
ULTRARIGID TANGENTS OF SUB-RIEMANNIAN NILPOTENT
GROUPS
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Abstract. We show that the tangent cone at the identity is not a complete qua-
siconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that
there exists a nilpotent Lie group equipped with left invariant sub-Riemannian met-
ric that is not locally quasiconformally equivalent to its tangent cone at the identity.
In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result
is based on the study of Carnot groups that are rigid in the sense that their only
quasiconformal maps are the translations and the dilations.
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1. Overture

1.1. Overview of the results. By means of a result [MM95] of Margulis and
Mostow, if two equiregular sub-Riemannian manifolds are quasiconformally equiv-
alent, then almost everywhere they have isomorphic tangent cones. In particular, the
tangent cone is a quasiconformal invariant. Their work extends a result [Pan89] of
Pansu, for which two Carnot groups are quasiconformally equivalent only if they are
isomorphic.

The main goal of this paper is to show that the converse of the theorem of Margulis
and Mostow fails in a strong sense. We show the following statement.

Theorem 1.1. There exists a nilpotent Lie group equipped with left invariant sub-
Riemannian metric that is not locally quasiconformally equivalent to its tangent cone.

Note that the theorem above holds in particular for locally bi-Lipschitz maps.
We recall that the tangent cone of an equiregular sub-Riemannian manifold is a
Carnot group, and it coincides with the nilpotentisation of its sub-Riemannian struc-
ture [Mit85]. In order to establish the result, we shall study groups with the property
that whenever they are quasiconformally equivalent to some other group, they are
in fact isomorphic to it, see Theorem 4.2. With this purpose in mind, we consider
Carnot groups whose quasiconformal maps are only translations and dilations. We
shall refer to groups with this property as ultrarigid groups. In order to show that
some group is ultrarigid, we prove the following algebraic characterization.

Theorem 1.2. Let G be a Carnot group. Then the following are equivalent:

[1.2.1] For any U ⊂ G open and any quasiconformal embedding f : U → G, one has
that f is the restriction of the composition of a left translation and a dilation;

[1.2.2] Every strata preserving automorphism of Lie(G) is a dilation.

The class of groups defined by [1.2.2] was considered by Pansu in [Pan89]. He
showed that there exist infinitely many 2-step Carnot groups with this property,
although his proof does not provide explicit examples. We exhibit two examples
of groups satisfying [1.2.2]. The first one is a 2-step stratified nilpotent Lie group,
whereas the latter has step 3 and it is not in the class studied by Pansu. Finally,
we point out that, in the case of 2-step Carnot groups, the nontrivial implication
[1.2.2]⇒ [1.2.1] of Theorem 1.2 was proved by Capogna and Cowling, see [CC06].
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1.2. State of the art. Given a metric space (X, d) and a base point x ∈ X, one can
consider the blow-down spaces and the blow-up spaces of X at x. Namely, a pointed
metric space ((Z, ρ), z) is a blow-up (resp. a blow-down) of X at x if there exists
a sequence of positive real numbers λj with λj → ∞ (resp. λj → 0), as j → ∞,
such that ((X,λjd), x) Gromov-Hausdorff converges to ((Z, ρ), z). Such blow-down
spaces and the blow-up spaces are not unique and do not always exist. Whenever
the limit exists for any sequence λj → ∞ (resp. λj → 0) and does not depend on
the sequence, the blow-up (resp. blow-down) space is called the tangent cone (resp.
asymptotic cone). In many situations a map between metric spaces induces a map
between blow-down or blow-up spaces. A key fact is that the induced map has often
more geometric structure than the initial map.

We recall two examples of blow-down and blow-up spaces, which are well known in
sub-Riemannian geometry and in Geometric Group Theory, respectively. Let M , M ′

be two manifolds endowed with some sub-Riemannian distances induced by equireg-
ular horizontal distributions. In such a setting, the blow-up spaces do not depend
on the scaling sequences and are stratified nilpotent Lie groups, see [Mit85]. Let
f : M →M ′ be a quasiconformal homeomorphism. According to [MM95], for almost
every p ∈ M , the map f blows up at p to a strata preserving group isomorphism
between the blow-up space at p and the one at f(p). Regarding the large scale geom-
etry of groups, let Γ be a finitely generated nilpotent group. Endow Γ with any word
distance induced by a finite generating set. The unfamiliar reader might just think
that Γ is a connected, simply connected nilpotent Lie group endowed with a Rie-
mannian left invariant distance. By [Pan83], the blow-down space of Γ is unique and
is a stratified nilpotent Lie group endowed with a left invariant Carnot-Carathéodory
distance, induced by a norm on the first stratum. Likewise the general framework,
any quasi-isometry blows down to a bi-Lipschitz homeomorphism of the blow-down
spaces. Consequently, such blow-down spaces are isomorphic.

Once a map is given at the blow-up or at the blow-down level, it is then natural
to ask if we can integrate back to a map between the initial spaces. Namely, if we
are given two sub-Riemannian manifolds with isomorphic blow-up spaces at a point
(resp. two finitely generated nilpotent groups with isomorphic blow-down spaces), to
what extent we may conclude that the two manifolds are quasiconformally equivalent
(resp. the nilpotent groups are quasi-isometric)?

The fact that the blow-down space is not a complete quasi-isometric invariants was
proved by Shalom [Sha04], using group cohomology. Namely, he shows that quasi-
isometric nilpotent groups have same Betti numbers. Then he exhibits an example
due to Benoist of two nilpotent groups with same blow-down space and different Betti
numbers. We summarize the result of Shalom as the following statement.

Theorem 1.3 (Shalom [Sha04, page 152]). There exist two finitely generated nilpotent
groups Γ and Λ that have the same blow-down space, but they are not quasi-isometric
equivalent.
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Although blow-down spaces capture the asymptotic geometry, Shalom’s result shows
that they do not capture the whole large scale geometry. Similarly, for general sub-
Riemannian manifolds, blow-up spaces capture only the infinitesimal geometry and
not the local geometry. To see this, one can consider an example1 of a sub-Riemannian
manifold M whose blow-up space is not constant on a full measure set. Indeed, fix
p ∈ M and let G be the blow-up of M at p. We claim that no neighborhood of p is
quasiconformally equivalent to an open set in G. Since G is a cone, it is isometric to
its blow-up space. Hence, the blow-up of M at p is isomorphic to the blow-up of G at
the identity. Assume by contradiction that there exists a quasiconformal embedding
f : U ⊂ M → G. Then by [MM95] almost every blow-up space in U needs to be
isomorphic to G. Since this is not the case, such a quasiconformal map does not exist.

We conclude that a necessary condition for a sub-Riemannian manifold M to be
quasiconformally equivalent to a Carnot group G is that the blow-up space of M is
G at almost every point. It is then natural to ask what happens when the manifold
has the same blow-up space at every point. Here the work of Pansu, Margulis, and
Mostow fails to give an answer. One needs to find a different strategy.

A natural example of a manifold with constant blow-up spaces is provided by a Lie
group G endowed with a left invariant sub-Riemannian distance. In this case, the
isometry group of G acts transitively on G. Therefore the blow-up space is the same
at every point of G. In this article, we provide a nilpotent Lie group of dimension 16
that is not locally quasiconformal (and hence not locally bi-Lipschitz) equivalent to
its blow-up. In particular, we have the following consequence.

Corollary 1.4. There exist two sub-Riemannian nilpotent Lie groups H and G, that
have the same blow-up space at every point, but they are not (locally) quasiconformally
equivalent.

We conclude our survey section by recalling some positive results: blow-up spaces
of Riemannian manifolds and contact 3-manifolds do capture the local geometry.
Indeed, every point p in a Riemannian n-manifold M has a neighborhood that is bi-
Lipschitz equivalent to an open set in Rn, which is the blow-up of M at p. The same
phenomenon appears for contact 3-manifolds. By Darboux’s Theorem, every point
in a contact manifold has a neighborhood that is contactomorphic to an open set of
the standard contact structure. We can see this as a metric statement. Indeed, every
contact manifold can be endowed with a sub-Riemannian structure, which is unique
up to bi-Lipschitz equivalence. Now, Darboux’s Theorem implies that every point p
in a sub-Riemannian 3-manifold M has a neighborhood that is bi-Lipschitz equivalent
to an open set in the sub-Riemannian standard contact structure. The latter is the
sub-Riemannian Heisenberg group. Since the Heisenberg group is dilation invariant,
we also have that the sub-Riemannian Heisenberg group is the blow-up at any point

1The existence of sub-Riemannian manifolds whose blow-up space varies continuously was noticed
by Pansu. An explicit 11-dimensional example has being given by Varchenko in [Var81].
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of any sub-Riemannian 3-manifold. We can therefore conclude that every nilpotent
Lie group G of dimension 3 has the property that, when it is endowed with a left
invariant sub-Riemannian metric, any element of G has a neighborhood that is bi-
Lipschitz homeomorphic to an open set in the blow-up space of G.

We remark that in the setting of Riemannian groups or of 3-dimensional contact
groups, the blow-up spaces may not preserve the algebraic structure of the original
space. Examples in the Riemannian setting are easy to find, because there are diffeo-
morphic Lie groups that are not isomorphic. On the other hand, the sub-Riemannian
roto-translation group is not isomorphic to its blow-up space, which is the Heisenberg
group.

1.3. Structure of the paper. The article is organized as follows. In Section 2 we
fix the notation and state the results of the literature that are the building blocks
of our work. In Section 3 we state Theorem 1.2, which characterizes ultrarigidity in
purely Lie theoretic terms. Then we give two examples of ultrarigid Carnot groups.
In Section 4 we establish our main results. To begin we prove Theorem 4.2, which is a
rigidity type theorem for sub-Riemannian nilpotent Lie groups with ultrarigid tangent
cone. Secondly, we exhibit two example of a sub-Riemannian nilpotent Lie group
with ultrarigid tangent cone. This together with Theorem 4.2 imply Theorem 1.1
and Corollary 1.4. In Section 5 we recall the definition of Tanaka prolongation of
a stratified nilpotent Lie algebra and state a result of Tanaka. We then use this to
prove Theorem 1.2.

2. Notation and preliminaries

2.1. Carnot Groups. Let G be a stratified nilpotent Lie group with identity eG or e
if no confusion arises. This means that its Lie algebra g admits an s-step stratification

g = V1 ⊕ · · · ⊕ Vs,
where [Vj, V1] = Vj+1, for 1 ≤ j ≤ s, and with Vs 6= {0} and Vs+1 = {0}. To avoid
degeneracies, we assume g to have at least dimension two, which is reasonable to our
purposes.

Given a point p ∈ G we denote by τp the left translation by p. An element X in
the Lie algebra g can be considered as a tangent vector at the identity. Such a vector
induces the left invariant vector field that at a point p ∈ G is given by (τp)∗|e(X).
This vector field will still be denoted by X, unless confusion might arise. The set
of all left invariant vector fields with the bracket operation is isomorphic to g and it
inherits the stratification of g. The sub-bundle H ⊆ TG where Hp = (τp)∗|e(V1) is
called the horizontal distribution. A scalar product 〈 , 〉 on V1 defines a left invariant
scalar product on each Hp by setting

〈v, w〉p = 〈(τp−1)∗|p(v), (τp−1)∗|p(w)〉(2.1)

5



for all v, w ∈ Hp. The left invariant scalar product gives rise to a left invariant sub-
Riemannian metric d on G, the definition of which, we shall give later in the more
general setting of sub-Riemannian manifolds. We call (G, d) a Carnot group, which
we simply denote by G if no ambiguity arises.

We denote by Aut0(g) the Lie group of strata preserving automorphisms of g. The
Lie algebra of Aut0(g) is the space of strata preserving derivations of g, which we
denote by g0. In general, for any stratified nilpotent Lie algebra, there are distin-
guished elements of Aut0(g), which are called dilations (or better algebra-dilations).
For each λ ∈ R, the dilation δλ is defined linearly by setting δλ(X) := λjX, for every
X ∈ Vj and every j = 1, . . . , s. The subset {δλ |λ ∈ R \ {0}} is called the algebra-
dilation group. The set of dilations with positive factor constitutes a one parameter
subgroup of Aut0(g), whose Lie algebra is generated by the derivation D ∈ g0 defined
by D(X) := jX, for every X ∈ Vj and every j = 1, . . . , s. In particular, for every
t ∈ R, we have δet = etD. Since any (algebra-)dilation δλ is an algebra homomorphism
and the Lie group G is simply connected, the dilation induces a unique homomor-
phism on the group, which we still Since G is nilpotent and simply connected, the
exponential map is a diffeomorphism. Thus, group-dilations δλ can be defined as
δλ(p) = exp ◦ δλ ◦ exp−1(p), for all λ ∈ R and p ∈ G.

The group generated by the left translations and the group-dilations will play an
important role in our considerations. We refer to this group as the translation-dilation
group, and denote it by

TD(G) := {τp ◦ δλ : p ∈ G, λ ∈ R \ {0}} .

2.2. Sub-Riemannian manifolds. Throughout the paper, we shall write smooth
when referring to C∞ functions, maps or vector fields. A sub-Riemannian, or Carnot-
Carathéodory manifold, is a triple (M,H, g), where M is a differentiable manifold,
H is a bracket generating tangent sub-bundle of M , and g is a smooth section of the
positive definite quadratic forms on H.

Let m be dimHp, which is independent on p ∈ M . Recall that being bracket
generating means that, for every p ∈ M , there exists vector fields X1, . . . , Xm in M ,
such that Hp = span{X1(p), . . . , Xm(p)}, and for some integer s(p) ≥ 1,

TpM = span
¶

[Xi1 , [Xi2 , [. . . , [Xik−1
, Xik ] . . . ]]](p) : k = 1, . . . , s(p),

ij ∈ {1, . . . ,m}, j = 1, . . . , k } .

The bundle H is called the horizontal distribution. The Carathéodory-Chow-
Rashevsky Theorem shows that the bracket generating property implies that any
two points in M can be joined by a horizontal path, i.e., an absolutely continuous
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path whose tangents belong to the horizontal distribution. It follows that a sub-
Riemannian manifold carries a natural metric, called the sub-Riemannian or Carnot-
Carathéodory metric, defined by setting

d(p, q) := inf
∫ 1

0

»
gγ(t)(γ̇(t), γ̇(t))dt,

where the infimum is taken along all horizontal curves γ : [0, 1] → M such that
γ(0) = p and γ(1) = q.

For Carnot groups, the tensor g is given by the left invariant scalar product (2.1).
Moreover, left translations are isometries, and d is homogeneous with respect to the
group-dilations, that is, d(δλ(p), δλ(q)) = |λ|d(p, q) for all p, q ∈ G and all λ ∈ R.

The horizontal bundle induces a filtration of each TpM as follows: Set L0 = {0},
let L1 denote the set of all smooth sections of H defined on a neighbourhood of p,
and by recurrence define Li+1 = Li + [L1, Li], for i > 0. It then follows that

L0(p) ⊂ L1(p) ⊆ · · · ⊆ Ls(p)(p) = TpM

and [Li, Lj](p) ⊆ Li+j(p). If gi(p) := Li(p)/Li−1(p), then the nilpotentisation of TpM
is the vector space

g(p) = V1(p)⊕ · · · ⊕ Vs(p)(p).
Since, for any X ∈ Li and Y ∈ Lj, one has that

[X + Li−1, Y + Lj−1] = [X, Y ] + Li+j−1,

the Lie bracket of vector fields induces a well defined bracket on g(p) thus defining
a stratified nilpotent Lie algebra of step s(p). Furthermore, g(p) together with the
scalar product 〈 , 〉p = gp define a Carnot algebra. Since g(p) is nilpotent, by the
theory of nilpotent Lie groups, there exists a unique connected, simply connected Lie
group Gp whose Lie algebra is g(p). We might denote this group by exp(g(p)). In
our case, the group Gp together with the sub-Riemannian metric dp induced by 〈 , 〉p,
form a Carnot group, which is called the tangent cone at p. Indeed, by a theorem of
Mitchell [Mit85], the pointed metric spaces (M,λd, p) Gromov-Hausdorff converge,
as λ→∞, to the pointed metric space (Gp, dp, e). In other words, any blow-up space
of (M,d) at p is isometric to the Carnot group Gp.

A sub-Riemannian manifold is called equiregular2 if the functions p 7→ dimVi(p)
are constant for all i. Note that in this case the function p 7→ s(p) is automatically
constant. The important consequence of equiregularity is that the Hausdorff dimen-

sion of M , with respect to d, is the natural number Q =
∑s(p)
i=1 i dim gi(p). Moreover,

on any compact subset of M , the Q-dimensional Hausdorff measure is commensurate
with any Lebsegue measure, see [Mit85].

2In Mitchell’s and Margulis-Mostow’s works, one finds the term ‘generic’ instead of ‘equiregular’.
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If the nilpotentisations are independent of p and thus isomorphic to a fixed Lie
algebra g, then (M,H) is said to be strongly regular and g is called the symbol algebra
of (M,H). Clearly the tangent cones are all isomorphic to G = exp(g) in this case.

2.3. Contact and quasiconformal maps. Let (M,H) and (M ′,H′) be manifolds
with horizontal distributions. Let U ⊆M be an open set. A local C1 diffeomorphism
f : U → M ′ is called a contact map if f∗(Hp) = H′f(p). In particular, left translation
and dilations are contact maps of a Carnot group to itself.

Let (M,d) and (M ′, d′) be metric spaces and let U ⊆ M be an open set. Let
f : U →M ′ be a (topological) embedding. For p ∈M and for small t ∈ R, we define
the distortion function by

Hf (p, t) :=
sup{d′(f(p), f(q))|d(p, q) ≤ t}
inf{d′(f(p), f(q))|d(p, q) ≥ t}

.

Definition 2.2. We say that f is K-quasiconformal for some K ≥ 1 if

lim sup
t→0

Hf (p, t) ≤ K,

for all p ∈M .

In particular, left translations and dilations are 1-quasiconformal maps of a Carnot
group to itself.

Quasiconformal maps between Carnot groups (G, d) and (G′, d′) are Pansu differ-
entiable almost everywhere with respect to any Haar measure, see [Pan89, Thèoréme
2]. An alternative equivalent measure is the Q-dimensional Hausdorff measure, where
Q =

∑s
i=1 i dimVi is the homogeneous dimension.

We recall that a continuous map f : G→ G′ is Pansu differentiable at p ∈ G if the
limit

Df(p)(q) = lim
t→0+

δ−1
t ◦ τ−1

f(p) ◦ f ◦ τp ◦ δt(q)

is uniform on compact sets and equals a homomorphism Df(p) : G → G′. We call
Df(p) the Pansu derivative of f at p and the Pansu differential is the Lie algebra
homomorphism df(p) : g→ g′ such that Df(p) ◦ exp = exp ◦ df(p). Note that Df(p)
and df(p) commute with dilating and so in particular, df(p) is a strata preserving Lie
algebra homomorphism.

The following results will be important for our purposes.

Theorem 2.3 (L. Capogna, M. Cowling, [CC06]). All 1-quasiconformal maps between
Carnot groups are smooth.

Furthermore, by [CC06, Corollary 7.2] we also have the following Lemma.

Lemma 2.4. If f is a quasiconformal embedding such that df(p) = δλ(p) for almost all
points p in its domain of definition, then f is 1-quasiconformal and therefore smooth.
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2.4. Quasiconformal equivalence. The Pansu differential of a quasiconformal map
is a graded group isomorphism. Consequently, we have the following fact.

Theorem 2.5 (P. Pansu, [Pan89]). Two Carnot groups are quasiconformally equiv-
alent if and only if they are isomorphic as groups.

In particular, when f is an embedding of an open set U ⊂ G into G itself, we have
that df(p) ∈ Aut0(g), for almost every p ∈ U . Furthermore, the set of smooth contact
maps of G into itself coincides with the set of smooth Pansu differentiable maps of G
to itself, see [War08].

Theorem 2.5 was later generalised by Margulis and Mostow.

Theorem 2.6 (G. Margulis, G. Mostow, [MM95], [MM00]). Let (M,H, g) and (M ′,H′, g′)
be equiregular sub-Riemannian manifolds. Any quasiconformal embedding f : U ⊆
M → M ′ of an open set U of M induces, at almost every point p ∈ U , an isomor-
phism

Df(p) : Gp → G′f(p),

between the tangent cones of M and M ′, respectively.

One might wonder if the inverse of Margulis-Mostow Theorem holds true. Alas, we
show that it is not the case. Indeed, we exhibit two sub-Riemannian manifolds that
at every point have the same fixed Carnot group as tangent cone. Then we prove
that they are not quasiconformally equivalent. In fact, we find such examples among
the class of nilpotent Lie groups.

3. Ultrarigid groups

3.1. Definition of ultrarigidity. In this section we present a class of groups that
we shall consider in proving the main theorem. Such groups have the property of hav-
ing very few quasiconformal maps. Notice that left translations and group-dilations
are always present. In fact, we are interested in the case when these are the only
quasiconformal maps. Theorem 1.2 gives an algebraic characterization of such a sit-
uation and will be proved in Section 5. For convenience of the reader, we restate the
theorem.

Theorem 3.1 (Restatement of Theorem 1.2). Let G be a Carnot group. Then the
following are equivalent:

[1.2.1] If U ⊂ G is open and f : U → G is a quasiconformal embedding, then f is
the restriction of an element of TD(G);

[1.2.2] The group Aut0(g) coincides with the algebra-dilation group.

Because of Theorem 1.2, the notion of ultrarigid group may be defined in two
equivalent manners.
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Definition 3.2. A Carnot group G is said to be ultrarigid if one of the two equivalent
properties [1.2.1] and [1.2.2] of Theorem 1.2 holds.

Remark 3.3. Property [1.2.2] has been considered by Pierre Pansu. He proved that
there exist uncountably many groups with such property, see [Pan89, Proposition
13.1]. Unfortunately, Pansu’s proof does not seem constructive for our purposes. It is
important to recall that Pansu mainly considered more general groups. Namely, we
call Pansu-rigid those Carnot groups G for which any strata-preserving automorphism
of Lie(G) is a similarity, i.e., the composition of a dilation and an isometry. One of the
main steps in proving Mostow rigidity for quaternionic hyperbolic spaces is to show
that the boundary at infinity of such spaces are Pansu-rigid, see [Pan89, Proposition
10.1]. Clearly, any ultrarigid group is Pansu-rigid.

Remark 3.4. For Carnot groups of step 2, the nontrivial part of Theorem 1.2 has been
proved by Capogna and Cowling, see [CC06, Corollary 7.4].

3.2. Examples of ultrarigid groups. In this section we present two examples of
ultrarigid groups. The ultrarigidity can be verified by explicit computation of the
strata preserving automorphisms using the MAPLE LieAlgebras package.

In Section 4.2 we shall need an example of an ultrarigid group whose structure
can be deformed to a nonstratified nilpotent Lie group. The following Lie algebra
determines an ultrarigid group having this flexibility.

Example 3.5. Consider the sixteen dimensional Lie algebra with basis {ei | i =
1, . . . , 16} and bracket relations:

[e1, e2] = e11, [e1, e3] = e13, [e1, e4] = e14,

[e1, e5] = e15, [e1, e6] = e16, [e2, e3] = e13,

[e2, e5] = e12, [e2, e6] = e14, [e3, e5] = e12,

[e3, e6] = e13, [e3, e7] = e14, [e4, e5] = e12,

[e4, e6] = e13, [e4, e8] = e14, [e5, e6] = e13,

[e5, e8] = e12, [e5, e9] = e14, [e6, e8] = e12,

[e6, e9] = e13, [e6, e10] = e14, [e7, e8] = e14,

[e7, e9] = e12, [e7, e10] = e13, [e8, e9] = e13,

[e8, e10] = e14, [e9, e10] = −e12,

We note that this is a 2-step Carnot algebra with stratification V1 = span {e1, . . . , e10}
and V2 = span {e11, . . . , e16}. It can be deformed to a nonstratified nilpotent Lie
algebra by adding the additional bracket [e1, e11] = e14.

Example 3.6. Our second example is the seventeen dimensional group correspond-
ing to the Lie algebra obtained by extending the previous example by adding the
additional bracket [e1, e11] = e17. The strata are as follows: V1 = span {e1, . . . , e10},
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V2 = span {e11, . . . , e16} and V3 = span {e17}. The significance of this example is that
it shows that Theorem 1.2 does extend the result discussed in Remark 3.4.

4. The counter examples

4.1. A criterion for quasiconformal nonequivalence. In this section we show
that sub-Riemannian nilpotent groups with same tangent cones need not to be qua-
siconformally equivalent. The main theorem of the section is Theorem 4.2, where
ultrarigidity is assumed. Namely, we deal with a Carnot group G whose only quasi-
conformal maps are the elements of TD(G).

We start by showing that, in general, if a nilpotent subgroup H of TD(G) has
codimension one, then H is in fact G. For doing this, let us study the group structure
of TD(G). Composition of functions turns TD(G) into a Lie group that is isomorphic
to a semidirect product GoR. Thus the Lie algebra of TD(G) is a semidirect product
of g with a one dimensional subgroup:

Lie(TD(G)) = g o R.
Here the R-factor is generated by the derivation D and the brackets in Lie(TD(G))
are those of g together with

[D,X] = D(X), ∀X ∈ g.

Lemma 4.1. Let G 6= R be a Carnot group. Let H < TD(G) be a subgroup of
codimension 1 and assume that H is nilpotent. Then H = G× {0}.

Proof. Denote by h, g, and g o R the Lie algebras of H, G, and TD(G), respectively.
Thus we have dim h = dim g = n and dim(g o R) = n + 1. Let V1 be the first layer
of g, for which we recall that dimV1 ≥ 2. Hence we get

dim(V1 ∩ h) = dimV1 + dim h− dim(V1 + h)

≥ 2 + n− (n+ 1) = 1.

Thus there exists X ∈ V1 ∩ h with X 6= 0.

We note that if V1 ⊆ h, then g ⊆ h and so G = H. Now consider the case
V1 \ (V1 ∩ h) 6= ∅ and let Y be a nonzero element in V1 \ (V1 ∩ h). Then, since h has
codimension 1 in g o R, we have that g o R = span{h, Y }. Thus there exist Z ∈ h
and α ∈ R such that D = Z + αY . Notice that Z 6= 0, otherwise D = αY ∈ V1,
which is not true. Therefore, the element D−αY is in h \ {0}, and since D preserves
strata, there exists Zm ∈ V2 ⊕ · · · ⊕ Vs such that

(adD−αY )m (X) = X + Zm, ∀m ∈ N.
However, since D − αY and X are both elements of the nilpotent algebra h, the
iterated bracket (adD−αY )m (X) should be eventually 0, which contradicts the fact
that X 6= 0. Thus we conclude that V1 \ (V1 ∩ h) 6= ∅ cannot occur. �
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Recall that, unless otherwise said, a Carnot group is always equipped with a left
invariant sub-Riemannian distance with respect to the first stratum as horizontal
distribution.

Theorem 4.2. Assume G is an ultrarigid Carnot group. Let H be a connected, simply
connected nilpotent group endowed with a left invariant sub-Riemannian distance. If
there exist open sets U ⊂ G, U ′ ⊂ H, and a quasiconformal homeomorphism between
U and U ′, then H is isomorphic to G.

Proof. Let f : U → U ′ be the quasiconformal homeomorphism. Composing with a
suitable translation, we may assume that f(eG) = eH . Then, for h ∈ H, we consider
the quasiconformal map

fh := f−1 ◦ τh ◦ f : Ũ ⊆ G→ G,
which is well defined for h close enough to the identity in H and for some open set
Ũ ⊆ G. By definition of ultrarigidity, we can assume fh is in fact in TD(G).

We claim that the map h 7→ fh is an injective local homomorphism of H into
TD(G). Therefore, going to the Lie algebra level, we get a (globally defined) injective
local homomorphism of h into Lie(TD(G)). Indeed, the map is a homomorphism,
because

fh ◦ fh′ = f−1 ◦ τh ◦ τh′ ◦ f = f−1 ◦ τhh′ ◦ f = fhh′ , ∀h, h′ ∈ H.
Regarding the injectivity, for h 6= eH , we show that fh 6= id. Since f(eG) = eH ,

fh(eG) = (f−1 ◦ τh ◦ f)(eG) = (f−1 ◦ τh)(eH) = f−1(h) 6= eG.

Therefore h is isomorphic to a subalgebra h0 < Lie(TD(G)). Since h0 is nilpotent, by
Lemma 4.1, we have that h0 = g×{0}. Thus h is isomorphic to g and therefore H is
isomorphic to G, since they are connected, simply connected nilpotent Lie groups. �

4.2. Example of a non-Carnot group with ultrarigid tangent. We present here
an example of a sub-Riemannian nilpotent Lie group that demonstrates the validity
of Theorem 1.1. Namely, we exhibit a nilpotent Lie group H whose tangent cone
is the 16-dimensional group G of Example 3.5 such that the pair G, H satisfy the
condition of Theorem 4.2. In turn, this implies Theorem 1.1 and Corollary 1.4.

The nilpotent group is the following. Take G = exp(g) where g is Example 3.5,
and let H = exp(h) where h is the 16-dimensional nilpotent Lie algebra with the
same bracket relations as g and the additional bracket [e1, e11] = e14. Note that this
additional bracket is of order 3 and so h is not stratified.

If Xi denotes the left invariant vector field corresponding to ei, then the horizontal
space H ⊂ TH is framed by X1, . . . , X10. For a given point p, L1 is the set of smooth
sections of H defined on a neighbourhood of p, and L2 = L1 +[L1, L1]. It follows that
X1 ∈ L1, X11 ∈ L2 and X14 ∈ L2, hence

[X1, X11] + L2 = X14 + L2 = 0 + L2.
12



On the other hand, if X, Y ∈ L1 and [X, Y ] = 0+L1, then [X, Y ] = 0 and so g(p) = g
for all p ∈ H.

5. Equivalence of definitions for ultrarigid groups

In this section we prove Theorem 1.2. Part of our proof uses a theorem of Tanaka,
that provides a characterization of the space of contact maps on a Carnot group G at
the infinitesimal level. In order to state Tanaka’s theorem, it is convenient to change
part of the notation. Throughout this section we shall denote by g−i the strata Vi of
a nilpotent and stratified Lie algebra g, for every i = 1, . . . , s.

5.1. Tanaka Prolongation. The Tanaka prolongation of g is the graded Lie algebra
Prol(g) given by the direct sum

Prol(g) :=
⊕
k∈Z

gk,

where gk = {0} for k < −s and for each k ≥ 0, gk is inductively defined by

gk :=
ß
u ∈

⊕
`<0

g`+k ⊗ g∗` | u([X, Y ]) = [u(X), Y ] + [X, u(Y )]
™
.

Clearly, for k = 0 we get the strata preserving derivations. If u ∈ gk, where k ≥ 0,
then the condition in the definition becomes the Jacobi identity upon setting [u,X] =
u(X) when X ∈ g. Furthermore, if u ∈ gk and u′ ∈ g`, where k, ` ≥ 0, then
[u, u′] ∈ gk+` is defined inductively according to the Jacobi identity, that is

[u, u′](X) = [u, [u′, X]]− [u′, [u,X]].

In [Tan70], Tanaka shows that Prol(g) determines the structure of the contact vector
fields on the group G. A contact vector field is defined as the infinitesimal generator
of a local flow of contact maps, and the space of these vector fields forms a Lie
algebra with the usual bracket of vector fields. We recall that D denotes the standard
dilation defined in Section 2.1, and we rephrase the result of Tanaka with the following
statement.

Theorem 5.1 (N. Tanaka, [Tan70]). Let U ⊂ G be an open set. Denote by C(U)
the Lie algebra of smooth contact vector fields on U . If Prol(g) is finite dimensional,
then there exists a Lie algebra isomorphism between Prol(g) and C(U). In particular,
if Prol(g) = g⊕ g0, one may choose this isomorphism to be the linear map ρ defined
by the assignments

(5.2) ρ(D)φ(p) =
d

dt
φ(exp(etD exp−1(p)))|t=0,

(5.3) ρ(X)φ(p) =
d

dt
φ(exp(−tX)p)|t=0,

where p ∈ U , φ is a smooth function on U and X varies in g.
13



The interested reader can consult [Tan70, Yam93] for a thorough overview, and [OW10]
for a basic introduction.

Remark 5.4. Since G is simply connected, then in the case Prol(g) is finite dimen-
sional, every V ∈ C(U) uniquely extends to an element of C(G), see [Tan70, page
34].

Remark 5.5. We notice that Prol(g) is finite dimensional if and only if gk = {0} for
some k ≥ 0. In fact, we have that gk = {0} implies gk+l = {0} for every l ≥ 0.

We note that if Aut0(g) consists only of dilations, then g0 is exactly the span of
D and thus one dimensional. The following lemma implies that in this case the only
contact flows are dilations. We would like to thank M. Reimann for bringing this fact
to our attention.

Lemma 5.6. Let g be a nonabelian nilpotent and stratified Lie algebra such that g0

is one dimensional. Then the prolongation of g is g⊕ g0.

Proof. We need to show that g1 = {0}. Set u ∈ g1. Then u(gj) ⊂ gj+1 for every
j = −s, . . . ,−1 and u([X, Y ]) = [u(X), Y ] + [X, u(Y )] for all X, Y ∈ g. Since g0 has
dimension one, then g0 = span{D}. In particular, if X ∈ g−1, then u(X) = c(X)D,
where c : g−1 → R is linear. In order to show that u = 0, it is enough to prove that
c(X) = 0 for all X ∈ g−1.

Let z(g) denote the centre of g, and let Z ∈ z(g) ∩ g−k 6= ∅. Then for all X ∈ g−1

0 = u([X,Z]) = [u(X), Z] + [X, u(Z)]

= −c(X)kZ + [X, u(Z)],

whence

[X, u(Z)] = c(X)kZ.

By induction, it is easy to show that

[X, uj(Z)] = c(X)
j−1∑
l=0

(k − l)uj−1(Z) = c(X)
j(2k − j + 1)

2
uj−1(Z),

which in the case j = k gives

(5.7) [X, uk(Z)] = c(X)
k(k + 1)

2
uk−1(Z).

Furthermore, iterating (5.7) gives

(5.8) adkXu
k(Z) = Akc(X)kZ,

where Ak is a positive constant depending on k only. Notice that since uk(Z) ∈ g0,
we have uk−1(Z) ∈ g−1, and it follows that

[X, uk(Z)] = [X, u(uk−1(Z))] = −c(uk−1(Z))X
14



for all X ∈ g−1. We conclude that for k ≥ 2, the left hand side of (5.8) is zero. It
follows that since g is nonabelian, then c(X) = 0 since we can set k = s ≥ 2, and
choose a nonzero Z ∈ z(g) ∩ g−s. �

5.2. Proof of Theorem 1.2. [1.2.1] ⇒ [1.2.2]. Every element α ∈ Aut0(g) lifts to
an automorphism of G which is also a contact map. Therefore by hypothesis this
contact map is an element of TD(G), and since it is an automorphism it must be a
group-dilation. We conclude that α is an algebra-dilation.

[1.2.2]⇒ [1.2.1]. Let f : U → G be a quasiconformal embedding. Then f is Pansu
differentiable at almost every p ∈ U . Therefore df(p) = δλ(p) for almost every p ∈ U
and by Lemma 2.4, f is 1-quasiconformal and smooth. In particular f is a smooth
contact map.

After normalising with left translations if necessary, we can assume that e ∈ U and
f(e) = e. Moreover f∗W ∈ C(f(U)) for every W ∈ C(U). By Remark 5.4, f∗ induces
a Lie algebra isomorphism of C(U), which we also denote by f∗. It then follows that
ρ−1f∗ρ is an automorphism of g⊕ g0. This automorphism has some extra properties
that we show in the following lemma.

Lemma 5.9. The automorphism α := ρ−1f∗ρ preserves g and g0. Moreover, α|g ∈
Aut0(g).

Proof. By (5.2) we see that ρ(D)(e) = 0, whereas by (5.3) we have that ρ(X)(e) 6= 0
for every X ∈ g. Since f(e) = e, we conclude that g0 is preserved. Since D is
surjective, it follows that [g⊕ g0, g⊕ g0] = g which implies α(g) = g.

In order to show that α|g preserves the strata, it is enough to prove that it preserves
g−1. Since f is contact, this is true if the equation

(5.10) f∗ρ(X) = ρ(f∗|eX),

holds for every X ∈ g−1. To show (5.10), we first observe that the flow of f∗ρ(X)
through p is ft(p) = f(exp(−tX)f−1(p)) and in particular ft(e) = f(exp(−tX)).
Since f(e) = e, we have that f∗|e = df(e) on g−1. By hypothesis, df(e) = δλ for some
λ ∈ R \ {0}, and it follows that

d

dt
ft(e) = f∗|e(X) = λX.

Hence (5.10) is valid when evaluated at the identity. The equality at all points
follows from the fact that both f∗ρ(X) and ρ(f∗|eX) are right invariant vector fields,
see (5.3). �

We now conclude the proof of Theorem 1.2. Since ρ−1f∗ρ|g ∈ Aut0(g), it follows
that ρ−1f∗ρ|g = δλ for some λ ∈ R \ {0}. If F (p) = δ1/λ ◦ f , then F (e) = e, and
by (5.10), we see that ρ−1F∗ρ|g = I. In particular F∗ρ(X) = ρ(X) for every X ∈ g.
Thus, F∗ preserves each right invariant vector field, and so F commutes with the left
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translations. Hence F (pq) = pF (q), and putting q = e shows that F is the identity.
Therefore f = δλ and the proof of Theorem 1.2 is complete. �
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