justified by means of
two-scale convergence as was done for time harmonic solutions in [4]. The
difference with our result (2) is obvious: the microscopic periodic variable
y does not appear in the homogenized solution u(t, x) and r(t, x). In other
words, all tubes move locally in phase which is in contrast with our result.

3 Bloch spectral cell problem

The Bloch wave decomposition is well known for the Schrödinger equation
[17] but it has also been extended to the problem at hand in [1], [11]. Consider
the Bloch spectral cell equation (divy + 2iπθ)[(∇y + 2iπθ)ψ] = 0 in Y ∗,

λ(θ)[(∇y + 2iπθ)ψ] · n = e−2iπθ·y
(∫

∂T

ψe2iπθ·yn

)
· n in ∂T.

(11)
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The dual parameter θ is called the Bloch frequency and it runs in the dual
cell of TN , i.e. by periodicity it is enough to consider θ ∈ TN .

For any fixed value of θ, to obtain the eigensolution of (11), we introduce
a finite-dimensional operator S mapping CN into itself, whose eigenvalues
coincide with the eigenvalues of (11). This operator is defined, for any s in
CN , by

S(θ)s :=

∫
∂T

u(y)e2iπθ·yndσ(y),

where u is the unique solution in H1
#(Y ∗) of the problem{

(divy + 2iπθ)[(∇y + 2iπθ)u] = 0 in Y ∗,
[(∇y + 2iπθ)u] · n = e−2iπθ·ys · n in ∂T.

(12)

(Actually the solution of (12) is unique if θ 6= 0 and unique up to an additive
constant when θ = 0.)

The following result was proved in [1].

Proposition 3.1 The operator S(θ) is self-adjoint and positive-definite. There-
fore it admits N positive real eigenvalues 0 < λ1(θ) ≤ · · · ≤ λN(θ) and
N non-zero eigenvectors s1(θ), . . . , sN(θ) in CN . These eigenvalues coin-
cide with those of (11) and the eigenfunctions ψn(θ), n = 1, . . . , N , in
H1

#(Y ∗) of (11) are defined as the solutions of (12) for s = sn(θ). The
pairs (λn(θ), ψn(θ)), n = 1, . . . , N , are thus all the independent solutions of
(11).

Remark that the eigenvectors sn(θ) can be recovered from the eigenfunc-
tions ψn(θ) by

sn(θ) = λ−1
n (θ)

∫
∂T

ψn(θ)e2iπθ·yn. (13)

Remark 3.2 To apply the Bloch theory to the cell problem (11) its coeffi-
cients should be Y -periodic functions. However, the function y → e2iπθ·y is
not Y -periodic in RN . Instead, the function eθ(y) = e2iπθ·(y−E(y)), where E(·)
is the integer part function, is indeed Y -periodic in RN . Of course, E(y) = 0
in the unit cell (0, 1)N , which explains our slight abuse of notations in (11):
although the coefficients of (11) are meant to involve eθ(y), we prefer to write
e2iπθ·y for simplicity.

We now recall some results on the Bloch decomposition associated with
the spectral problem (11) (see e.g. [1, 11]).
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Lemma 3.3 Let (rj)j∈ZN ∈ `2(ZN ; CN). Define its Bloch coefficients r̂n(θ) ∈
L2(TN ; C), n = 1, · · · , N , by

r̂n(θ) =
∑
j∈ZN

rj · sn(θ)e−2iπθ·j,

where sn(θ) are the eigenvectors of the operator S(θ) defined in Proposition
3.1. Then,

rj =
N∑

n=1

∫
TN

r̂n(θ)sn(θ)e2iπθ·jdθ,

and it satisfies the Parseval equality∑
j∈ZN

|rj|2 =
N∑

n=1

∫
TN

|r̂n(θ)|2 dθ.

In the sequel we make the fundamental assumption that there exist a
rank n0 and a Bloch frequency θ0 such that

λn0(θ0) is a simple eigenvalue. (14)

Such an assumption is not always true but it is known to be generic [2]. We
shall choose initial data concentrating at those values n0 and θ0. To simplify
the notations, we drop the 0 indexes and denote by n and θ these values.

This assumption of simplicity has two important consequences. First,
if λn(θ) is simple, then it is infinitely differentiable in a vicinity of θ [13].
Second, if λn(θ) is simple, then the limit problem of (1) is going to be a
single (Schrödinger) equation. The case of a multiple eigenvalue is much
more delicate and it is expected to yield a system of homogenized equations,
the rank of which is precisely the multiplicity (see Section 6 in [6]).

We introduce the operator An(θ), defined for any ψ and φ in H1(TN) by

< An(θ)ψ, φ >:= λn

∫
Y ∗

(∇y+2iπθ)ψ·(∇y−2iπθ)φ−
∫

∂T

ψe2iπθ·yn·
∫

∂T

φe−2iπθ·yn

(15)
so that the spectral cell problem (11) for ψn is equivalent to < An(θ)ψn, φ >=
0 for any φ in C∞(TN). Under assumption (14) it is easy to differentiate (11)
with respect to θ. Denoting by (ek)1≤k≤N the canonical basis of RN and by
(θk)1≤k≤N the components of θ, we define two operators Bk(θ) and Ck(θ) by

< Bk(θ)ψ, φ >:=

∫
Y ∗

(∇y + 2iπθ)ψ · ekφ, ∀ψ, φ ∈ H1(TN), (16)
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< Ck(θ)ψ, φ >:=

∫
∂T

ψyke
2iπθ·yn ·

∫
∂T

φe−2iπθ·yn, ∀ψ, φ ∈ H1(TN), (17)

where <,> denotes the hermitian product on either L2(Y ∗) or on L2(∂T ).
The first derivative of ψn(θ) satisfies

< An(θ)
∂ψn

∂θk

, φ >= λn2iπ < Bk(θ)ψn, φ > −λn2iπ < ψn,Bk(θ)φ >

+2iπ < Ck(θ)ψn, φ > −2iπ < ψn,Ck(θ)φ >

−∂λn

∂θk

∫
Y ∗

(∇y + 2iπθ)ψn · (∇y − 2iπθ)φ,

(18)

for any test function φ, and the second derivative verifies

< An(θ)
∂2ψn

∂θk∂θj

, φ >= λn2iπ < Bj(θ)
∂ψn

∂θk

, φ > −λn2iπ <
∂ψn

∂θk

,Bj(θ)φ >

+λn2iπ < Bk(θ)
∂ψn

∂θj

, φ > −λn2iπ <
∂ψn

∂θj

,Bk(θ)φ >

+
∂λn

∂θk

2iπ < Bj(θ)ψn, φ > −∂λn

∂θk

2iπ < ψn,Bj(θ)φ >

+
∂λn

∂θj

2iπ < Bk(θ)ψn, φ > −∂λn

∂θj

2iπ < ψn,Bk(θ)φ >

−λn

∫
Y ∗
ψn4π2ek · ejφ− λn

∫
Y ∗
ψn4π2ej · ekφ

− ∂2λn

∂θk∂θj

∫
Y ∗

(∇y + 2iπθ)ψn · (∇y − 2iπθ)φ

−∂λn

∂θk

∫
Y ∗

(∇y + 2iπθ)
∂ψn

∂θj

· (∇y − 2iπθ)φ

−∂λn

∂θj

∫
Y ∗

(∇y + 2iπθ)
∂ψn

∂θk

· (∇y − 2iπθ)φ

+2iπ < Cj(θ)
∂ψn

∂θk

, φ > +2iπ < Ck(θ)
∂ψn

∂θj

, φ >

−2iπ <
∂ψn

∂θk

,Cj(θ)φ > −2iπ <
∂ψn

∂θj

,Ck(θ)φ >

−4π2 < ψn,Ck(θ)φyj > −4π2 < Ck(θ)ψnyj, φ >

+4π2 < ψnyj,Ck(θ)φ > +4π2 < Ck(θ)ψn, φyj > .
(19)
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Remark that the two last lines of (19) are symmetric in j and k as they should
be. By assumption (14) we know that the map θ → ψn(θ, ·) is analytic so
necessarily (18) and (19) admit solutions. This implies, in particular, that the
right hand sides of (18) and (19) satisfy the required compatibility condition
or Fredholm alternative (i.e. they are orthogonal to ψn). The Fredholm
alternative for (18) yields a formula for ∇θλn(θ) (which shall be interpreted
as a group velocity) and that for (19) yields a formula for the Hessian matrix
∇θ∇θλn(θ) (which shall be interpreted as the homogenized tensor). In any
case the solution is unique up to the addition of a multiple of ψn.

4 Rigorous homogenization using Bloch waves

In this section we give a rigorous derivation of the homogenized problem of
(1) by using the method of Bloch waves. This approach turns out to be, not
only mathematically rigorous, but also much simpler to perform than the
two-scale asymptotic expansions of Section 5.

We consider the following initial data

rε
j(0) =

∫
ε−1TN

r̂0(η)sn(θ + εη)e2iπ(θ+εη)·jdη,

ṙε
j(0) = ε−2

∫
ε−1TN

r̂1(η)sn(θ + εη)e2iπ(θ+εη)·jdη,

(20)

where r̂0(η) and r̂1(η) are smooth functions with compact support in RN . The
advantage of (20) is twofold. First, upon the change of variables θ̃ = θ + εη,
the initial data is already written as a Bloch decomposition (see Lemma 3.3)
which is useful when we shall diagonalize the equation (1) by means of the
Bloch transform. Second, thanks to the assumption on the compact support
of r̂0(η) and r̂1(η), the integrals on ε−1TN can be replaced by integrals on
RN (for sufficiently small ε) which yields a connection with the usual Fourier
transform. Specifically, let us define the inverse Fourier transforms of r̂0(η)
and r̂1(η)

v0(x) =

∫
RN

r̂0(η)e2iπη·xdη, and v1(x) =

∫
RN

r̂1(η)e2iπη·xdη,

then, by a simple Taylor expansion of sn in (20), we deduce the following
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Lemma 4.1 Under assumption (14) on the simplicity of λn(θ), we have

sup
j∈ZN

∣∣rε
j(0)− sn (θ) e2iπθ·jv0(εj)

∣∣ ≤ Cε,

sup
j∈ZN

∣∣ε2ṙε
j(0)− sn (θ) e2iπθ·jv1(εj)

∣∣ ≤ Cε,

where we recall that j = E(x
ε
) for x ∈ Y ε

j and εj is the position of the tube
T ε

j .

We introduce a so-called dispersion relation which defines the time fre-
quency ωn(θ) in terms of the eigenvalue λn(θ), where θ is the Bloch frequency
or reduced wave number

ωn(θ) =

√
k

m+ ρλn(θ)
. (21)

By differentiating this time frequency with respect to θ we obtain first the
the group velocity V defined by

V =
1

2π
∇ωn(θ) , (22)

and the homogenized tensor, or dispersion coefficient, A∗ defined by

A∗ =
1

8π2
∇∇ωn(θ) . (23)

Our main result is

Theorem 4.2 Under assumptions (14) and (20), the solution of system (1)
is given by

rε
j(t) = e2iπθ·jsn (θ)

(
ei

ωn(θ)

ε2
tv+

(
t, εj +

V
ε
t

)
+e−i

ωn(θ)

ε2
tv−
(
t, εj − V

ε
t

))
+ ρ1

ε(t, εj)
(24)

uε(t, x) = iωn(θ)e2iπθ·x
εψn

(x
ε
, θ
) (

ei
ωn(θ)

ε2
tv+

(
t, x+

V
ε
t

)
−e−i

ωn(θ)

ε2
tv−
(
t, x− V

ε
t

))
+ ρ2

ε(t, x)

(25)
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where ρ1
ε and ρ2

ε are two small remainder terms such that, for any positive
finite time T , there exists a constant C and

‖ρ1
ε(t, x)‖L∞((0,T )×RN )) ≤ Cε, ‖ρ2

ε(t, x)‖L∞((0,T )×RN )) ≤ Cε,

and where v± ∈ C
(
[0, T ];L2(RN)

)
are the solutions of the two homogenized

problems
±i∂v

±

∂t
− div(A∗∇v±) = 0 in RN × (0, T ),

v±(t = 0, x) =
1

2

(
v0(x)± 1

iωn(θ)
v1(x)

)
in RN .

(26)

Remark 4.3 The outcome of Theorem 4.2 is the following: the exact so-
lution is approximately equal to two wave packets traveling in opposite di-
rections at the large velocity ε−1V with macroscopic profiles v± which have
a dispersive behavior since they obey a Schrödinger equation. The oscillat-
ing phase in (25), exp(2iπθ · j ± ωn(θ)ε−2t), is precisely the term which is
predicted by the geometric optics method. The novelty in our result is the
dispersion of the envelope functions which can be detected for longer times.

Proof We use the Bloch decomposition to diagonalize the system of equa-
tions (1). By Lemma 3.3 we know that the family of tube displacements can
be written

rε
j(t) =

N∑
n′=1

∫
ε−1TN

r̂ε
n′(t, η)sn′(θ + εη)e2iπ(θ+εη)·jdη.

We seek a solution of (1) where the fluid potential is decomposed as

uε(t, x) =
N∑

n′=1

∫
ε−1TN

ûε
n′(t, η)ψn′

(x
ε
, θ + εη

)
e2iπ(θ+εη)·x

ε dη.

(Note that not all functions necessarily admit the above decomposition.)
Plugging these expression of uε and rε in system (1), and using the spectral
cell problem (11), as well as formula (13), we obtain that the equation ∆uε =

13



0 is indeed satisfied and the boundary conditions on each tube T ε
j are

ε−1

N∑
n′=1

∫
ε−1TN

ûε
n′(t, η)

1

λn′
sn′(θ + εη)e2iπ(θ+εη)·jdη · n

= ε

N∑
n′=1

∫
ε−1TN

˙̂rε
n′(t, η)sn′(θ + εη)e2iπ(θ+εη)·jdη · n,

ε
N∑

n′=1

∫
ε−1TN

[m¨̂rε
n′(t, η) + ε−4kr̂ε

n′(t, η)]sn′(θ + εη)e2iπ(θ+εη)·jdη

= −ρ
N∑

n′=1

∫
ε−1TN

˙̂uε
n′(t, η)λn′(θ + εη)sn′(θ + εη)e2iπ(θ+εη)·jdη.

By the Bloch decomposition of Lemma 3.3 we can identify the coefficients
which yields {

ûε
n′(t, η) = ε2 ˙̂rε

n′(t, η),

ε[m¨̂rε
n′(t, η) + ε−4kr̂ε

n′(t, η)] = −ρλn′
˙̂uε
n′(t, η).

(The same result can be obtained if we use the variational formulation (33) of
system (1) with test functions written as Bloch decompositions.) Taking into
account the initial data we deduce that the Bloch coefficients are solutions
of the following o.d.e.’s

ε4(m+ λn′ρ)¨̂r
ε
n′ + kr̂ε

n′ = 0 in (0, T ),

ûε
n′ = ε2 ˙̂rε

n′ ,

r̂ε
n′(0) = r̂0(η)δn′n,

˙̂rε
n′(0) = ε−2r̂1(η)δn′n.

(27)

For n′ 6= n we immediately find that r̂ε
n′ ≡ 0 and ûε

n′ ≡ 0. Introducing the
notations

r̂±(ξ) =
1

2

(
r̂0(η)± r̂1(η)

iωn(ξ)

)
,

an explicit formula for the solutions is therefore

rε
j(t) =

∫
ε−1TN

r̂+(θ + εη)sn (θ + εη) e2iπ(θ+εη)·j+i
ωn(θ+εη)

ε2
tdη

+

∫
ε−1TN

r̂−(θ + εη)sn (θ + εη) e2iπ(θ+εη)·j−i
ωn(θ+εη)

ε2
tdη,

14



uε(t, x) = iωn(θ + εη)

∫
ε−1TN

r̂+(θ + εη)ψn

(x
ε
, θ + εη

)
e2iπ(θ+εη)·x

ε
+i

ωn(θ+εη)

ε2
tdη

−iωn(θ + εη)

∫
ε−1TN

r̂−(θ + εη)ψn

(x
ε
, θ + εη

)
e2iπ(θ+εη)·x

ε
−i

ωn(θ+εη)

ε2
tdη,

(28)
where ωn is defined by (21) and thus satisfies λn = (k − mω2

n)/(ρω2
n). We

then perform a Taylor expansion, up to second order, of ωn(θ):

ωn(θ + εη) = ωn(θ) +∇ωn(θ) · εη +
1

2
∇∇ωn(θ)ε2η · η +O(ε3)

= ωn(θ) + 2πV · εη + 4π2A∗ε2η · η +O(ε3).
(29)

Plugging (29) into (28) and using a zero order Taylor expansion of sn(θ) and
ψn(θ) we obtain

rε
j(t) = sn(θ)e2iπθ·j+i

ωn(θ)

ε2
t

∫
ε−1TN

r̂+(θ)e2iπ(εj+V
ε

t)·η+4iπ2A∗η·ηt+O(ε)tdη

+sn(θ)e2iπθ·j−i
ωn(θ)

ε2
t

∫
ε−1TN

r̂−(θ)e2iπ(εj−V
ε

t)·η−4iπ2A∗η·ηt+O(ε)tdη

+R1
ε (t, x)

uε(t, x) = iωn(θ)ψn

(x
ε
, θ
)
e2iπθ·x

ε
+i

ωn(θ)

ε2
t

∫
ε−1TN

r̂+(θ)e2iπ(x+V
ε

t)·η+4iπ2A∗η·ηt+O(ε)tdη

−iωn(θ)ψn

(x
ε
, θ
)
e2iπθ·x

ε
−i

ωn(θ)

ε2
t

∫
ε−1TN

r̂−(θ)e2iπ(x−V
ε

t)·η−4iπ2A∗η·ηt+O(ε)tdη

+R2
ε (t, x)

(30)
where R1

ε and R2
ε are the sum of all higher order terms. Since the functions

r̂0 and r̂1 are compactly supported, for ε sufficiently small we can replace the
integrals over ε−1TN by integrals over the whole space RN and replace the
factor eO(ε)t by 1 +O(ε) since we consider finite times t ≤ T . To see that we
therefore obtain precisely formula (25), we consider the Fourier transform of
the homogenized problem (26)

±i∂v̂
±

∂t
+ 4π2A∗η · η v̂± = 0 in RN × (0, T ),

v̂±(t = 0, η) = r̂±(θ) =
1

2

(
v̂0(η)± v̂1(η)

iωn(θ)

)
in RN .

(31)
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The explicit formula for the solution to (31) is given by

v̂±(t, η) = r̂±(θ)e±4iπ2A∗η·η t .

Therefore (30) can be rewritten as

rε
j(t) = sn(θ)e2iπθ·j+i

ωn(θ)

ε2
t

∫
RN

v̂+(t, η)e2iπ(εj+V
ε

t)·ηdη

+sn(θ)e2iπθ·j−i
ωn(θ)

ε2
t

∫
RN

v̂−(t, η)e2iπ(εj−V
ε

t)·ηdη + ρ1
ε(t, εj)

= sn(θ)e2iπθ·j
(
ei

ωn(θ)

ε2
tv+

(
t, εj +

V
ε
t

)
+e−i

ωn(θ)

ε2
tv−
(
t, εj − V

ε
t

))
+ ρ1

ε(t, εj)

uε(t, x) = iωn(θ)ψn

(x
ε
, θ
)
e2iπθ·x

ε
+i

ωn(θ)

ε2
t

∫
RN

v̂+(t, η)e2iπ(x+V
ε

t)·ηdη

−iωn(θ)ψn

(x
ε
, θ
)
e2iπθ·x

ε
−i

ωn(θ)

ε2
t

∫
RN

v̂−(t, η)e2iπ(x−V
ε

t)·ηdη + ρ2
ε(t, x)

= iωn(θ) e2iπθ·x
εψn

(x
ε
, θ
)(

ei
ωn(θ)

ε2
tv+

(
t, x+

V
ε
t

)
−e−i

ωn(θ)

ε2
tv−
(
t, x− V

ε
t

))
+ ρ2

ε(t, x)

where ρ1
ε and ρ2

ε take into account the terms R1
ε and R2

ε in (30) and the
approximation we have done by replacing eO(ε)t by 1.

Remark 4.4 If, as in (29), we perform a second order Taylor expansion of
sn and ψn we can improve the error estimate and show that

rε
j(t) ≈ e2iπθ·j+i

ωn(θ)

ε2
t

(
(v+)εsn +

ε

2iπ

N∑
k=1

∂sn

∂θk

(
∂v+

∂xk

)ε

− ε2

4π2

N∑
k,l=1

∂2sn

∂θk∂θl

(
∂2v+

∂xk∂xl

)ε
)

+e2iπθ·j−i
ωn(θ)

ε2
t

(
(v−)εsn +

ε

2iπ

N∑
k=1

∂sn

∂θk

(
∂v−

∂xk

)ε

− ε2

4π2

N∑
k,l=1

∂2sn

∂θk∂θl

(
∂2v−

∂xk∂xl

)ε
)
,
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up to a remainder term of order O(ε3) in the L∞-norm,

uε(t, x) ≈ iωn(θ)e2iπθ·x
ε
+i

ωn(θ)

ε2
t

(
ψn

(x
ε

)
(v+)ε +

ε

2iπ

N∑
k=1

∂ψn

∂θk

(x
ε

)(∂v+

∂xk

)ε

− ε2

4π2

N∑
k,l=1

∂2ψn

∂θk∂θl

(x
ε

)( ∂2v+

∂xk∂xl

)ε
)

−iωn(θ)e2iπθ·x
ε
−i

ωn(θ)

ε2
t

(
ψn

(x
ε

)
(v−)ε +

ε

2iπ

N∑
k=1

∂ψn

∂θk

(x
ε

)(∂v−
∂xk

)ε

− ε2

4π2

N∑
k,l=1

∂2ψn

∂θk∂θl

(x
ε

)( ∂2v−

∂xk∂xl

)ε
)
,

(32)
up to a remainder term of order O(ε3) in the L∞-norm. Here we used the
notation (v±)ε = v±

(
t, x± V

ε
t
)

and similarly for their derivatives. Of course,
(32) are nothing but the beginning of the two-scale asymptotic expansion of
rε

j and uε.

5 Formal two-scale asymptotic expansions

The aim of this section is to obtain by a formal method of two-scale asymp-
totic expansions the homogenized problem for (1) (we gave a rigorous deriva-
tion of it in section 4). It turns out that a standard two-scale asymptotic
expansion in the strong from of the equations (1), as in [7], [8] or [18], may
yield wrong results since we work in a periodically perforated open set with
non-local boundary conditions. Indeed, the boundary conditions give rise to
a special type of boundary integral on ∂Ωε, the limit of which is as usual an
integral on the product Ω× ∂T but with some small correctors (see Lemma
5.1) which are not negligible in the homogenized limit. Therefore, follow-
ing an idea of J.-L. Lions [14] it is much safer to use two-scale asymptotic
expansions in the variational formulation of the problem which is:

∫
Ωε

∇uε · ∇Φεdx = ε
∑
j∈ZN

∫
∂T ε

j

ṙε
j · nΦεdσ(x),

εN+1
∑
j∈ZN

[mr̈ε
j · γε

j + kε−4rε
j · γε

j] = −
∑
j∈ZN

ρ

∫
∂T ε

j

u̇εn · γε
jdσ(x),

(33)
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for any test functions Φε ∈ D([0, T ) × RN ; C), γε
j ∈ D([0, T ); CN). To pass

to the limit in the variational formulation (33) we shall need the following
result.

Lemma 5.1 Let µ(y) and ν(y) be two periodic non-negative measures on the
unit cube Y . Let u(x, y) and v(x, y) be two Y -periodic functions which are
smooth with respect to x and decay fast enough at infinity when |x| → ∞ (so
that all integrals below are finite). As ε tends to 0, we have

∑
j∈ZN

ε−N

(∫
Y ε

j

u
(
x,
x

ε

)
dµ(

x

ε
)

)(∫
Y ε

j

v
(
x,
x

ε

)
dν(

x

ε
)

)
=

∫
RN

(∫
Y

u (x, y) dµ(y)

)(∫
Y

v (x, y) dν(y)

)
dx

+ε

[∫
RN

(∫
Y

y · ∇xu(x, y)dµ(y)

)(∫
Y

v(x, y)dν(y)

)
dx

+

∫
RN

(∫
Y

u(x, y)dµ(y)

)(∫
Y

y · ∇xv(x, y)dν(y)

)
dx

]
+
ε2

2

[∫
RN

(∫
Y

y · ∇x∇xu(x, y) · y dµ(y)

)(∫
Y

v(x, y)dν(y)

)
dx

+2

∫
RN

(∫
Y

y · ∇xu(x, y)dµ(y)

)(∫
Y

y · ∇xv(x, y)dν(y)

)
dx

+

∫
RN

(∫
Y

u(x, y)dµ(y)

)(∫
Y

y · ∇x∇xv(x, y) · y dν(y)
)
dx

]
+O(ε3).

Remark 5.2 In the sequel we shall use Lemma 5.1 with the following ex-
amples of periodic non-negative measures: dµ(y) = dy is just the Lebesgue
measure in Y and ν(y) is the surface measure on the hole’s boundary ∂T ,
i.e.,

∫
Y
v(y) dν(y) =

∫
∂T
v(y) dσ(y).

Remark 5.3 Lemma 5.1 has to be compared with the well-known conver-
gence result which says that any smooth and Y -periodic functions u(x, y)
satisfies∑

j∈ZN

∫
Y ε

j

u
(
x,
x

ε

)
dx =

∫
RN

∫
Y

u (x, y) dy dx+O(εk) for any k ≥ 1. (34)

On the contrary, Lemma 5.1 gives corrector result which are not negligibly
small. The equivalent of formula (34) for Riemann sums is that any smooth
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function u(x) (with a fast enough decay at infinity) satisfies∑
j∈ZN

εNu(xε
j) =

∫
RN

u(x) dx+O(εk) for any k ≥ 1. (35)

Proof For x ∈ Y ε
j consider the Taylor expansion of x→ u(x, y) around the

center xε
j of Y ε

j :

u
(
x,
x

ε

)
= u

(
xε

j,
x

ε

)
+(x−xε

j)·∇xu
(
xε

j,
x

ε

)
+

1

2
(x−xε

j)·∇x∇xu
(
xε

j,
x

ε

)
·(x−xε

j)+O(ε3)

and an analogous expansion for x→ v(x, y). We deduce(∫
Y ε

j

u
(
x,
x

ε

)
dµ(

x

ε
)

)(∫
Y ε

j

v
(
x,
x

ε

)
dν(

x

ε
)

)

=

[∫
Y ε

j

u
(
xε

j,
x

ε

)
dµ(

x

ε
) +

∫
Y ε

j

(x− xε
j) · ∇xu

(
xε

j,
x

ε

)
dµ(

x

ε
)

+
1

2

∫
Y ε

j

(x− xε
j) · ∇x∇xu

(
xε

j,
x

ε

)
· (x− xε

j)dµ(
x

ε
) +O(ε3)

]

×

[∫
Y ε

j

v
(
xε

j,
x

ε

)
dν(

x

ε
) +

∫
Y ε

j

(x− xε
j) · ∇xv

(
xε

j,
x

ε

)
dν(

x

ε
)

+
1

2

∫
Y ε

j

(x− xε
j) · ∇x∇xv

(
xε

j,
x

ε

)
· (x− xε

j)dν(
x

ε
) +O(ε3)

]
= ε2N

[∫
Y

(
u
(
xε

j, y
)

+ εy · ∇xu
(
xε

j, y
)

+
ε2

2
y · ∇x∇xu

(
xε

j, y
)
· y
)
dµ(y) +O(ε3)

]
×
[∫

Y

(
v
(
xε

j, y
)

+ εy · ∇xv
(
xε

j, y
)

+
ε2

2
y · ∇x∇xv

(
xε

j, y
)
· y
)
dν(y) +O(ε3)

]
= ε2N

{∫
Y

u
(
xε

j, y
)
dµ(y)

∫
Y

v
(
xε

j, y
)
dν(y)

+ε

[∫
Y

y · ∇xu
(
xε

j, y
)
dµ(y)

∫
Y

v
(
xε

j, y
)
dν(y) +

∫
Y

u
(
xε

j, y
)
dµ(y)

∫
Y

y · ∇xv
(
xε

j, y
)
dν(y)

]
+
ε2

2

[∫
Y

y · ∇x∇xu
(
xε

j, y
)
· ydµ(y)

∫
Y

v
(
xε

j, y
)
dν(y)

+2

∫
Y

y · ∇xu
(
xε

j, y
)
dµ(y)

∫
Y

y · ∇xv
(
xε

j, y
)
dν(y)

+

∫
Y

u
(
xε

j, y
)
· ydµ(y)

∫
Y

y · ∇x∇xv
(
xε

j, y
)
dν(y)

]
+O(ε3)

}
(36)
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Summing over the cells Y ε
j yields a Riemann sum which converges to an

integral over RN with infinite speed (as in Remark 5.3). We thus obtain the
desired result.

Actually we need a variant of Lemma 5.1 when the integrands are subject
to a large drift in the macroscopic variable but not in the microscopic one.
We emphasize that Lemma 5.4 below does not reduce to Lemma 5.1 by a
change of variables.

Lemma 5.4 Let V ∈ RN be a given velocity and T > 0 a finite time. Let
µ(y) and ν(y) be two periodic non-negative measures on the unit cube Y . Let
u(t, x, y) and v(t, x, y) be two Y -periodic functions which are smooth with
respect to x and decay fast enough at infinity when |x| → ∞ (so that all
integrals below are finite). As ε tends to 0, we have∑
j∈ZN

ε−N

∫ T

0

(∫
Y ε

j

u

(
t, x+ V t

ε
,
x

ε

)
dµ(

x

ε
)

)(∫
Y ε

j

v

(
t, x+ V t

ε
,
x

ε

)
dν(

x

ε
)

)
dt

=

∫
RN

∫ T

0

(∫
Y

u (t, x, y) dµ(y)

)(∫
Y

v (t, x, y) dν(y)

)
dxdt

+ε

[∫
RN

∫ T

0

(∫
Y

y · ∇xu (t, x, y) dµ(y)

)(∫
Y

v (t, x, y) dν(y)

)
dxdt

+

∫
RN

∫ T

0

(∫
Y

u (t, x, y) dµ(y)

)(∫
Y

y · ∇xv (t, x, y) dν(y)

)
dxdt

]
+
ε2

2

[∫
RN

∫ T

0

(∫
Y

y · ∇x∇xu (t, x, y) · ydµ(y)

)(∫
Y

v (t, x, y) dν(y)

)
dxdt

+2

∫
RN

∫ T

0

(∫
Y

y · ∇xu (t, x, y) dµ(y)

)(∫
Y

y · ∇xv (t, x, y) dν(y)

)
dxdt

+

∫
RN

∫ T

0

(∫
Y

u (t, x, y) dµ(y)

)(∫
Y

y · ∇x∇xv (t, x, y) · ydν(y)
)
dxdt

]
+O(ε3).

Proof We first perform the change of variables (a simple translation when
the time variable is fixed) x′ = x + V t

ε
. We decompose Vtε−2 in its integer

and decimal parts

V t

ε2
= j + δ with j ∈ ZN , δ ∈ Y,

so that we have

u

(
t, x+ V t

ε
,
x

ε

)
= u

(
t, x′,

x′

ε
− δ

)
.
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Remark that δ depends on t and ε but not on x. We introduce the cube
Y
′ε
j = Y ε

j + V t
ε

of center x
′ε
j , and write the following Taylor expansion for

x′ ∈ Y ′ε
j

u

(
t, x′,

x′

ε
− δ

)
= u

(
t, x

′ε
j ,
x′

ε
− δ

)
+ (x′ − x

′ε
j ) · ∇xu

(
t, x

′ε
j ,
x′

ε
− δ

)
+

1

2
(x′ − x

′ε
j ) · ∇x∇xu

(
t, x

′ε
j ,
x′

ε
− δ

)
· (x′ − x

′ε
j ) +O(ε3).

Thus, we deduce∫
Y ε

j

u

(
t, x+ V t

ε
,
x

ε

)
dµ(

x

ε
) =

∫
Y
′ε
j

u

(
t, x′,

x′

ε
− δ

)
dµ(

x′

ε
− δ)

=

∫
Y
′ε
j

u

(
t, x

′ε
j ,
x′

ε
− δ

)
dµ(

x′

ε
− δ) +

∫
Y
′ε
j

(x′ − x
′ε
j ) · ∇xu

(
t, x

′ε
j ,
x′

ε
− δ

)
dµ(

x′

ε
− δ)

+
1

2

∫
Y
′ε
j

(x′ − x
′ε
j ) · ∇x∇xu

(
t, x

′ε
j ,
x′

ε
− δ

)
· (x′ − x

′ε
j )dµ(

x′

ε
− δ) +O(εN+3)

= εN
∫

Y

(
u+ ε(y + δ) · ∇xu+

ε2

2
(y + δ) · ∇x∇xu · (y + δ)

)(
t, x

′ε
j , y
)
dµ(y) +O(εN+3)

and an analogous expansion for the function v. Performing a computation
similar to that in (36) we obtain exactly the same terms plus the following
ones

εN+1δ · ∇x

[(∫
Y

u
(
t, x

′ε
j , y
)
dµ(y)

)(∫
Y

v
(
t, x

′ε
j , y
)
dν(y)

)]
+εN+2δ · ∇x

[(∫
Y

y · ∇xu
(
t, x

′ε
j , y
)
dµ(y)

)(∫
Y

v
(
t, x

′ε
j , y
)
dν(y)

)]
+εN+2δ · ∇x

[(∫
Y

u
(
t, x

′ε
j , y
)
dµ(y)

)(∫
Y

y · ∇xv
(
t, x

′ε
j , y
)
dν(y)

)]
+εN+2δ · ∇x∇x

[(∫
Y

u
(
t, x

′ε
j , y
)
dµ(y)

)(∫
Y

v
(
t, x

′ε
j , y
)
dν(y)

)]
· δ.

(37)
When summing (37) over all cubes Y

′ε
j we obtain a Riemann sum which

converges to an integral over RN with infinite speed (as in Remark 5.3).
Remark that δ, which depends on ε but remains bounded in Y , can be
factorized out of this Riemann sum. The additional terms in (37) do not
contribute in the final result since∫

RN

∇x

[(∫
Y

u (t, x, y) dµ(y)

)(∫
Y

v (t, x, y) dν(y)

)]
dx = 0,
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and the same holds true for the integrals over RN of the other second order
derivatives.

Having in mind the initial data (20), we postulate the following ansatz
for the solutions uε and rε

j of (1):

uε(t, x) = e2iπθ·x
ε
±iωn

t
ε2

∞∑
k=0

εkuk

(
t, x± V t

ε
,
x

ε

)
,

rε
j(t) = e2iπθ·j±iωn

t
ε2

∞∑
k=0

εkrk
j (t),

(38)

where θ is the reduced wave number of the tube oscillations (moving out of
phase if θ 6= 0), ωn := ωn(θ) is the time frequency defined by the dispersion
relation (21), V is the group velocity defined by (22), each term uk(t, x, y) is
a Y -periodic function with respect to y, and

rk
j (t) :=

1

|Y ε
j |

∫
Y ε

j

rk

(
t, x± V t

ε

)
dx.

Recall that, for x ∈ Y ε
j , the integer parts of the components of x/ε are equal

to the vector j ∈ ZN , i.e., E(x/ε) = j. In truth, the ansatz should be the
sum of the two ansatz (38) with the + or − sign. However, for the sake of
simplicity of the exposition, we instead write a single ansatz with one of the
two possible signs ±.

The main (formal) result of this section is

Proposition 5.5 The leading terms in the ansatz (38) are

u0(t, x, y) = v±(t, x)ψn(y, θ) and r0(t, x) =
±1

iωn(θ)
v±(t, x)sn(θ),

where v± is the solution of the Schrödinger homogenized problem

±i∂v
±

∂t
− div(A∗∇v±) = 0, (39)

with A∗ := (8π2)−1∇θ∇θωn(θ).

Remark 5.6 In this section we do not discuss initial data, an issue that was
addressed in the previous section. Let us simply say that the ansatz (38) is
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actually the sum of two ansatz, one with + and the other with −. Therefore,
the initial data v±(0) for the two homogenized equations should be deduced
formally from the following asymptotic behavior as ε goes to 0

uε(0, x) ≈ e2iπθ·yψn(y, θ)
(
v+(0) + v−(0)

)
and

rε
j(0) ≈ 1

iωn(θ)
e2iπθ·jsn(θ)

(
v+(0)− v−(0)

)
.

Proof In the variational formulation (33) we choose the test functions

Φε(t, x) := φ

(
t, x± V t

ε
,
x

ε

)
e2iπθ·x

ε
±iωn

t
ε2 ,

and

γε
j(t) := ε2

∫
∂T ε

j

Φε(t, x)n(x)dσ(x).

By introducing the Y -periodic function eθ(y) = e2iπθ·(y−E(y)) (see Remark

3.2) such that eθ(
x
ε
) = e2iπθ·(x

ε
−j)) we can rewrite

γε
j(t) = ε2e2iπθ·j±iωn

t
ε2

∫
∂T ε

j

eθ(
x

ε
)φ

(
t, x± V t

ε
,
x

ε

)
n(x)dσ(x).

In order to simplify the presentation and by a slight abuse of notations, we
define

∇xr
k
j (t) :=

1

|Y ε
j |

∫
Y ε

j

∇xr
k

(
t, x± V t

ε

)
dx.

Differentiating the ansatz for uε and rε
j yields

∇uε = e2iπθ·x
ε
±iωn

t
ε2
[
ε−1(∇y + 2iπθ)u0 + (∇xu

0 + (∇y + 2iπθ)u1)
+ε(∇xu

1 + (∇y + 2iπθ)u2) +O(ε2)
]
,

u̇ε = e2iπθ·x
ε
±iωn

t
ε2
[
±ε−2iωnu

0 ± ε−1(iωnu
1 + V · ∇xu

0)
+(u̇0 ± iωnu

2 ± V · ∇xu
1) +O(ε)

]
,

ṙε
j = e2iπθ·j±iωn

t
ε2
[
±ε−2iωnr

0
j ± ε−1(iωnr

1
j + V · ∇xr

0
j)

+(ṙ0
j ± iωnr

2
j ± V · ∇xr

1
j) +O(ε)

]
,

r̈ε
j = e2iπθ·j±iωn

t
ε2
[
−ε−4ω2

nr
0
j + ε−3(−ω2

nr
1
j + 2iωnV · ∇xr

0
j)

+ε−2(±2iωnṙ
0
j + V · ∇∇xr

0
j · V + 2iωnV · ∇xr

1
j − ω2

nr
2
j) +O(ε−1)

]
.
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We plug these ansatz in the variational formulation (33) and we get a cascade
of equations which is slightly more complicated than in the “usual” cases.
Let us explain these subtleties: (33) involves a sum of products of integrals
and, according to Lemma 5.1, the boundary integrals do not converge with
infinite speed to their limits but rather involve corrector terms. Therefore,
when passing to the limit in the εk equation, these correctors yield new
contributions for the limit of the εk+p equations for all p ≥ 1. It turns out
that the three first terms of this cascade of equation are enough for our
purpose

ε−2E−2
ε + ε−1E−1

ε + ε0E0
ε +O(ε) = 0. (40)

Collecting the terms of order ε−2, we obtain the E−2
ε equation

∫
Ωε

(∇y + 2iπθ)u0 · (∇y − 2iπθ)φ = ±
∑
j∈ZN

ε

∫
∂T ε

j

iωnr
0
j · nφeθ,

±
∑
j∈ZN

ε

∫
∂T ε

j

iωnr
0
j · nφeθ =

−iωnρ

k −mω2
n

∑
j∈ZN

ε2−N

∫
∂T ε

j

iωnu
0eθn ·

∫
∂T ε

j

φeθn.

(41)
Eliminating the right hand side of the first line of (41) with its second line
yields∫

Ωε

(∇y+2iπθ)u0·(∇y−2iπθ)φ =
−iωnρ

k −mω2
n

∑
j∈ZN

ε2−N

∫
∂T ε

j

iωnu
0eθn·

∫
∂T ε

j

φeθn.

Since eθ(y) = e2iπθ·y in the unit cell Y , passing to the limit ε → 0 with the
help of Lemma 5.4 yields∫

RN

∫
Y ∗

(∇y+2iπθ)u0·(∇y−2iπθ)φ =
ρω2

n

k −mω2
n

∫
RN

∫
∂T

u0e2iπθ·yn·
∫

∂T

φe−2iπθ·yn,

(42)
which is just the weak formulation of the cell problem (11) since λn = (k −
mω2

n)/(ρω2
n) by the dispersion relation (21). By assumption (14) on the

simplicity of the eigenvalue λn(θ), we deduce that u0 is necessarily a multiple
of the eigenvector ψn, i.e., there exists a function u(t, x) such that

u0(t, x, y) = v±(t, x)ψn(y, θ). (43)

From the second line of (41) we then deduce that

r0(t, x) = ∓ iωnρ

k −mω2
n

v±(t, x)

∫
∂T

ψne
2iπθ·yn =

±1

iωn

v±(t, x)sn(θ). (44)
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Collecting the terms of order ε−1, we obtain the E−1
ε equation∫

Ωε

(∇y + 2iπθ)u0 · ∇xφ+

∫
Ωε

[∇xu
0 + (∇y + 2iπθ)u1] · (∇y − 2iπθ)φ

= ±
∑
j∈ZN

ε

∫
∂T ε

j

(iωnr
1
j + V · ∇xr

0
j) · nφeθ,

(45)
and

±
∑
j∈ZN

ε

∫
∂T ε

j

(iωnr
1
j −

2mω2
n

k −mω2
n

V · ∇xr
0
j) · nφeθdx

=
−iωnρ

k −mω2
n

∑
j∈ZN

ε2−N

∫
∂T ε

j

(iωnu
1 + V · ∇xu

0)eθn ·
∫

∂T ε
j

φeθn.
(46)

Adding (45) to (46) eliminates r1
j , replacing r0

j by its value in (44), and
passing to the two-scale limit yields∫

RN

∫
Y ∗

(∇y + 2iπθ)u0 · ∇xφ+

∫
RN

∫
Y ∗

[∇xu
0 + (∇y + 2iπθ)u1] · (∇y − 2iπθ)φ

=
ρω2

n

k −mω2
n

∫
RN

∫
∂T

u1e2iπθ·yn ·
∫

∂T

φe−2iπθ·yn

+
2k

iωn(k −mω2
n)

∫
RN

∫
Y ∗

(∇y + 2iπθ)(V · ∇xu
0) · (∇y − 2iπθ)φ

+
ρω2

n

k −mω2
n

∫
RN

∫
∂T

y · ∇xu
0e2iπθ·yn ·

∫
∂T

φe−2iπθ·yn

+
ρω2

n

k −mω2
n

∫
RN

∫
∂T

u0e2iπθ·yn ·
∫

∂T

y · ∇xφe
−2iπθ·yn

(47)
where the two last lines of (47) come from the first order correction in Lemma
5.4 for the previous E−2

ε equation. Since

1

2π
∇λn(θ) =

dλn

dωn

V =
−2kλn

ωn(k −mω2
n)
V ,

and because of equation (18), we deduce from (47) that

u1(t, x, y) =
1

2iπ

N∑
p=1

∂v±

∂xp

(t, x)
∂ψn

∂θp

(y, θ). (48)
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From this value of u1 and the two-scale limit of (45) we could deduce a
formula for r1. However, in the sequel we shall need merely the value of
V ·∇xr

1 and V ·∇xu
1. Therefore, we content ourselves in giving a variational

formulation for V ·∇xr
1 and V ·∇xu

1, which are obtained from the two-scale
limit of (45) and (47) with the test function V · ∇xφ (instead of just φ) and
an additional integration by parts in x:

V ·
∫

RN

∫
Y ∗

(
(∇y + 2iπθ)∇xu

0 · ∇xφ+ [∇x∇xu
0 + (∇y + 2iπθ)∇xu

1] · (∇y − 2iπθ)φ
)

= ±
∫

RN

∫
∂T

(iωnV · ∇xr
1 + V · ∇x∇xr

0 · V) · φe−2iπθ·yn

(49)
and

V ·
∫

RN

∫
Y ∗

(
(∇y + 2iπθ)∇xu

0 · ∇xφ+ [∇x∇xu
0 + (∇y + 2iπθ)∇xu

1] · (∇y − 2iπθ)φ
)

=
ρω2

n

k −mω2
n

∫
RN

∫
∂T

V · ∇xu
1e2iπθ·yn ·

∫
∂T

φe−2iπθ·yn

+
2k

iωn(k −mω2
n)

∫
RN

∫
Y ∗

(∇y + 2iπθ)(V · ∇x∇xu
0 · V) · (∇y − 2iπθ)φ

+
ρω2

n

k −mω2
n

∫
RN

∫
∂T

V · ∇x∇xu
0 · ye2iπθ·yn ·

∫
∂T

φe−2iπθ·yn

+
ρω2

n

k −mω2
n

∫
RN

∫
∂T

V · ∇xu
0e2iπθ·yn ·

∫
∂T

y · ∇xφe
−2iπθ·yn.

(50)
Collecting the terms of order ε0, we obtain the E0

ε equation∫
Ωε

(
[∇xu

0 + (∇y + 2iπθ)u1] · ∇xφ+ [∇xu
1 + (∇y + 2iπθ)u2] · (∇y − 2iπθ)φ

)
=
∑
j∈ZN

ε

∫
∂T ε

j

(ṙ0
j ± iωnr

2
j ± V · ∇xr

1
j) · nφeθ,

(51)
and∑
j∈ZN

ε

∫
∂T ε

j

[±iωnr
2
j +

imωn

k −mω2
n

(2iωnṙ
0
j ± V · ∇x∇xr

0
j · V ± 2iωnV · ∇xr

1
j)] · nφeθ

=
−iωnρ

k −mω2
n

∑
j∈ZN

ε2−N

∫
∂T ε

j

(±u̇0 + iωnu
2 + V · ∇xu

1)eθn ·
∫

∂T ε
j

φeθn.

(52)
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Now, we add (51) and (52), which eliminates r2
j , and we pass to the two-scale

limit. We also eliminate V · ∇xr
1 and V · ∇xu

1 by using (49), (50) and we
replace r0 by its value in terms of u0. This yields∫

RN

∫
Y ∗

(
[∇xu

0 + (∇y + 2iπθ)u1] · ∇xφ+ [∇xu
1 + (∇y + 2iπθ)u2] · (∇y − 2iπθ)φ

)
= ∓ iωnρ2k

(k −mω2
n)2

∫
RN

∫
∂T

u̇0e2iπθ·yn ·
∫

∂T

φe−2iπθ·yn

+
ρω2

n

k −mω2
n

∫
RN

∫
∂T

u2e2iπθ·yn ·
∫

∂T

φe−2iπθ·yn

+
2k

iωn(k −mω2
n)
V ·
(∫

RN

∫
Y ∗

[(∇y + 2iπθ)∇xu
0] · ∇xφ

+

∫
RN

∫
Y ∗

[∇x∇xu
0 + (∇y + 2iπθ)∇xu

1] · (∇y − 2iπθ)φ

)
+

3k

ω2
n(k −mω2

n)
V ·
∫

RN

∫
Y ∗

(∇y + 2iπθ)∇x∇xu
0 · (∇y − 2iπθ)φ · V

+
ω2

nρ

k −mω2
n

(∫
RN

∫
∂T

y · ∇xu
1e2iπθ·yn ·

∫
∂T

φe−2iπθ·yn

+

∫
RN

∫
∂T

u1e2iπθ·yn ·
∫

∂T

y · ∇xφe
−2iπθ·yn

)
+

1

2

ω2
nρ

k −mω2
n

(∫
RN

∫
∂T

y · ∇x∇xu
0 · ye2iπθ·yn ·

∫
∂T

φe−2iπθ·yn

+2

∫
RN

∫
∂T

y · ∇xu
0e2iπθ·yn ·

∫
∂T

y · ∇xφe
−2iπθ·yn

+

∫
RN

∫
∂T

u0e2iπθ·yn ·
∫

∂T

y · ∇x∇xφ · ye−2iπθ·yn
)

(53)
where the three last lines of (53) come from the second order correction in
Lemma 5.4 for the E−2

ε equation, and the two previous lines of (53) come
from the first order correction in Lemma 5.4 for the E−1

ε equation. Taking
φ(t, x, y) = ϕ(t, x)ψn(y) in (53), where ϕ is a smooth function, eliminates u2
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(this is a consequence of the Fredholm alternative) and we obtain

λn

∫
RN

∫
Y ∗

(
[∇xu

0 + (∇y + 2iπθ)u1] · ∇x(ϕψn) +∇xu
1 · (∇y − 2iπθ)(ϕψn)

)
= ∓ i

ωn

2k

k −mω2
n

∫
RN

∫
∂T

u̇0e2iπθ·yn ·
∫

∂T

ϕψne
−2iπθ·yn

− 1

2iπ
∇θλn ·

[∫
RN

∫
Y ∗

[(∇y + 2iπθ)∇xu
0] · ∇x(ϕψn)

+

∫
RN

∫
Y ∗

[∇x∇xu
0 + (∇y + 2iπθ)∇xu

1] · (∇y − 2iπθ)(ϕψn)

]
+

3k

ω2
n(k −mω2

n)
V ·
∫

RN

∫
∂T

∇x∇xu
0e2iπθ·yn ·

∫
∂T

ϕψne
−2iπθ·yn · V

+

∫
RN

∫
∂T

y · ∇xu
1e2iπθ·yn ·

∫
∂T

ϕψne
−2iπθ·yn

+

∫
RN

∫
∂T

u1e2iπθ·yn ·
∫

∂T

y · ∇x(ϕψn)e−2iπθ·yn

+

∫
RN

∫
∂T

y · ∇x∇xu
0 · ye2iπθ·yn ·

∫
∂T

ϕψne
−2iπθ·yn

+

∫
RN

∫
∂T

y · ∇xu
0e2iπθ·yn ·

∫
∂T

y · ∇x(ϕψn)e−2iπθ·yn.

(54)
Replacing u0 by (43) and u1 by (48) yields that (54) is a variational formula-
tion of a Schrödinger type equation for v±. The only remaining difficulty is
to identify the coefficient tensor in the elliptic part of (54). This is a tedious
computation that we simply summarize. Using the Fredholm alternative for
(19) and assuming the normalization ‖ψn‖L2(∂T ) = 1, we deduce that (54) is
the weak form of the following homogenized Schrödinger equation

∓2ik

ωn(k −mω2
n)

∂v±

∂t
+

3k

ω2
n(k −mω2

n)
V · ∇∇v± · V − 1

λn

div(A∗∇v±) = 0,

where A∗ = 1
8π2∇∇λn. Multiplying by λn

ρω4
n

2k
, this equation becomes (39)

because

ρω4
n

2k

∂2λn

∂θk∂θj

= 3
∂ωn

∂θk

∂ωn

∂θj

− ωn
∂2ωn

∂θk∂θj

= 12π2VkVj − ωn
∂2ωn

∂θk∂θj

.
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