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Abstract. We investigate the limiting description for a finite-difference approximation of a sin-
gularly perturbed Allen-Cahn type energy functional. The key issue is to understand the interaction
between two small length-scales: the interfacial thickness ε and the mesh size of spatial discretization
δ. Depending on their relative sizes, we obtain results in the framework of Γ-convergence for the
(i) sub-critical (ε � δ), (ii) critical (ε ∼ δ), and (iii) super-critical (ε � δ) cases. The first case
leads to the same area functional just like the spatially continuous case while the third gives the
same result as that coming from a ferromagnetic spin energy. The critical case can be regarded as
an interpolation between the two.
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1. Introduction. In this paper we describe the effect of discretization by finite
differences on singularly perturbed non-convex variational problems by examining the
prototypical case of an Allen-Cahn energy

Fε(u) =
∫

Ω

(
W (u) + ε2|∇u|2

)
dx, (1.1)

where Ω ⊂ Rn and W is a double-well energy density with wells in ±1; e.g., W (u) =
(u2 − 1)2. Except for the trivial constant functions u ≡ ±1 (which can be excluded
by an integral constraint), a function uε that attains very small energy value Fε (in
the sense that Fε(uε) = O(ε)) typically partitions the domain Ω into sub-domains on
which uε takes on the values close to 1 or −1 and make a rapid transition between
the sub-domains (see Fig. 1.1).

Interfacial region

u  ~ !1!

u  ~ 1!

"

Fig. 1.1. Partitioning of Ω into sub-regions with uε ≈ 1 and uε ≈ −1

The energy then concentrates on the transition region which is often called the
interfacial region. Such a description can be made rigorous using the theory of Γ-
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convergence of the functionals Fε. By now it is well known that as ε → 0 the func-
tionals Fε behave as a sharp-interface phase-transition energy, finite only on functions
taking the values in {±1} and which can be written as an interfacial energy (see, e.g.,
[35, 33, 37]) in the form

εCW Hn−1(Ω ∩ ∂{u = 1}), (1.2)

where CW is a constant determined by W and the boundary of {u = 1} is suitably
defined. In the above Hn−1 is the Hausdorff (n − 1)-dimensional measure which
coincides with the (n − 1)-dimensional surface measure if the surface is a smooth
manifold.

Dynamical models associated with energy (1.1) also arise in many applications.
A typical equation, derived from the negative L2-gradient flow with respect to (1.1),
is the following Allen-Cahn equation [5]:

ut = ε24u−W ′(u). (1.3)

The ε → 0 limit of the above equation is also studied in many works. It is shown
that the limiting equation is given by the motion of a sharp interface by its mean
curvature. See for example [25, 16, 30, 27].

Due to their wide range of applications, it is thus of practical importance to
consider numerical schemes associated with (1.1) and (1.3). In this paper, we only
consider stationary problems. Some discussion on dynamical problems will be given.
We believe the latter problems are important and yet very challenging.

A formal finite-difference discretization of Fε can be obtained by introducing
another small positive parameter δ which represents the mesh size. The following
energy defined on functions u : Ω ∩ δZn → R is a typical example:

Eε,δ(u) =
∑
i

δnW (ui) +
ε2

2

∑
i,j

δn
∣∣∣ui − uj

δ

∣∣∣2 , (1.4)

where the first sum is taken on i ∈ Ω ∩ δZn and the second sum on all nearest
neighbours (n.n. for short) i, j ∈ Ω∩ δZn; i.e., those indices such that |i− j| = δ (each
such pair is thus counted twice, which explains the factor 1/2). The second term is
easily shown to be a discretization of ε2

∫
Ω
|∇u|2 dx. Heuristically, if the discretization

step is much smaller than ε then the energy Eε,δ is an approximation of the sharp-
interface energy (1.2). This does not happen in the more realistic case when the two
scales may interact. We are interested in describing precisely this interaction.

We will first show that (1.4) is approximated by (1.2) for δ � ε. In the case that
δ ∼ Kε then we will show that the Eε,δ’s are approximately

ε

∫
Ω∩∂{u=1}

ϕK(ν)dHn−1 (1.5)

where ϕK is some anisotropic convex energy density characterized by a discrete op-
timal profile problem. In the case δ � ε, we have a different scaling of the energies
Eε,δ, which approximate the crystalline interfacial energy

4
ε2

δ

∫
Ω∩∂{u=1}

‖ν‖1dHn−1 . (1.6)
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Moreover, in this last scaling Eε,δ are also approximated by a ferromagnetic spin
energy

Eferro
ε,δ (u) =

ε2

2δ

∑
i,j

δn−1|ui − uj |2 , (1.7)

defined for u : Ω∩ δZn → {−1, 1}. Finally, we will show that the function ϕK acts as
an interpolation between the euclidean norm ‖ν‖2 and the crystalline norm 4‖ν‖1.

The asymptotic result described in the present paper has some common features
with the analysis in the continuum setting the interaction between phase transitions
and microscopic oscillations. Examples include the study of energies of the form (see
[7, 14, 21]):

Fε,δ(u) =
∫

Ω

(
W (u) + ε2 a

(x
δ

)
|∇u|2

)
dx, or

∫
Ω

(
W (u,

x

δ
) + ε2|∇u|2

)
dx. (1.8)

(See also [3] where Ising systems with Kac potentials are analyzed.) In the above
works, a limiting energy functional, in the form of anisotropic sharp interfacial energy
is also obtained. In our case the discrete dimension adds a further constraint on the
difference quotients, which implies that ϕK = O(1/K) as K → +∞.

The main difficulty of the type of problems above is due to the combined presence
of singular perturbation and the spatial heterogeneity (which can also come from the
discreteness of the problem). When the two scales interact, there can be lots of local
minimizers. This phenomenon manifests itself even more profoundly in dynamical
problems (see for example, [38, 26]). Even though there are works which extend
the theory of Γ-convergence to evolution equations [36], dynamical version of the
problems described here remain largely open. The work [17] proves the convergence
of the time dependent problem of the finite difference scheme (1.4) to the motion
by mean curvature but only in the sub-critical case (δ � ε). On the other hand,
the works [19, 31, 23] consider from a homogenization point of view motion by mean
curvature in heterogeneous media. A first-order Hamilton-Jacobi equation is derived
in the limit. See also Section 3.5 for further discussion.

2. Setting of the problem. Let W : Rn → [0,+∞) be a locally Lipschitz
double-well potential with wells at ±1; i.e., W is a non-negative function and W (u) =
0 if and only if u = 1 or u = −1. Moreover, we suppose that W is coercive; i.e.,

lim
u→±∞

W (u) = +∞,

and that W is convex close to ±1; i.e., there exists C0 > 0 such that {u : W (u) ≤ C0}
consist of two intervals on each of which W is convex. Standard examples include
W (u) = (1− u2)2 or W (u) = (1− |u|)2 (see Fig. 2.1).

Let Ω be a bounded open subset of Rn with Lipshitz boundary ∂Ω. We will
analyze the asymptotic behaviour of Eε,δ defined by (1.4) on functions u : Ω∩δZn → R
by computing their Γ-developments ([9, Section 1] and [13]; see also [10, 20] for a
general introduction to Γ-convergence). For completeness, we will briefly state the
necessary definitions at the end of this section. In this process each u is identified
with its piecewise-constant interpolation defined by u(x) = ui on i + δ

2 (−1, 1)n (and
equal to 0 elsewhere), so that Γ-limits can be taken in Lebesgue spaces.

Whatever the dependence of δ on ε, the Γ-limit of Eε,δ with respect to the weak
L1-convergence can be easily shown to be simply∫

Ω

W ∗∗(u) dx,
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uu

W(u) = (1!|u|)

!1 1 !1 1

2 2W(u) = (1!u )2

Fig. 2.1. Examples of double-well potential

where W ∗∗ is the convex envelope of W . However, the structure of the interface
cannot be described by the above limit. It will only be revealed by the next-order
Γ-limit which captures energies at the first relevant scale. This is described by the
theorem below. To prepare for its statement and the proof, we denote by Qν a fixed
n-dimensional cube centered at 0, with side length 1 and one side parallel to ν, QνT =
TQν for all T > 0, and QνT (x) = x+ TQν for all x. The limit energies will be defined
on u ∈ BV (Ω; {±1}) (or equivalently on sets of finite perimeter after identifying u
with A = {u = 1}). For such a u, the jump set Su is defined (corresponding to the
reduced boundary of A). Furthermore, on all points of Su, the measure-theoretical
normal ν, pointing inwards to A, is defined (we refer to [8, 29] for precise definitions
and details).

Theorem 2.1. Let Ω, W and Eε,δ be as above, and let δ = δ(ε). We then have
the following three regimes for the Γ-limit with respect to the strong L1-convergence.
In all cases the domain of the Γ-limit is BV (Ω; {±1}) and is a surface term on the
set Su (which we will called the interface).

(i) (Subcritical case.) If δ � ε (limε→0
δ
ε = 0), then we have

Γ- lim
ε→0

1
ε
Eε,δ(u) = CW Hn−1(Ω ∩ Su), (2.1)

where CW = 2
∫ 1

−1

√
W (s) ds, as in the continuous case;

(ii) (Critical case.) If limε→0
δ
ε = K with 0 < K < +∞, then

Γ- lim
ε→0

1
ε
Eε,δ(u) =

∫
Ω∩Su

ϕK(ν) dHn−1, (2.2)

where ϕK is given by the asymptotic formula

ϕK(ν) = lim
N→+∞

1
Nn−1

inf
{
K
∑
i

W (vi) +
1

2K

∑
i,j

|vi − vj |2
}
, (2.3)

where the indices i, j are restricted to the cube QνN and the infimum is taken on all v
that are equal to uν(x) = sign〈x, ν〉 on a neighbourhood of ∂QνN . Furthermore, ϕK is
continuous in the normal direction ν;

(iii) (Supercritical case.) If ε� δ
(
limε→0

ε
δ = 0

)
, then we have

Γ- lim
ε→0

δ

ε2
Eε,δ(u) = 4

∫
Ω∩Su

‖ν‖1 dHn−1, (2.4)

where ‖ν‖1 = |ν1|+ · · ·+ |νn|;
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(iv) (Interpolation.) For all ν ∈ Sn−1 we have

lim
K→0

ϕK(ν) = cW , lim
K→+∞

KϕK(ν) = 4‖ν‖1 . (2.5)

Remark 2.2. (1) The existence of the limit in (2.3) and the continuity of ϕK can
be proved as in the continuous case (see [7]). Moreover, it is a-posteriori convex (i.e.,
its one-homogeneous extension is) since it is the integrand of a lower-semicontinuous
interfacial energy (see [6]).

(2) In the one-dimensional case formula (2.3) reduces to the computation of an
optimal-profile problem

CK = inf
{
K
∑
i

W (vi) +
1
K

∑
i

|vi − vi−1|2 : v(±∞) = ±1
}

; (2.6)

in particular (taking vi ∈ ±1 as test functions) we have

CK ≤
4
K
. (2.7)

(3) It is easily seen that for coordinate directions minimizers for ϕK(ek) are one-
dimensional, so that

ϕK(ek) = CK ,

which gives the estimate

ϕK(ν) ≤ CK‖ν‖1, (2.8)

since the right-hand side is the greatest positively one-homogeneous convex function
satisfying ϕK(ek) = CK for all k.

(4) Note that in the super-critical case, the limit interfacial energy is degenerate,
or not uniformly convex. This is understandable as in this case the nonlinear term
W (u) dominates so that the energy concentrates on the spin functions v which takes
on only values of 1 or −1. In this case, the energy is equivalent to bond-counting:
the number of bonds between 1 and −1. It is likely that ϕK be uniformly convex for
0 < K <∞ even though this is not immediately clear from its definition.

(5) For simplicity, in this paper we do not impose any boundary conditions for the
function space. Such effects can be considered. However, boundary layer might arise.
In addition, the scaling associated with the boundary conditions might be different
from that in the bulk. Hence care must be taken. See for example [34, 2] for some
works in the continuum case which do consider boundary energy terms.

Further remarks and extensions will be given at the end of this paper. Before the
proof, we briefly outline the definition and procedure of proving Γ-convergence. Given
a sequence of functionals fε : Xε −→ R. It is said to Γ-converge to f0 : X0 −→ R if
the following two steps are true:

lower bound: for every x ∈ X0 and sequence {xε ∈ Xε}ε>0 such that xε −→ x0,
then

lim inf
ε→0

fε(xe) ≥ f0(x); (2.9)
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upper bound: given any x0 ∈ X0, one can find a sequence x̄ε ∈ Xε such that

f0(x0) ≥ lim sup
ε→0

fε(x̄e). (2.10)

The fundamental property of Γ-convergence is that if the collection of functionals
{fε} is equi-coercive (every sequence with equibounded energy has a convergent sub-
sequence), then minimizers of fε will have a subsequence that converges to a minimizer
of f0.

In the application of this paper, the Xε’s and X0 will be taken to be subspaces
of L1. We are most interested in the subspace BV (Ω; {±1}) of all functions with
bounded variations which take values in {±1} which can also be identified with sets
of finite perimeter. We will use in particular the well-known result by Modica and
Mortola (see [35]) that

Γ- lim sup
ε→0

1
ε
Fε(u) = CWHn−1(Ω ∩ Su) (2.11)

with domain u ∈ BV (Ω; {±1}). In this case the sequence of energies is equi-coercive
in L1(Ω).

Beside the Γ-limit defined above, it is useful to introduce the Γ-lower and upper
limits respectively as

f ′(x) := Γ- lim inf
ε→0

fε(x) = inf{lim inf
ε→0

fε(xε) : xε → x}, (2.12)

f ′′(x) := Γ- lim sup
ε→0

fε(x) = inf{lim sup
ε→0

fε(xε) : xε → x} , (2.13)

which are always defined at all x. The desired lower bound then translates into
f ′(x) ≥ f0(x) and the upper bound into f ′′(x) ≤ f0(x).

The Γ-lower and upper limits are lower-semicontinuous function ([9, Proposition
1.28]). This is useful in the computation of the lower inequality, since it allows us
to restrict to classes of lower-semicontinuous f0, which in the present paper will be
surface energies with a convex integrand of the normal. Moreover, it allows also to
restrict the verification of the upper bound to a dense class of x (see [9, Remark 1.29]),
which, in our case will be (functions identified with) polyhedral sets.

3. Proof of the result. In the two extreme cases (i) and (iii) the proof will
be achieved by a “separation of scales” argument. First, a lower bound is obtained
by comparing the energies with the functionals that are formally obtained by letting,
respectively, δ → 0 with ε > 0 fixed and ε→ 0 with δ > 0 fixed. Second, the bounds
will be proved to be sharp by using suitable approximate (or recovering) sequences.
In the intermediate case, a new surface energy defined directly by a family of scaled
discrete problems has to be constructed.

As is customary, the letter C will denote a strictly positive constant, whose value
may vary at each of its appearance.

3.1. Subcritical Case (δ � ε). We will first show that given {uεi} with
supε

1
εEε,δ(uε) ≤ C < +∞, we can construct continuous functions vε such that

‖uε − uε‖L1 = o(1) and

lim inf
ε

1
ε
Eε,δ(uε) ≥ lim inf

ε

1
ε
Fε(vε).
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By the equicoerciveness of 1
εFε, this implies that we may suppose up to subsequences

that vε → u and hence uε → u in L1(Ω).
If uε → u then from the inequality above and (2.11) we have

lim inf
ε

1
ε
Eε,δ(uε) ≥ lim inf

ε

1
ε
Fε(vε) ≥ CW Hn−1(Ω ∩ Su);

i.e., the lower bound (2.9) for 1
εEε,δ.

To start the proof, upon a truncation argument, we can first suppose that ‖uε‖∞ ≤
1. Next we consider the continuous functions vε mentioned above to be the piecewise-
affine interpolations on a triangularization of uε. Then we have,

1
2

∑
i,j

δn
∣∣∣uεi − uεj

δ

∣∣∣2 =
∫

Ω

|∇vε|2 dx+ o(1). (3.1)

Next we have to estimate the first sum in Eε,δ(uε) in terms of
∫

Ω
W (vε) dx. We

will consider the various cases whether uεi together with the values of its nearest
neighbours fall into the same convexity region of W (·) or not.

The first and simple scenario is that when for all the neighbours j of i, the values
ui and uj lie in the same interval of convexity of W as in this case we have by Jensen’s
inequality, ∫

T δ
W (vε) dx ≤

1
n+ 1

|T δ|
∑

k∈Vertices(T δ)

W (uεk), (3.2)

for each simplex T δ of the triangulation with vertices on δZn, where vε is a convex
combination of the value uεk at the vertices of T δ and one of the vertices is i as above.

To continue, let C0 be a fixed number such that {z : W (z) < C0} consists of two
intervals. Denote by J1

ε the set of indices i such that W (uεi ) < C0/2 and the value
uεj of each its nearest neighbour j is in the same interval of {z : W (z) < C0} as uεi ,
and denote by J2

ε the complement of J1
ε in {i : W (uεi ) < C0/2}. If the simplex T δ

as above is such that one of its vertices is in J1
ε , then (3.2) holds by the observation

above. As for the simplexes with one vertex in J2
ε , note that

C ≥
∑
i∈J2

ε

δnε
∣∣∣uεi − uεj

δ

∣∣∣2 ≥ C ′ ε
δ
δn−1#(J2

ε )

so that

#(J2
ε ) = o

( 1
δn−1

)
.

As a consequence, if we sum over all such simplexes and simply take into account that
W is bounded on [−1, 1] we have

1
ε

∑
T δ∈J2

ε

∫
T δ
W (vε) dx ≤ C

δn

ε
#(J2

ε ) = o
(δ
ε

)
. (3.3)

In the above and the following, we will make use of the abused notation that Tε ∈ J2
ε

if any of the vertices of Te belongs to J2
ε . It applies to other set of indices also.
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We now take into account simplexes for which the functions uε may take values
outside the convexity domain of W . To this end, with fixed M > 0, denote by I1

ε and
I2
ε the sets of indices

I1
ε =

{
i : W (uεi ) > C0/2,

∣∣∣uεi − uεj
δ

∣∣∣2 ≤ M

ε
for all n.n.j

}
I2
ε =

{
i : W (uεi ) > C0/2,

∣∣∣uεi − uεj
δ

∣∣∣2 > M

ε
for some n.n.j

}
.

Since

δn

ε
#(I1

ε ∪ I2
ε )
C0

2
≤ 1
ε

∑
i

δnW (uεi ) ≤ C

and

δn

ε
#(I2

ε )
(C0

2
+

1
4
M2
)
≤ 1
ε

∑
i

δnW (uεi ) +
ε

4

∑
i,j

δn
∣∣∣uεi − uεj

δ

∣∣∣2 ≤ C
then we have

#(I1
ε ∪ I2

ε ) ≤ C ε

δn
, #(I2

ε ) ≤ C

(1 +M2)
ε

δn
. (3.4)

Let T δ be a simplex as above, and suppose that one of its vertices i is in I1
ε ; then

by the Lipschitz continuity of W for all vertices k of T δ we have∣∣∣∫
T δ
W (vε) dx− |T δ|W (uεk)

∣∣∣ ≤ 1
ε
Cδn sup

i,j
|uεj − uεi | ≤ C

δn+1

ε
M,

so that∣∣∣∣∣
∫
T δ
W (vε) dx−

1
n+ 1

|T δ|
∑
k

W (uεk)

∣∣∣∣∣ ≤ Cδn sup
i,j
|uεj − uεi | ≤ C

δn+1

ε
M.

Summing over such T δ and taking into account (3.4) we have∣∣∣∣∣1ε∑
∫
T δ
W (vε) dx−

1
ε

1
n+ 1

|T δ|
∑∑

k

W (uεk)

∣∣∣∣∣ ≤ #(I1
ε )C

δn+1

ε2
M = o(1). (3.5)

Next, if we sum over all simplexes with one vertex in I2
ε , and again simply take into

account that W is bounded on [−1, 1], by (3.4) we have

1
ε

∑∫
T δ
W (vε) dx ≤ C

δn

ε
#(I2

ε ) ≤ C

1 +M2
. (3.6)

Taking into account the estimates in (3.2), (3.3), (3.5) and (3.6) we then obtain

1
ε

∫
Ω

W (vε) dx ≤
1
ε

∑
T δ

∑
k

|T δ|
n+ 1

W (uεk) + o(1) +
C

1 +M2

=
1
ε

∑
i

δnW (uεi ) + o(1) +
C

1 +M2
. (3.7)
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Finally, by (3.1), (3.7) and the arbitrariness of M > 0 we have

lim inf
ε→0

1
ε
Eε,δ(uε) ≥ lim inf

ε→0

∫
Ω

(1
ε
W (vε) + ε|∇vε|2

)
dx

= lim inf
ε→0

1
ε
Fε(vε) . (3.8)

As remarked at the beginning of the section, from this inequality we deduce the
equicoerciveness of the sequence 1

εEε,δ with respect to the strong L1-convergence
since the functionals 1

εFε are equicoercive and the construction above implies that
‖uε − vε‖1 = o(1) as ε→ 0, as well as the desided lower bound.

The upper bound (2.10) is obtained by an explicit construction. It is sufficient
to show that it holds for Su a planar interface, since the generalization to a general
interface is achieved by the same approximation using polyhedral interfaces as in
the continuum case (see for example [1, Section 3.9]). We can also suppose that
Hn−1(Su ∩ ∂Ω) = 0.

Now consider u(x) = sign〈x, ν〉. Let v be a minimizer for the optimal profile
problem giving CW ; i.e., v(±∞) = ±1 and∫ +∞

−∞

(
W (v) + |v′|2

)
dt = CW .

The recovery sequence (uε) is then defined by

uεi = v
(1
ε
〈i, ν〉

)
i ∈ δZn;

i.e., it is the discretization of v(〈x, ν〉/ε) on the lattice δZn.
After noting that, if i− j = δek,

uεi − uεj
δ

=
νk
ε
v′
(1
ε
〈i, ν〉

)
(1 + o(1))

)
we have for fixed i

ε

2

n∑
k=1

δn
∣∣∣ui − ui±δek

δ

∣∣∣2 = δn
n∑
k=1

ν2
k

∣∣∣v′(1
ε
〈i, ν〉

)
(1 + o(1))

∣∣∣2
= δn

∣∣∣v′(1
ε
〈i, ν〉

)∣∣∣2(1 + o(1)),

so that

1
ε
Eε,δ(uε) =

∑
i

δn
(1
ε
W
(
v
(1
ε
〈i, ν〉

))
+

1
ε

∣∣∣v′(1
ε
〈i, ν〉

)∣∣∣2)(1 + o(1))

= CWHn−1(Su ∩ Ω) + o(1).

3.2. Critical case (0 < limε→0
δ
ε = K < ∞). In this case, the proof of the

equicoerciveness can be achieved through reduction to the one-dimensional case by
a sectional compactness criterion [1, Section 3.7]. In dimension one, the proof is
standard and can be obtained following [9, Section 6.2] by replacing integrals with
sums. This procedure also shows that the limit is in BV (Ω; {±1}).
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The proof of the lower bound can be achieved by a blow-up procedure as follows.
Let supε

1
εEε,δ(uε) < +∞ and uε → u. By equicoercivity (as mentioned above)

u ∈ BV (Ω; {±1}). For each ε > 0 we consider the measures

µε =
∑
i

δn
(1
ε
W (uεi ) +

ε

2

n∑
k=1

∣∣∣uεi − uεi+δek
δ

∣∣∣2)1δi
(to avoid confusing notation 1x denotes the Dirac delta in x), where the sum is
performed on all i ∈ Ω ∩ δZn such that i+ δek ∈ Ω ∩ δZn for all k = 1, . . . , n.

Note that 1
εEε,δ(uε) ≥ µε(Ω) so that the family of measures µε is equibounded.

Hence, up to further subsequences we can assume that µε converges weak-∗ to a finite
measure µ. To continue, we will estimate µ on Su. For this, we will use a covering
argument for almost all Su with cubes as follows:

With fixed h ∈ N, we consider the collection Qh of cubes Qνρ(x) such that the
following conditions are satisfied:

(a) x ∈ Su and ν = ν(x) is the normal to Su at x;

(b)
∣∣∣(Qνρ(x) ∩ {u = 1})4Πν(x)

∣∣∣ ≤ 1
h
ρn, where

Πν(x) = {y ∈ Rn : 〈y − x, ν〉 ≥ 0};

(c)
∣∣∣µ(Qνρ(x))

ρn−1
− dµ

dHn−1 Su
(x)
∣∣∣ ≤ 1

h
;

(d)
∣∣∣ 1
ρn−1

∫
Qνρ(x)∩Su

ϕK(ν(y))dHn−1(y)− ϕK(ν(x))
∣∣∣≤ 1

h

(e) µ(Qνρ(x)) = µ(Qνρ(x)).

(The notation in (a)–(e) is pictured in Fig. 3.1.)

Q (x)

!(  )x
x

{u=1}

Su

{u=!1} (x)"
!

!
#

Fig. 3.1. Description of notations (a)–(e) in the blow-up procedure.

Note that for fixed x ∈ Su and for ρ small enough, (b) is satisfied by the definition
of Su since its blow-up set is a hyperplane. (c) follows from the Besicovitch Derivation
Theorem provided that

dµ

dHn−1 Su
(x) < +∞;
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(d) holds by the same reason, and (e) is satisfied for almost all ρ > 0 since µ is a
finite measure and hence µ(∂Qνρ(x)) = 0 except for at most countably many ρ’s. We
deduce that Qh is a fine covering of the set

Sµu =
{
x ∈ Su :

dµ

dHn−1 Su
(x) < +∞

}
.

By Morse lemma [28, Theorem 1.147], we can extract a countable family of disjoint
closed cubes {Qνjρj (xj)} still covering Sµu . Note that we have

Hn−1(Su \ Sµu ) = 0

since µ(Su) < +∞.
We now fix an x ∈ Sµu . For simplicity, it is assumed to be 0. In addition, let

Qνρ = Qνρ(0) the a cube satisfying (b)–(e) above. Then for ε small enough we have∫
Qνρ

|uε − uν | dy ≤
4
h
ρn (3.9)

by (b) above, where uν(x) = sign〈x, ν〉. Note that in this regime we have

1
ε
Eε,δ(uν) ≤ C

K
Hn−1(Ω ∩ ∂Πν) + o(1) (3.10)

(with a slight abuse of notation we identify uν with its restriction to δZn) and that
the same estimate holds locally. By (3.9) and (3.10), it is not restrictive to suppose
that uε = uν near the boundary of Qνρ. This can be done by using a well-chosen cut-
off function close to ∂Qνρ. This procedure will introduce only an error in the energy
functional of order O(1/h)ρn−1. (This is a ‘classical’ argument in Γ-convergence
dating back to De Giorgi (see [24]). For its formalization in a discrete-to-continuous
setting we refer e.g. to [12]).

We then have

lim inf
ε→0

µε(Qνρ(x))
ρn−1

= lim inf
ε→0

1
ρn−1

( ∑
i∈δZn∩Qνρ

δn
(1
ε
W (uεi ) +

ε

2

n∑
k=1

δn
∣∣∣uεi − uεi+δek

δ

∣∣∣2))+O
( 1
h

)

= lim inf
ε→0

( δ
ρ

)n−1
( ∑
i∈δZn∩Qνρ

(δ
ε
W (uεi ) +

ε

2δ

n∑
k=1

|uεi − uεi+δek |
2
))

+O
( 1
h

)

= lim inf
ε→0

1
Nn−1
ε

( ∑
i∈Zn∩QνNε

(
KεW (wεi ) +

1
2Kε

∑
i,j∈Zn∩QνNε

|wεi − wεj |2
))

+O
( 1
h

)

= lim inf
ε→0

1
Nn−1
ε

( ∑
i∈Zn∩QνNε

(
KW (wεi ) +

1
2K

∑
i,j∈Zn∩QνNε

|wεi − wεj |2
))

+O
( 1
h

)
,

where Nε = ρ/δ, Kε = ρ/ε, and wεi = uεδi for i ∈ Zn. Since the functions wε are
suitable test functions for the problem in (2.3) we obtain

lim inf
ε→0

µε(Qνρ(x))
ρn−1

≥ ϕK(ν(x)) +O
( 1
h

)
. (3.11)



12 A. BRAIDES AND N. K. YIP

Using condition (d) above, we finally deduce that

lim inf
ε→0

µε(Ω) ≥
∑
j

lim inf
ε→0

µε(Qνjρj (xj) ∩ Su) +O
( 1
h

)
≥
∑
j

∫
Q
νj
ρj

(xj)∩Su
ϕK(ν(y)) dHn−1(y) +O

( 1
h

)
=
∫

Ω∩Su
ϕK(ν(y)) dHn−1(y) +O

( 1
h

)
,

which gives the liminf inequality by the arbitrariness of h.
For the upper bound, we again treat explicitly the case u(x) = signxn only. For

this it is not restrictive to suppose that Hn−1(Su ∩ ∂Ω) = 0. We fix η > 0, N ∈ N
and v a test function for the problem in (2.3) such that

1
Nn−1

(
K
∑
i∈QN

W (vi) +
1

2K

∑
i,j∈QN

|vi − vj |2
)
≤ ϕK(en) + η . (3.12)

We may extend uεi periodically in the directions x1, . . . , xn−1 inside the strip {|xn| ≤
N/2} and equal to u (i.e., constant ±1) outside this strip. We then set

uεi = vi/δ for i ∈ δZn .

For such uε we have

1
ε
Eε,δ(uε) ≤ δn−1#

(
{j ∈ Zn−1 : (δQN + δj) ∩ Ω 6= ∅}

)
×( ∑

i∈δQN

δ

ε
W (uεi ) +

∑
i,j∈QN

ε

2δ
|uεi − uεj |2

)
=
(
Hn−1(Su ∩ Ω) + o(1))

( ∑
i∈QN

δ

ε
W (vi) +

∑
i,j∈QN

ε

2δ
|vi − vj |2

)
≤ Hn−1(Su ∩ Ω)

(
ϕK(en) + η

)
+ o(1)

as ε→ 0, which proves the upper inequality by the arbitrariness of η > 0. The case of
a general ν is proven likewise, with an almost-periodic extension of v in the directions
orthogonal to ν (see e.g. [12]). As remarked above this is sufficient to infer the validity
of the upper bound for all u by approximation.

3.3. Supercritical case (ε� δ). In this case, formally letting ε→ 0 we obtain
the constraint ui ∈ {±1} for all i. This suggests to use as a comparison functional
the ‘spin energies’

Gδ(u) =
{ ∑

i,j δ
n−1|ui − uj |2 if |ui| = 1 for all i

+∞ otherwise.
(3.13)

These energies have been studied in [4]. They are equicoercive in L1, their Γ-limit is
finite only on BV (Ω; {±1}), and

Γ- lim
δ→0

Gδ(u) = 4
∫
Su∩Ω

‖ν‖1dHn−1. (3.14)
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Now consider a sequence uε with supε(δ/ε2)Eε,δ(uε) < +∞; i.e.

∑
i

δn+1

ε2
W (uεi ) +

∑
i,j

δn−1|uεi − uεj |2 ≤ C . (3.15)

From (3.15) in particular, for all η > 0 we have

#
{
i : W (uεi ) > η

}
≤ C

η

ε2

δn+1
= o(1)

1
δn−1

(3.16)

for ε small enough.
If we define

vεi =
{

1 if uεi > 0
−1 if uεi ≤ 0

then condition (3.16) ensures that

‖uε − vε‖1 ≤ Cη + o(δ),

and in particular ‖uε − vε‖1 → 0 by the arbitrariness of η. We can estimate

δ

ε2
Eε,δ(uε) ≥ Cη Gδ(vε) (3.17)

with Cη → 1 as η → 0 so that

lim inf
ε

δ

ε2
Eε,δ(uε) ≥ lim inf

ε
Gδ(vε).

This implies the coerciveness of the energies (δ/ε2)Eε,δ and the desired lower bound.
The proof of the upper bound is trivial since on the domain of Gδ we have

δ

ε2
Eε,δ = Gδ.

It suffices then to take a sequence uε = vδ, where vδ → u realizes the upper bound
for the Γ-limit in (3.14).

3.4. Interpolation. Note that in the proof of the lower inequality, the condition
δ << ε was used only in the estimate leading to (3.3). So if now ε/δ → K, then we
get instead

#(J2
ε ) =

1
δn−1

O(K) ,

which gives a O(K) in (3.3), and as a consequence

lim inf
ε→0

1
ε
Eε,δ(uε) ≥

(
CW +O(K)

)
Hn−1(Ω ∩ Su) .

in (3.8). This proves that

lim inf
K→0+

ϕK(ν) ≥ CW .
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The opposite inequality with the lim sup is obtained by estimating ϕK taking vi as in
the proof of the upper bound in the case sub-critical case.

Finally, by (2.7) and (2.8) in Remark 2.2 (ii) we obtain

lim sup
K→+∞

KϕK(ν) ≤ 4‖ν‖1.

The opposite inequality for the liminf follows from the estimate

K

ε
Eε,δ(u) ≥ (1 + o(1))

1
2

∑
i,j

δn−1|ui − uj |2 ,

and the same argument as after (3.17).

3.5. Remarks and extensions. As mentioned in the Introduction, due to the
wide range of applications of singularly perturbed problems, analysis and understand-
ing of their numerical schemes are of practical importance. However, mesh size intro-
duces another small length scale which in essentially all practical settings interacts
with the small parameter in the original problem. Such an interaction already gives
non-trivial descriptions for the stationary problem, as indicated by our theorem. In
this section, we give some further remarks and plausible extensions of our results.

It is natural to perform a similar analysis for dynamical problems, such as (1.3).
The situation can be quite intricate due to the presence of a large number of critical
points or local minimzers for the discrete functional. This can lead to interesting pin-
ning and de-pinning phenomena. Such have been investigated in both the continuum
and discrete cases (see for example [22, 15]). The more recent work [11] is closer in
spirit with the current paper, in particular the super-critical case. A time stepping,
variational scheme is employed on a lattice model. Depending on the relative magni-
tude of the mesh and time step sizes, the dynamics demonstrates interesting stick-slip
phenomena.

Even though our results do not directly lead to concrete statements for dynamical
problems, it does give a quantitative description of the limit interfacial energy func-
tional and more important, the energy scaling in different regimes of ε and δ. They
can also provide useful guidelines if other effects are incorporated. Here we provide
some examples.

Volume constraints can be imposed:∑
i

δnui = Cδ.

If Cδ −→ C, the same Γ-limit appears as before but with the constraint for the limit
u. ∫

Ω

u = C.

Applied forces can also be considered:

Eε,δ(u) =
∑
i

δnW (ui) +
ε2

2

∑
i,j

δn
∣∣∣ui − uj

δ

∣∣∣2 +
∑
i

δnfε,δi ui.

If the forcing terms fε,δ satisfy
1
ε
fε,δ

L2

−→ f,in (i) and (ii)

δ

ε2
fε,δ

L2

−→ f,(iii)
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then the Γ-limit is the same with the addition of the bulk integral term:∫
Ω

fu dx.

A complete picture of discrete dynamics is not currently available. However, our
results can shed light in the realistic critical case (ii) if K � 1 and K � 1. For the
former case, we believe it is possible to compute asymptotically the limiting dynamics
and investigate the underlying anisotropy front propagation. For the latter case, the
approach of [11] might still be applicable. This resembles some works in the study of
cell-dynamical systems [18, 32]. Stochastic noise can certainly be used to drive the
state out of local minima. The incorporation of a non-uniform adaptive mesh is also
possible if we have some a priori knowledge about the location of the interface. We
will defer quantitative answers to these challenging questions in future works.
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