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1. Introduction

Several materials of interest for applications, such as concrete, granular media, metallic
foams, and porous metals, exhibit a pressure-sensitive yield behavior. There exists a large
literature focusing on yield criteria for these materials, which identify the onset of irreversible
inelastic behavior with the fact that a suitable measure of the state of internal stress reaches
a threshold. Examples include the Gurson criterion for porous ductile materials [8], the
criterion of Ottosen for concrete [14], the Desphande-Fleck criterion for metallic foams [7],
and, for soils, Cam-Clay and the many subsequent variants (see, e.g., [6] and the references
quoted therein). These criteria and several others are discussed in detail in [3].

Following the engineering literature, we work for simplicity in the framework of associa-
tive elasto-plasticity. Moreover we limit our analysis to the case of no hardening (perfect
plasticity). With reference to a domain Ω ⊂ Rn , the problem can be formulated as follows.
The linearized strain Eu , defined as the symmetric part of the spatial gradient of the dis-
placement u , is decomposed as the sum Eu = e + p , where e and p are the elastic and
plastic strains. The stress σ is determined only by e , through the formula σ = Ce , where C
is the elasticity tensor. It is constrained to lie in a prescribed convex subset K of the space
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Mn×n
sym of n×n symmetric matrices, whose boundary ∂K is referred to as the yield surface.

In this context, pressure sensitivity of the yield criterion leads to the hypothesis that K is
bounded.

The data of our problem are a time-dependent body force f(t, x), defined for t ∈ [0, T ]
and x ∈ Ω, a time-dependent surface force g(t, x) acting on a portion Γ1 of the boundary
∂Ω, and a time-dependent displacement prescribed on the complementary porion Γ0 of ∂Ω.
The classical formulation of the quasistatic evolution problem consists in finding functions
u(t, x), e(t, x), p(t, x), σ(t, x) satisfying the following conditions for every t ∈ [0, T ] and
every x ∈ Ω:

additive decomposition: Eu(t, x) = e(t, x) + p(t, x) ,
constitutive equation: σ(t, x) = Ce(t, x) ,

equilibrium: − div σ(t, x) = f(t, x) ,
associative flow rule: ṗ(t, x) ∈ NK(σ(t, x)) ,

(1.1)

where NK(ξ) is the normal cone to K at ξ . The problem is supplemented by initial condi-
tions at time t = 0, by displacement boundary conditions u(t, x) = w(t, x) for t ∈ [0, T ] and
x ∈ Γ0 , and traction boundary conditions σ(t, x)ν(x) = g(t, x) for t ∈ [0, T ] and x ∈ Γ1 ,
where ν(x) is the outer unit normal to ∂Ω.

In recent work [5], a similar problem was considered for the pressure-insensitive case where
K is a cylinder in Mn×n

sym containing all scalar multiples of the identity matrix. There, the
existence of a suitably defined weak solution was obtained by time-discretization. According
to a general energy approach, see e.g. [13], the discrete time formulation consists in solving
a chain of incremental minimum problems which are quadratic in e and have linear growth
in p . Thus, the direct methods of the calculus of variations lead to a weak formulation
with u ∈ BD(Ω), the space of functions with bounded deformation, e ∈ L2(Ω; Mn×n

sym ), and
p ∈ Mb(Ω ∪ Γ0,Mn×n

sym ), the space of bounded Radon measures on Ω ∪ Γ0 with values in
Mn×n

sym .
Notice that allowing for measure-valued plastic strains is also natural from the point of

view of mechanics, see [16]: indeed, localization of plastic deformation and formation of
shear bands are often observed experimentally in the materials to which the models we
analyze should apply.

In this work, we extend this approach to the case where K is an arbitrary convex bounded
subset of Mn×n

sym with nonempty interior. To adapt the technique to the new situation, we
have to introduce a suitable duality product 〈σ, p〉 , between stress and plastic strain, defined
for every σ ∈ L∞(Ω; Mn×n

sym ) with div σ ∈ Ln(Ω; Rn) and for every p ∈ Mb(Ω ∪ Γ0,Mn×n
sym )

of the form p = Eu− e with u ∈ BD(Ω) and e ∈ L2(Ω; Mn×n
sym ). This is done in Section 3,

using results from [11, 1].
After the properties of this duality have been established, we follow the lines of the

proof of [5], and obtain, under suitable hypotheses on the data f , g , and w , an existence
result (Theorem 4.3) for a weak formulation (Definition 4.1) of problem (1.1), with u ∈
AC([0, T ];BD(Ω)), e ∈ AC([0, T ];L2(Ω; Mn×n

sym )), and p ∈ AC([0, T ];Mb(Ω ∪ Γ0,Mn×n
sym )).

Moreover, we prove that e , and hence σ , are uniquely determined by the initial conditions.
We emphasize that our results are obtained under very general qualitative hypotheses on

the yield surfaces ∂K and on the elasticity tensor C . Namely, we just assume that K is
a convex, bounded set with nonempty interior, and that C , regarded as a linear operator
acting on Mn×n

sym is symmetric and positive definite. In particular no assumption of isotropy
is required.

2. Preliminaries

2.1. Mathematical preliminaries. Given a locally compact subset X of Rn and a finite
dimensional Hilbert space Ξ, the space of bounded Ξ-valued Borel measures on X is denoted
by Mb(X; Ξ) and is endowed with the norm ‖µ‖1 := |µ|(X), where |µ| ∈ Mb(X; R) is the
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variation of the measure µ . By Riesz representation theorem (see, e.g., [15, Theorem 6.19])
Mb(X; Ξ) can be identified with the dual of C0(X; Ξ), the space of continuous functions
ϕ : X → Ξ such that {|ϕ| ≥ ε} is compact for every ε > 0. This defines the weak∗ topology
in Mb(X; Ξ).

For every µ ∈ Mb(X; Ξ) we consider the Lebesgue decomposition µ = µa + µs , where
µa is absolutely continuous and µs is singular with respect to Lebesgue measure Ln . The
space L1(X; Ξ) of Ξ-valued Ln -integrable functions is regarded as a subspace of Mb(X; Ξ),
with the induced norm. When Ξ = R , the indication of the space Ξ is omitted.

The Lp norm, 1 ≤ p ≤ ∞ , is denoted by ‖ · ‖p . The brackets 〈·|·〉 denote the duality
product between conjugate Lp spaces, as well as between other pairs of spaces, according
to the context.

The space of symmetric n×n matrices is denoted by Mn×n
sym ; it is endowed with the

euclidean scalar product ξ : ζ := tr(ξζ) =
∑

ij ξijζij and with the corresponding euclidean
norm |ξ| := (ξ : ξ)1/2 . The symmetrized tensor product a� b of two vectors a , b ∈ Rn is
the symmetric matrix with entries (aibj + ajbi)/2.

For every u ∈ L1(U ; Rn), with U open in Rn , let Eu be the Mn×n
sym -valued distribution on

U , whose components are defined by Eiju = 1
2 (Djui+Diuj). The space BD(U) of functions

with bounded deformation is the space of all u ∈ L1(U ; Rn) such that Eu ∈Mb(U ; Mn×n
sym ).

It is easy to see that BD(U) is a Banach space with the norm ‖u‖1 + ‖Eu‖1 . It is possible
to prove that BD(U) is the dual of a normed space (see [12] and [18]), and this defines the
weak∗ topology of BD(U). A sequence uk converges to u weakly∗ in BD(U) if and only
if uk ⇀ u weakly in L1(U ; Rn) and Euk

∗
⇀ Eu weakly∗ in Mb(U ; Mn×n

sym ). For the general
properties of BD(U) we refer to [17].

In our problem u ∈ BD(U) represents the displacement of an elasto-plastic body and
Eu is the corresponding linearized strain.

We recall that a function f from [0, T ] into a Banach space Y is said to be absolutely
continuous if for every ε > 0 there exists δ > 0 such that

∑
i ‖f(ti)−f(si)‖Y < ε, whenever∑

i(ti−si) < δ and 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ T. The space of these functions
is denoted by AC([0, T ];Y ). For the general properties of absolutely continuous functions
with values in reflexive Banach spaces we refer to [4, Appendix]. When Y is the dual of a
separable Banach space, one can prove (see [5, Theorem 7.1]) that for a.e. t ∈ [0, T ] there
exists the weak∗ -limit

ḟ(t) := w∗- lim
s→t

f(s)− f(t)
s− t

.

Note that in this general situation it may happen that ḟ is not Bochner integrable.

2.2. Mechanical preliminaries. The reference configuration. Throughout the paper
the reference configuration Ω is a bounded connected open set in Rn , with Lipschitz boundary
∂Ω = Γ0 ∪ Γ1 . We assume that Γ0 6= Ø, Γ1 is closed, and Γ0 ∩ Γ1 = Ø.

The constraint and its support function. The constraint on the stress is given by a
closed convex set K ⊂ Mn×n

sym with nonempty interior. Its boundary ∂K plays the role of
yield suface. For the energy formulation of problem (1.1) it is convenient to introduce the
support function H : Mn×n

sym → R of K defined by

H(ξ) = sup
ζ∈K

ξ : ζ . (2.1)

H is convex and positively homogeneous of degree one.
For every µ ∈Mb(Ω ∪ Γ0; Mn×n

sym ), let µ/|µ| be the Radon-Nikodym derivative of µ with
respect to its total variation |µ| . According to the general theory of convex functions of
measures, we introduce the nonnegative Radon measure H(µ) ∈Mb(Ω ∪ Γ0) defined by

H(µ)(B) =
∫

B

H

(
µ

|µ|

)
d|µ| (2.2)
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for every Borel set B ⊂ Ω∪Γ0 . Finally we consider the functional H : Mb(Ω∪Γ0; Mn×n
sym ) → R

defined by
H(µ) := H(µ)(Ω ∪ Γ0) . (2.3)

We refer to [10] and [17, Chapter II, Section 4] for the properties of H(µ) and H(µ).

The data of the problem. Let us fix a time interval [0, T ] . We assume that the body force
f , the surface force g and the prescribed boundary displacement w satisfy the following
assumptions:

f ∈ AC([0, T ];Ln(Ω; Rn)),
g ∈ AC([0, T ];L∞(Γ1; Rn)),
w ∈ AC([0, T ];H1(Ω; Rn)).

(2.4)

Stress and strain. For a given displacement u ∈ BD(Ω) and a boundary datum w ∈
H1(Ω; Rn), the elastic and plastic strains e ∈ L2(Ω; Mn×n

sym ) and p ∈ Mb(Ω ∪ Γ0; Mn×n
sym )

satisfy the relation
Eu = e+ p in Ω, (2.5)

p = (w − u)� νHn−1 on Γ0, (2.6)

so that e = Eau − pa a.e. on Ω and ps = Esu on Ω. The stress σ ∈ L2(Ω; Mn×n
sym ) is

defined by
σ := Ce. (2.7)

The stored elastic energy Q : L2(Ω; Mn×n
sym ) → R is given by

Q(e) =
1
2

∫
Ω

Ce : e dx =
1
2

∫
Ω

σ : e dx.

For a w ∈ H1(Ω; Rn), the set of admissible displacements for the boundary datum w on
Γ0 is denoted by A(w) and it is defined as:

A(w) :=
{

(u, e, p) ∈ BD(Ω)×L2(Ω; Mn×n
sym )×Mb(Ω∪ Γ0; Mn×n

sym ) : (2.5), (2.6) hold
}
. (2.8)

The space ΠΓ0(Ω) of admissible plastic strains is the set of all p ∈Mb(Ω∪Γ0; Mn×n
sym ) for

which there exist u ∈ BD(Ω), w ∈ H1(Ω,Rn) and e ∈ L2(Ω; Mn×n
sym ), such that (u, e, p) ∈

A(w).
The following lemma, that can be proved as in [5, Lemma 2.1] shows, that the multi-valued

map w 7→ A(w) is closed.

Lemma 2.1. Let wk ∈ H1(Ω; Rn) and let (uk, ek, pk) ∈ A(wk) . If

uk
∗
⇀ u∞ weakly∗ in BD(Ω), ek ⇀ e∞ weakly in L2(Ω; Mn×n

sym ),

pk
∗
⇀ p∞ weakly∗ in Mb(Ω ∪ Γ0; Mn×n

sym ), wk ⇀ w∞ weakly in H1(Rn; Rn),

then (u∞, e∞, p∞) ∈ A(w∞) .

The traces of the stress. If σ ∈ L∞(Ω; Mn×n
sym ) and div σ ∈ Ln(Ω; Rn), then one can

define a distribution [σν] on ∂Ω by

〈[σν]|ψ〉 =
∫

Ω

div σ · ψ dx+
∫

Ω

σ : Eψ dx (2.9)

for ψ ∈ W 1,1(Ω; Rn). By Gagliardo’s extension result [9, Theorem 1.II], it is easy to see
that [σν] ∈ L∞(∂Ω; Rn) and that

[σkν]
∗
⇀ [σν] weakly∗ in L∞(∂Ω; Rn), (2.10)

whenever σk
∗
⇀ σ weakly∗ in L∞(Ω; Mn×n

sym ) and div σk ⇀ div σ weakly in Ln(Ω; Rn).
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Uniform safe-load condition. We assume that there exist a function % in the space
AC([0, T ];L∞(Ω; Mn×n

sym )) and a compact set K0 ⊂ intK , such that for every t ∈ [0, T ]

div %(t) = −f(t) in Ω, [%(t)ν] = g(t) on Γ1, %(t, x) ∈ K0 in Ω. (2.11)

3. Stress-strain duality

In this section we develop the notion of duality between the stress and the plastic part
of the strain. We begin with the definition and properties of the duality between stress and
strain in the spirit of [11], where only the deviatoric part of the stress is bounded, and [1],
where a similar problem is studied in BV (Ω).

In the sequel we will make use of the following space

Σ(Ω) = {σ ∈ L∞(Ω; Mn×n
sym ) : div σ ∈ Ln(Ω; Rn)}.

3.1. Duality between stress and strain. For every u ∈ BD(Ω) and σ ∈ Σ(Ω) we can
define a distribution [σ : Eu] on Ω by

〈[σ : Eu]|ϕ〉 = −
∫

Ω

ϕu · div σ dx−
∫

Ω

σ : (u�∇ϕ) dx (3.1)

for every ϕ ∈ C∞c (Ω). Arguing as in [11, Theorem 3.2] one can prove that the distribution
[σ : Eu] is a bounded measure on Ω and its variation satisfies

|[σ : Eu]| ≤ ‖σ‖∞ |Eu| in Mb(Ω). (3.2)

Moreover [2, Corollary 3.2], with obvious changes, implies that

[σ : Eu]a = σ : Eau a.e. in Ω. (3.3)

From the definition (3.1) it follows that

[ψ σ : Eu] = ψ[σ : Eu] in Mb(Ω) (3.4)

for every ψ ∈ C1(Ω).
We define the measure [σ : Esu] on Ω by putting

[σ : Esu] := [σ : Eu]s = [σ : Eu]− σ : Eau. (3.5)

Inequality (3.2) yields
|[σ : Esu]| ≤ ‖σ‖∞ |Esu| in Mb(Ω). (3.6)

Remark 3.1. This inequality implies that [σ1 : Esu1] = [σ2 : Esu2] in Mb(Ω) whenever
σ1 = σ2 a.e. in Ω and Esu1 = Esu2 .

As in [11, Theorem 3.2] one can prove the following stability property: if

σk
∗
⇀ σ weakly∗ in L∞(Ω; Mn×n

sym ),

div σk ⇀ div σ weakly in Ln(Ω; Rn),

then for every u ∈ BD(Ω)

[σk : Eu] ∗
⇀ [σ : Eu] and [σk : Esu] ∗

⇀ [σ : Esu] weakly∗ in (Cb(Ω))′

that is, for each bounded continuous function ϕ : Ω → R one has∫
Ω

ϕd[σk : Eu] →
∫

Ω

ϕd[σ : Eu],
∫

Ω

ϕd[σk : Esu] →
∫

Ω

ϕd[σ : Esu]. (3.7)
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3.2. Duality between stress and plastic strain. Given σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), fix
u ∈ BD(Ω), e ∈ L2(Ω; Mn×n

sym ) and w ∈ H1(Ω; Rn), satisfying (2.5) and (2.6). Then we
define a measure [σ : p] ∈Mb(Ω ∪ Γ0) by setting

[σ : p] := σ : pa + [σ : Esu] = [σ : Eu]− σ : e on Ω,

[σ : p] := [σν] · (w − u)Hn−1 on Γ0,

so that∫
Ω∪Γ0

ϕd[σ : p] =
∫

Ω

ϕd[σ : Eu]−
∫

Ω

ϕσ : e dx+
∫

Γ0

ϕ [σν] · (w − u) dHn−1 (3.8)

for every ϕ ∈ Cb(Ω ∪ Γ0), the space of bounded continuous functions on Ω ∪ Γ0 . In this
case Remark 3.1 shows that the measure [σ : p] is well defined, that is, it does not depend
upon the particular choice of u, e and w .

It follows from the definition that

[σ : p]a = σ : pa a.e. on Ω, [σ : p]s = [σ : Esu] in Mb(Ω)

and

|[σ : p]| ≤ ‖σ‖∞|p| in Mb(Ω ∪ Γ0), |[σ : p]s| ≤ ‖σ‖∞|ps| in Mb(Ω ∪ Γ0). (3.9)

Moreover (3.4) implies that

[ψσ : p] = ψ[σ : p] in Mb(Ω ∪ Γ0)

for every ψ ∈ C1(Ω; Mn×n
sym ) and using the definitions one can deduce that∫

Ω∪Γ0

ϕd[σ : p] =
∫

Ω∪Γ0

ϕσ dp (3.10)

for every σ ∈ C1(Ω; Mn×n
sym ) and every ϕ ∈ C1(Ω). By (3.9) we deduce, that (3.10) holds for

all σ ∈ C(Ω; Mn×n
sym ) and ϕ ∈ C(Ω). Therefore for every σ ∈ C(Ω; Mn×n

sym ) and p ∈ ΠΓ0(Ω)
we have

[σ : p] = σ : p in Mb(Ω ∪ Γ0),
where the right-hand side denotes the measure defined by

(σ : p)(B) =
∫

B

σij dpij

for every Borel set B ⊂ Ω ∪ Γ0 .
Also it is easy to see that the relation

[σ : p] = (σ : p) · Ln in Mb(Ω)

holds in the case σ, p ∈ L2(Ω; Mn×n
sym ).

It follows from the definition and from (2.10) and (3.7) that

[σk : p] ∗
⇀ [σ : p] weakly∗ in (Cb(Ω ∪ Γ0))′ (3.11)

whenever σk
∗
⇀ σ weakly∗ in L∞(Ω; Mn×n

sym ) and div σk ⇀ div σ weakly in Ln(Ω; Rn).
Finally, for every σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), we define

〈σ|p〉Σ,Π : = [σ : p](Ω ∪ Γ0) =

=
∫

Ω

σ : pa dx+ [σ : Esu](Ω) +
∫

Γ0

[σν] · (w − u) dHn−1 =

= [σ : Eu](Ω)−
∫

Ω

σ : e dx+
∫

Γ0

[σν] · (w − u) dHn−1.

where u ∈ BD(Ω), e ∈ L2(Ω; Mn×n
sym ) and w ∈ H1(Ω; Rn) satisfy (2.5) and (2.6).

Let us now prove the integration by parts formula for stresses and displacements:
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Proposition 3.2. Let σ ∈ Σ(Ω), w ∈ H1(Ω; Rn), f ∈ Ln(Ω; Rn), g ∈ L∞(Γ1; Rn) and let
(u, e, p) ∈ A(w) . Assume that −div σ = f in Ω and [σν] = g on Γ1 . Then∫

Ω∪Γ0

ϕd[σ : p] +
∫

Ω

ϕσ : (e− Ew) dx+
∫

Ω

σ :
(
(u− w)�∇ϕ

)
dx =

=
∫

Ω

ϕf · (u− w) dx+
∫

Γ1

ϕg · (u− w) dHn−1
(3.12)

for every ϕ ∈ C1(Ω) .

Proof: First, let us establish the following formula for σ ∈ Σ(Ω), v ∈ BD(Ω) and ϕ ∈
C1(Ω):∫

∂Ω

ϕ [σν] · v dHn−1 =
∫

Ω

ϕ div σ · v dx+
∫

Ω

σ : (v �∇ϕ) dx+
∫

Ω

ϕd[σ : Ev]. (3.13)

Arguing as in [5, Lemma 2.3] we can find a sequence σk in C∞(Ω), such that

σk → σ strongly in Lp(Ω; Mn×n
sym ), div σk → div σ strongly in Ln(Ω; Rn)

for every 1 ≤ p <∞ . By the integration by parts formula for BD(Ω), formula (3.13) holds
for every σk . The left-hand side converges to that of (3.13) by (2.10), while the convergence
of the right-hand side follows from (3.7). This proves (3.13).

By the assumptions of the theorem, for v = u − w ∈ BD(Ω) formula (3.13) takes the
form:

−
∫

Ω

ϕf · (u− w) dx+
∫

Ω

σ :
(

(u− w)�∇ϕ
)
dx+

∫
Ω

ϕd[σ : E(u− w)] =

=
∫

Γ0

ϕ [σν] · (u− w) dHn−1 +
∫

Γ1

ϕg · (u− w) dHn−1.
(3.14)

On the other hand, (3.8) gives∫
Ω∪Γ0

ϕd[σ : p] +
∫

Ω

ϕσ : (e− Ew) dx+
∫

Ω

σ :
(

(u− w)�∇ϕ
)
dx =

=
∫

Ω

ϕd[σ : E(u− w)] +
∫

Ω

σ :
(

(u− w)�∇ϕ
)
dx−

∫
Γ0

ϕ [σν] · (u− w) dHn−1.

Thus, the last relation together with (3.14) yields (3.12). �

Let

K(Ω) := {σ ∈ L∞(Ω; Mn×n
sym ) : σ(x) ∈ K for a.e. x ∈ Ω}.

The following proposition can pe proved as in [5, Proposition 2.2].

Proposition 3.3. Let p ∈ ΠΓ0(Ω) . Then

H(p) ≥ [σ : p] in Mb(Ω ∪ Γ0) (3.15)

for every σ ∈ Σ(Ω) ∩ K(Ω) , and

H(p) = sup{〈σ|p〉 : σ ∈ Σ(Ω) ∩ K(Ω)}. (3.16)

Moreover, if g ∈ L∞(Γ1; Rn) and there exists % ∈ Σ(Ω) ∩ K(Ω) such that [%ν] = g on Γ1 ,
then

H(p) = sup{〈σ|p〉 : σ ∈ Σ(Ω) ∩ K(Ω), [σν] = g on Γ1}. (3.17)
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4. Quasistatic evolution

4.1. Definition and existence result. From assumptions (2.4) it follows, that for the
functional L(t) ∈ BD(Ω)′ , defined by

〈L(t)|u〉 =
∫

Ω

f(t)u dx+
∫

Γ1

g(t)u, (4.1)

the weak∗ limit

L̇(t) = w∗- lim
s→t

L(s)− L(t)
s− t

exists in BD(Ω)′ for a.e. t ∈ [0, T ] , and that

〈L̇(t)|u〉 =
∫

Ω

ḟ(t)u dx+
∫

Γ1

ġ(t)u. (4.2)

Therefore the function t 7→ 〈L̇(t)|u(t)〉 belongs to L1([0, T ]) whenever t 7→ u(t) is in
L∞([0, T ];BD(Ω)).

A function p : [0, T ] → Mb(Ω ∪ Γ0; Mn×n
sym ) will be regarded as a function defined on the

time interval [0, T ] with values in the dual of the separable Banach space C0(Ω∪Γ0; Mn×n
sym ).

Its variation V and H−variation DH are defined as

V(p; s, t) = sup
{ N∑

j=1

‖p(tj)− p(tj−1)‖1 : s = t0 ≤ · · · ≤ tN = t, N ∈ N
}
,

DH(p; s, t) = sup
{ N∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ · · · ≤ tN = t, N ∈ N
}
.

The notation DH for the H -variation is motivated by the more standard case in which
the set K of admissible stresses contains the origin in its interior. In this case, H is positive
and the H -variation of p has the physical interpretation of plastic dissipation in the time
interval (s, t).

Next we give a variational formulation of the quasistatic problem.

Definition 4.1. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into
BD(Ω)× L2(Ω; Mn×n

sym )×Mb(Ω ∪ Γ0; Mn×n
sym ) which satisfies the following conditions:

(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

Q(e(t))− 〈L(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈L(t)|v〉 (4.3)

for every (v, η, q) ∈ A(0).
(qs2) energy balance: the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γ0; Mn×n

sym ) has
bounded variation and for every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈L(t)|u(t)〉 = Q(e(0)) + 〈L(0)|u(0)〉+

+
∫ t

0

(
〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉 − 〈L̇(s)|u(s)〉

)
ds,

(4.4)

where σ(t) = Ce(t).

Remark 4.2. Since the function t 7→ p(t) from [0, T ] into Mb(Ω∪Γ0; Mn×n
sym ) has bounded

variation, it is bounded and the set of its discontinuity points (in the strong topology) is at
most countable. As the estimates of [5, Theorem 3.8] are true also in this case, the same
continuity property holds for t 7→ e(t) and t 7→ σ(t) from [0, T ] into L2(Ω; Mn×n

sym ) and for
t 7→ u(t) from [0, T ] into BD(Ω). Therefore

e, σ ∈ L∞([0, T ];L2(Ω; Mn×n
sym )) and u ∈ L∞([0, T ];BD(Ω)).

Finally, as ẇ ∈ L1([0, T ];W 1,2(Ω; Rn)) and Ėw ∈ L1([0, T ];L2(Ω; Mn×n
sym )), the integral

in the right-hand side of (4.4) is well-defined.
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Theorem 4.3. Assume (2.4) and (2.11). If (u0, e0, p0) ∈ A(w(0)) satisfy the stability
condition

Q(e(0))− 〈L(0)|u0〉 ≤ Q(e) +H(p− p0)− 〈L(0)|u〉
for every (u, e, p) ∈ A(w(0)) , then there exists a quasistatic evolution t 7→ (u(t), e(t), p(t))
such that u(0) = u0, e(0) = e0, p(0) = p0 .

Proof: The proof can be obtained by time discretization. For every k ∈ N we fix a
subdivision 0 = t0k < t1k < · · · < tk−1

k < tkk = T, satisfying (4.11) of [5]. At each time step
we solve the incremental minimum problem (4.12) of [5], adopting the definitions of A(w)
and H of the present paper. Then we define the piecewise constant interpolations uk(t),
ek(t), pk(t), σk(t) as in (4.15) of [5], and we prove that for every t ∈ [0, T ] uk(t) ∗

⇀ u(t)
weakly∗ in BD(Ω), ek(t) ⇀ e(t) weakly in L2(Ω; Mn×n

sym ) and pk(t) ∗
⇀ p(t) weakly∗ in

Mb(Ω ∪ Γ0;MD), where t 7→ (u(t), e(t), p(t)) is a quasistatic evolution.
The details can be recovered by repeating the arguments of [5, Section 4], with obvious

modifications due to the new definitions introduced in Section 3 of the present paper. �

The next theorem shows, that the convergence of elastic strains and stresses takes place
in the strong topology of L2(Ω; Mn×n

sym ). See [5, Theorem 4.8] for the proof.

Theorem 4.4. Assume that

pk(t) ∗
⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0; Mn×n

sym ) (4.5)

for every t ∈ [0, T ] . Then ek(t) → e(t) and σk(t) → σ(t) strongly in L2(Ω; Mn×n
sym ) .

Moreover,

lim
k

∑
0<tr

k≤t

{
H(pk(trk)− pk(tr−1

k ))− 〈%(trk)|pk(trk)− pk(tr−1
k )〉

}
=

= DH(p; 0, t)− 〈%(t)|p(t)〉+ 〈%(0)|p(0)〉+
∫ t

0

〈%̇(s)|p(s)〉 ds

for every t ∈ [0, T ] .

4.2. Regularity and uniqueness. The next statement shows that the quasistatic evolu-
tion is absolutely continuous with respect to time. We refer to [5, Theorem 5.2] for the
proof.

Theorem 4.5. Let t 7→ (u(t), e(t), p(t)) be a quasistatic evolution. Then

e ∈ AC([0, T ];L2(Ω; Mn×n
sym )), p ∈ AC([0, T ];Mb(Ω∪Γ0; Mn×n

sym ), u ∈ AC([0, T ];BD(Ω)).

Moreover, for a.e. t ∈ [0, T ]

‖ė(t)‖2 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (4.6)

‖ṗ(t)‖1 ≤ C2(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (4.7)
‖Eu̇(t)‖1 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (4.8)

‖u̇(t)‖1 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2 + ‖ẇ(t)‖2). (4.9)

Remark 4.6. Assume that u ∈ AC([0, T ];BD(Ω)), e ∈ AC([0, T ];L2(ΩMn×n
sym )), and p ∈

AC([0, T ];Mb(Ω∪Γ0); Mn×n
sym ). Assume that (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ] .

Then (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ] . Indeed, it is enough to apply Lemma
2.1 to the difference quotients.

As in [5, Theorem 5.9] we can prove that t 7→ e(t) (and, consequently, t 7→ σ(t)) is
uniquely determined by its initial condition.

Theorem 4.7. Let t 7→ (u(t), e(t), p(t)) and t 7→ (v(t), η(t), q(t)) be two quasistatic evolu-
tions and let σ(t) := Ce(t) and τ(t) := Cη(t) . If e(0) = η(0) , then e(t) = η(t) for every
t ∈ [0, T ] . Equivalently, if σ(0) = τ(0) , then σ(t) = τ(t) for every t ∈ [0, T ] .
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4.3. Equivalent formulations in rate form. Let t 7→ (u(t), e(t), p(t)) be a quasistatic
evolution. Suppose for a moment that ṗ(t) ∈ L2(Ω; Mn×n

sym ). In this section we want to prove
that

ṗ(t, x) ∈ NK(σ(t, x)) for a.e.x ∈ Ω, (4.10)
which represents the classical formulation of the flow rule. By the definition of NK it is easy
to see that (4.10) is equivalent to saying that

〈σ(t)− τ(t)|ṗ(t)〉 ≥ 0 (4.11)

for every τ ∈ Σ(Ω) ∩K(Ω) with [τ ν] = g(t) on Γ1 . Indeed, the implication (4.10)⇒(4.11)
is straightforward, while the converse one is obtained by considering the test functions of
the form τ = ϕξ + (1− ϕ)σ , with a cut-off ϕ ∈ C∞c (Ω), 0 ≤ ϕ ≤ 1 and arbitrary ξ ∈ K .

Note, that the variational inequality (4.11) makes sense even if one considers the duality
between Σ(Ω) and ΠΓ0(Ω), defined in Section 3, since ṗ(t) ∈ ΠΓ0(Ω) by Remark 4.6. We will
regard (4.11) as the weak formulation of the inclusion (4.10) when ṗ(t) ∈Mb(Ω∪Γ0; Mn×n

sym ).
The following theorem collects three different sets of conditions, including (4.11) and

expressed in terms of the time derivatives ṗ(t), ė(t), and u̇(t), which are equivalent to the
conditions considered in Definition 4.1. For its proof we refer to [5, Theorem 6.1], with
obvious modifications.

Theorem 4.8. Let (u, e, p) : [0, T ] → BD(Ω)× L2(Ω; Mn×n
sym )×Mb(Ω ∪ Γ0; Mn×n

sym ) and let
σ(t) = Ce(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a quasistatic evolution;
(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω) ∩ K(Ω) ,
−div σ(t) = f(t) in Ω , and [σ(t) ν] = g(t) on Γ1 ,

(b2) for a.e. t ∈ [0, T ] we have

H(ṗ(t)) = 〈σ(t)|ṗ(t)〉;
(c) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(c1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω) ∩ K(Ω) ,
−div σ(t) = f(t) in Ω , and [σ(t) ν] = g(t) on Γ1 ,

(c2) for a.e. t ∈ [0, T ] we have

〈σ(t)− τ |ṗ(t)〉 ≥ 0

for every τ ∈ Σ(Ω) ∩ K(Ω) with [τ ν] = g(t) on Γ1 ;

Remark 4.9. By Proposition 3.3 the measure H(ṗ(t)) − [σ(t) : ṗ(t)] is nonnegative on
Ω ∪ Γ0 , so that (b2) implies that

H(ṗ(t)) = [σ(t) : ṗ(t)] on Ω ∪ Γ0. (4.12)

Let us return to the classical formulation of the flow rule, which makes sense for ṗ(t) ∈
L2(Ω; Mn×n

sym ). It can be written equivalently in the form

ṗ(t, x)
|ṗ(t, x)|

∈ NK(σ(t, x)) for Ln − a.e. x ∈ {|ṗ(t)| > 0}. (4.13)

When ṗ(t) ∈Mb(Ω∪Γ0; Mn×n
sym ), we can consider the Radon-Nikodym derivative ṗ(t)/|ṗ(t)|

of ṗ(t) with respect to its variation |ṗ(t)| , which is a function defined |ṗ(t)|-a.e. on Ω∪Γ0 .
We notice that

ṗ(t)
|ṗ(t)|

(x) =
ṗ(t, x)
|ṗ(t, x)|

for Ln − a.e. x ∈ {|ṗ(t)| > 0}

when p ∈ L2(Ω; Mn×n
sym ). Unfortunately, when p ∈Mb(Ω ∪ Γ0; Mn×n

sym ) one cannot prove the
inclusion

ṗ(t)
|ṗ(t)|

(x) ∈ NK(σ(t, x)), (4.14)
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that is the natural generalization of (4.13), as a pointwise formulation of the flow rule,
since its left-hand side is defined |ṗ(t)|-a.e. on Ω ∪ Γ0 , while its right-hand side is defined
only Ln -a.e. on Ω. In the following Theorem this difficulty is overcome by introducing
a representative σ̂(t) of σ(t), which is defined ṗ(t)-a.e. on Ω ∪ Γ0 . For the proof see [5,
Theorem 6.4].

Theorem 4.10. Let (u, e, p) : [0, T ] → BD(Ω)×L2(Ω; Mn×n
sym )×Mb(Ω∪Γ0; Mn×n

sym ), σ(t) =
Ce(t) and let µ(t) = Ln + |ṗ(t)| . Then t 7→ (u(t), e(t), p(t)) is a quasistatic evolution if and
only if

(d) t 7→ (u(t), e(t), p(t)) is absolutely continuous and
(d1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω) ∪ K(Ω) ,

−div σ(t) = f(t) on Ω , and [σ(t)ν] = g(t) on Γ1 ,
(d2) for a.e. t ∈ [0, T ] there exists σ̂(t) ∈ L∞µ(t)(Ω ∪ Γ0; Mn×n

sym ) such that

σ̂(t) = σ(t) Ln − a.e. on Ω, (4.15)

[σ(t) : ṗ(t)] = σ̂(t) :
ṗ(t)
|ṗ(t)|

|ṗ(t)| in Mb(Ω ∪ Γ0; Mn×n
sym ), (4.16)

ṗ(t)
|ṗ(t)|

(x) ∈ NK(σ̂(t, x)) for |ṗ(t)| − a.e. x ∈ Ω ∪ Γ0. (4.17)

For every r > 0 and every t ∈ [0, T ] we consider the function σr(t) ∈ C(Ω; Mn×n
sym )

defined by

σr(t, x) =
1

Ln(B(x, r) ∩ Ω)

∫
B(x,r)∩Ω

σ(t, y) dy. (4.18)

When K is strictly convex, the previous result can be improved by making the definition of
σ̂ more precise. We refer to [5, Theorem 6.6] for the proof.

Theorem 4.11. Assume that K is strictly convex. Let t 7→ (u(t), e(t), p(t)) be a quasistatic
evolution, let µ(t) = Ln + |ṗ(t)| , let σ(t) = Ce(t) , and let σr(t) be defined by (4.18) .
Then σr(t) → σ̂(t) strongly in L1

µ(t)(Ω; Mn×n
sym ) for a.e. t ∈ [0, T ] , where σ̂(t) satisfies

(4.15)-(4.17).
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