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Abstract

In this paper we describe a natural framework for the vortex dynamics in the parabolic
complex Ginzburg-Landau equation in R?. This general setting does not rely on any as-
sumption of well-preparedness and has the advantage to be valid even after collision times.
We analyze carefully collisions leading to annihilation. A new phenomenon is identified,
the phase-vortex interaction, related to persistence of low frequency oscillations, and lead-
ing to an unexpected drift in the motion of vortices.
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1 Introduction

In this paper we continue our investigations initiated in [6] on the complex-valued parabolic
Ginzburg-Landau equation

ou 1
(PGL). 6: — Au, = 6—2u€(1 — |ucl?)  on RY x RS,
ue(x,0) = ud(2) for z € RY
where the initial datum u? verifies the bound
Vul|? 1
W) e = [ et = [ R a2 < Mylloge

and M is some fixed given constant. Our main focus in this sequel is on the specificities
of the two-dimensional case N = 2. However, a part of the analysis is valid in arbitrary
dimension and completes the one in [6] (where the emphasis was put on N > 3).

The evolution in time, and in particular its asymptotics as € — 0, has already attracted
much attention. The picture in dimension two is somewhat different from the one in higher
dimensions. In dimension N > 3, the original time scale is essentially the only appropriate
one in order to describe the evolution. On the other hand, it is necessary to introduce an
accelerated time scale in dimension N = 2 in order to describe some part of the dynamics.

Evidence for the last assertion was first provided on a formal level in [22, 23, 14], and
then rigorously in the case of “well-prepared” data in [20, 17, 30, 27]. In particular, such
well-prepared data have well defined vortices of degree +1 or —1, and the diverging part
of the energy is entirely provided by those vortices. In this framework, it is shown that in
the accelerated time ¢ = |logel|s vortices evolve according to a simple ordinary differential
equation up to the first collision time.



Our purpose in this paper is to study similarly the asymptotics in dimension N = 2 relax-
ing completely the assumption on the well-preparedness. More precisely, the only assumption
on the initial data is the natural energy bound (Hg). The motivation comes from our previous
investigation on the higher dimensional case [6], where important differences with the case of
prepared data were pointed out!.

A typical initial datum which we wish to handle? is given by

l d-
, Z—a; z—a; \“
W2(e) = epligl(e) [LAEZ (Z22)7 o, )
b} € |z — a4
where f is a smooth non negative function on R™ such that f(0) = 0, f = 1 outside of a
compact set, d; € Z with 3", d; = 0, and the phase ¥ verifies the bound

IVl 722y < Clloge.

Our analysis shows that, in contrast with the higher dimensional case and with existing
results on the two-dimensional case, the phase and the vortices® do actually interact in the
accelerated time scale t = |log |s. This phenomenon is related to persistence of low frequency
oscillations in the phase, leading to an additional and somewhat unexpected drift term acting
on vortices. This phenomenon would not be observed on a fixed bounded domain.*

The second point we wish to emphasize is that our analysis is not restricted by the
occurrence of collisions. On the other hand, our results provide only a weak form of regularity
for motion of vortices: in particular the motion of multiple degree vortices, with possible
splittings and recombinations, remains a delicate open issue. A first step in this direction
is provided by Theorem 3, where we describe the evolution of clusters of vortices of total
degree zero. We show complete annihilation after a time proportional to the square of the
confinement radius. In particular, vortices of degree zero are excluded except at a finite
number of occurrences, which correspond to collisions. Even in the case of well-prepared
data, this provides some new information, and also answers an open question raised by
Jerrard and Soner ([17], Remark 2.2).

In the accelerated time, we set

us(z, ) = u(z, s|logel).
Our first result establishes some compactness and rigidity for ..

Theorem 1. There exist a function ¢ : R} — R?, and for each s>0, a finite set {ai(s) hi<i<i(s)
of R? and I(s) integers d;(s) € Z, such that, for a subsequence e, — 0,

us, X Vug, (2,8) = wie X Vw,(z,8) + ¢(s) as n — +00, (2)
and |u., | — 1, uniformly on every compact set K C R? x R} \ . Here, we have set

wi(z,s) = ll(f[) (li(sﬂ)di@ ; (3)

i=1 |Z - (IZ‘(S)

IThe evolution in case of prepared data in dimension N > 3 has been studied in [23, 18, 21].

2 Assumption (Ho) obviously allows to handle a much larger class.

$Which we termed the linear and the topological modes respectively in [6].

4One may wonder if it is physically relevant to work on the whole of R?. For the related Gorkov-Eliashberg
equation for superconductivity, the physical domain has to be rescaled by a factor diverging with &, which
allows the same long-range interaction phenomenon.



and .
S = UesoB) = Usso UL {ai(s)}.

i=

Moreover, there exist constants lg, dg and ¢y depending only on My such that for every s > 0,

I(s) <lp, |di(s)| <dy, and |C(s)]< %

We would like to draw the attention of the reader to the fact that degree zero vortices,
i.e. points a;(s) such that d;(s) = 0 do not enter explicitly in the expression (3) of w.(z,s).
However, their possible presence plays an important role in the description of the set 3, and
in the convergence stated in (2), so that at this stage of the analysis they cannot be removed
a priori (see Proposition 1 below for further results on this issue).

Theorem 1 should be compared with the higher dimensional counterpart obtained in [6].
In the original time scale, there is no compactness for the functions due to possible wild
oscillations in the phase. After times of the order of |loge|, these oscillations have been
damped to order one.

In the special case of well-prepared data, similar results have been established, up to
collision time, in [17, 20]: in their case, however, the additional term ¢ is not observed. This
new term is related to possible divergence of energy in the phase, and more precisely to
(extremely) low frequency terms. Here is an explicit example of initial datum giving rise to
a non-zero term ¢ : take uf as in (1) and

0 _lz—a(e)?
W2(z) = \/log ele™ TeeeT

where a(e) = y/|loge|€. Using the explicit evolution of Gaussians by the heat equation, an

elementary computation leads to the formula® &(s) = m exp(—ﬁ)é’l.
Clearly, the set ¥, in Theorem 1 contains the trajectory of vortices (as far as they can be

defined!). Our next result provides some regularity properties for X,.

Theorem 2. The set ¥, is closed in R? x RY and of locally finite two-dimensional parabolic
Hausdorff measure. Moreover, there exists a > 0 depending only on My such that for each
s > 0 there exists s’ > s such that

Sy NR? x [5,8") € U)P(ai(s), 5), (4)
where, for (z,8) € R2 x R}, P(z,s) denotes the parabolic cone defined by
P(z,8) = {(¢,s) e RZ xR" s.t. s —s5>ald —2*}.

In the case of well-prepared initial data, with d; = £1, it is known from [20, 17| that the
points a;(s) evolve according to the motion law

d
£ai(s) =2V, (]%:Z d;d;log|a; — aj\),

®In order to keep this paper of reasonable size we will not work out the details here.



up to the first collision time. For initial data of the form (1) and with d; = £1 for all ¢, the
motion law for the vortices would be given, similarly, by

disal-(s) = 2V, (Y did; log |a; — ay]) + dic(s) ™. (5)
J#i

In particular, in this range, the set 3, is a disjoint finite union of smooth curves. We therefore
strongly believe that Theorem 2 is not optimal, and that in the general case X, is a finite union
of smooth curves, with possible branching corresponding to collisions and splitting of vortices
of multiple degree. As a consequence, such a set would be one-dimensional rectifiable, whereas
we only obtained a bound on the two-dimensional parabolic Hausdorff measure. However, to
improve Theorem 2 and go beyond the parabolic scaling, one will need some way to describe
the evolution of the vortex cores.®

Our next theorem settles the question of annihilation.”

Theorem 3. Let sg > 0, R > 0 and a € R?. Assume that 3 di(so) = 0 and that
for some 0 < k <1 ai(s0)€B(a,R)
YN B(a,R) C B(a,kR). (6)
There exists positive constants ko, K1 and Ko depending only on My such that, if K < kg
then B
Eg N B((Z, 5) - @,
for every s € [sg + K1k?R?, 50 + Ko R?].

Theorem 3 has several consequences, both of global and local nature. First, if at some
time sq all vortices a;(sg) are contained in a ball of radius R, and of total degree zero®, then
at a later time sg+ C'R? they have completely disappeared and w, is constant. A second one
is the following:

Proposition 1. The topological degrees d;(s) are non zero except for a finite number of times.

Remark 1. The result described in Theorem 3 and Proposition 1 do not hold for the original
time scale, or even intermediate time scales. In particular degree zero vortices may survive
on a full time interval in the original time scale. A way to construct such limit vortices is to
take a vortex-antivortex pair (for more details, see the ”"additional comments” in Section 3,
after the proof of Theorem 3.1).

As previously mentioned, the above results allow to give an answer to Remark 2.2 in [17]°,
concerning collision for a prepared datum with two vortices of degree +1 and —1, for instance
-1
0 z—1 ., 2z+1 (z—l)((z+1))
z) = .
() = 1= .

€ e lz—1|

5This can be done in some specific cases, for instance we believe that our method would allow us to handle
the case |d;| < 1, but that the general case presumably does not have a simple answer. Indeed, splitting
of multiple degree vortices involves discussions related to stable and unstable manifolds, and the resulting
behavior is therefore very sensitive to the initial datum.

"Related results are announced for [28] based on different type of arguments.

8This is not always the case under assumption (Hp). Take as initial datum u2 with a +1 vortex at the origin
and a -1 vortex at a distance of order e*. Then I(s) = 1 for all s, ai(s) = 0, di(s) = 1 and w.(z) = z/|z|.

9The method described allows to treat collisions of total degree zero. However collisions with total non
zero degree are not excluded, and are not treated here.



In view of [17], it is known that the solution has two vortices a;, i = —1,1 given by a;(s) =
(=1)"v/1 — 2s. In particular, these two vortices will collide at time S = % They disappear
after this collision time, as a consequence of Theorem 3, and w, is constant afterward.

Although they did not appear explicitly in our previous statements, the Radon measures
v¢ defined for s > 0 on R? x {s} by

U:(x) _ ec(us(w, 8)) de

|log |
are central in the proofs. These quantities possess remarkable properties inherited from the
equation (PGL).. As a matter of fact, the points a; will appear as concentration points of
these measures. The following preliminary result insures first that their asymptotic limits
actually do exist.

Theorem 4. Assume (Hy) holds. There exist a sequence €, — 0 and, for each s > 0, a
measure v5 on R? x {s} such that

0. — o] as n — oo. (7)

In view of assumption (Hp) and the energy inequality |[vf]] < My, Vs > 0, for fixed s it
is straightforward to find a sequence €, — 0 such that v? converges as n — +oo. The main
difficulty in Theorem 4 is to find a sequence &,, for which the convergence holds for all positive
times. Clearly, convergence in (7) requires some specific property for the family (0%)g<c<1,
which may be interpreted as a regularity in time. In the original time scale, the result
described in Theorem 4 is well-known, and its proof relies on the so-called semi-decreasing
property (see [8]). In contrast, in the accelerated time scale, the proof is much less direct,
and is obtained at a late stage of our PDE analysis.

Finally, our last result relates the points a;(s) with the measures v?, and provides some
further properties of v3.

Theorem 5. i) For every s > 0, we have

I(s)
vl = > 0i(5)64,(s)

i=1
for some non negative densities 0;(s). Moreover, we have
0;(s) > 7|d;(s)] Vi=1,...,1(s). (8)

ii) For every so > 0 and every x € D(R%,R*) such that supp(Vy) N Uli(:s%{ai(so)} =0, the

function s — v3(x) is non-increasing on some interval [so, sy with s, > so. Moreover, the
function s — ||v2|| is non-increasing on R} .

iii) There exists some universal constant ng > 0 such that if for some time so > 0, and some
S {1, E) l(SO)}f

di(SO) = 0’
then
. s . s Mo
tim o2l — tim_|jo3]| > ™. 0
s—sg s—»sg 2

In particular, for all but finitely many s > 0, |d;(s)| > 1 and thus 6;(s) > =.



The plan of the paper does not follow the order of the Theorems, which was chosen for
expository purposes. As already mentioned, the guiding thread will be the concentration
points of energy measures which in turn allow to define the vortices and their degrees. A
preliminary step is to describe the asymptotic in the original time scale.'® We then first prove
Theorem 2, 4 and 5 i). Our analysis relies heavily on three distinct ingredients. The first one
is the decomposition of u. given in Proposition 4.1, which allows to identify and remove the
oscillatory and non topological part of the energy. This technique was used extensively in [6],
here we extend it to the long time range. It requires therefore specific parabolic and elliptic
linear estimates for measure data unbounded in one direction.!! The second ingredient, the
Cylinders Lemma (Proposition 4.3), gives an upper bound on the speed of concentration sets.
This kind of lemma have already a long history [10, 25, 20, 19], our arguments are however
qualitatively different and do not rely on energy lower bounds nor on the precise description
of vortex cores. Finally, concentration sets and vortices are related through a third ingredient,
the Clearing-Out Lemma.!?

In the last part of the paper, starting in Section 6, we prove some compactness properties for
the functions u. themselves, and obtain rigidity formulas leading to Theorem 1, 3, and 5 ii)
and iii).

In order to conclude this introduction, we would like to emphasize once more that our work
has left aside the difficult question of the precise dynamics in the general setting considered
here. As mentioned, this would require a further understanding of high multiplicity vortices,
and in particular the mechanism of their splittings and possible recombinations. The case
d; = £1 is much simpler, we intend to establish rigorously the motion law (5) in a different
place. The general case is still a challenge to us.

Acknowledgments. We wish to thank warmly the referee for his judicious remarks and his
very careful reading, which we believe led to a substantial improvement of the manuscript.

2 Some properties of (PGL).

In this section we collect some elements entering in the study of (PGL).. Set

ec(us(x,t))

dx.
loge]

pe(x) =
We begin with
2.1 Classical identities for the evolution of y!

Lemma 2.1. Let u. be a solution of (PGL).. Then, ¥x € D(RY) and ¥Vt > 0 we have

d |Opu|? —Oue - Vg
— dut = —/ d —|—/ \Y% e — dx. 2.1
y / @t == [ @ [ V) el (2

In most applications we will assume x > 0, so that the first term on the r.h.s. of (2.1) is
non positive. In order to handle the second term, and to get rid of the time derivative Osu.,
it is often useful to invoke another identity involving the stress-energy tensor.

191y particular, we complete in Appendix C some arguments which were only briefly sketched in [6].
HThese are developed in an Appendix.
2 Another approach avoiding this type of argument is exposed in [27] and [28].



Lemma 2.2. Let X € D(RY,RY). Then, V¢ > 0,

1 X, L - .
es(ugs)di; — % . Ouc | 0X; dx = —/ X M dx. (2.2)
lloge| JrN x {1} Oz; Ozj ) Ox;j RN x {t} [log ¢|

The proofs of the above identities are standard (see [6] and references therein). The Lh.s.
of (2.2) involves the stress-energy matrix A, given, in case N = 2, by

Ae = Ac(ue) = T(ue) + Ve(ue) Id, (2.3)

where the matrix T'(u) is defined by

T(u) = 1 ( gy |? = g, |2 —2ug, - Ug, ) , (2.4)

2 —2Ug; * Ug, |u:v1|2 - |um2|2

and the function V, denotes the potential

(1 — Jusf*)?
Ve(u,) = —————. 2.5
5( 5) 482 ( )
In dimension two, the product T;; gTX; has a particularly simple expression using complex
notation. Set!'3
X =X1+1iXo and W= |tg, |? = |thgy|? — ity - Ug,.

Then, we have

/RQTZ-(u)g;‘;? _ Re (_ /Rﬂaa—f)' 26)

Combining Lemma 2.1 and Lemma 2.2 with the choice X = Vx, we get rid of the time
derivative on the r.h.s. of (2.1). More precisely

Lemma 2.3. We have, fort >0,

d t |6tu€|2 1
G Jo X@ = = [ @R e F( ) 27)

llog | [log ¢|
where
Fs(t,x,ue) = / (DQXVua - Vue — AXea(ua)) dz.
RN x{t}
Another simple yet important consequence of Lemma 2.1 is

Lemma 2.4. Let x be as above. Then

d

It /]RNX{t} X2 (2)e-(ue)dz < 2|| Vx| Mo|loge| . (2.8)

13The quantity w is usually termed the Hopf differential of w.



2.2 Phase-Vortex interaction

In this paragraph we consider a real-valued function ¢. defined on R? x R* satisfying the
heat equation, the function w. defined by w. = u. exp(—i¢.), and the measure v} defined by

t_ ee(we (1)) "
v = “loge] dx. (2.9)

This kind of decomposition will be motivated in particular by Proposition 4.1. The purpose
is to describe the evolution of #/! in the spirit of Lemma 2.3. In view of the r.h.s. of formula
(2.7), we are led to consider the bilinear form
Ax
By (A,B) = - D?*xA-B — = (4-B). (2.10)
This quantity has remarkable algebraic properties, as the following formula shows.

Lemma 2.5. Let y € D(RY R), and consider two 1-forms A and B belonging to Hi (RY).
The following identity holds:

1 1
B(4,B) =5 /N dA - (dx A B)+dB - (dx A A) - /N d*A(dy - B) + d*B(dy - A). (2.11)
R R
Proof. First we write in coordinates

1
.3 1,J

Integrating by parts on RY we obtain

1
[ D2AB=-2 Y /RN 0, A0, B; + Aidix0;B,
2y

1 (2.12)
- = Z/ 8inaiXBj + Aiaixaij.
2 i RN
Similarly, we can write
1 9 1
_5 ; /RN 8“XA]B] = 5 Zz]:/]RN &AJQXB] + Azajxasz
The result follows adding the previous equalities. O
Specifying (2.11) with A = d¢., B = w. X dw,, we obtain
Corollary 2.1. Set
Fr(t,x, Ve, we) = By(dpe (-, 1), we x dwe(-,1)). (2.13)
If N = 2, we have the identity
Pl Voew) = [ (Ve x Vx)we + Ralt, X, Ve ), (2.14)
X

where

Ri(t,x, Ve, w:) = — /R?x{t} V. - Vxdiv(w: x Vwe) + Ap-Vx(we: x Vw). (2.15)



After this digression we go back to the description of the evolution of v/!.

Lemma 2.6. We have

d |0pw. |2 1

JE— d t = —/ € t

dt /]RQ X('I) VE R2 X(‘T) |10g€| + |10g€|]:5( 7Xaw€)
1

log e

(2.16)

+ f[(taX,v¢€,w€)+ R(taX,vqu’wE)?

1
|log €|
where

_d 2 Vo |?
R(t, x, Ve, w:) = _E/Wx{t}x (Vqﬁg cwe X Vwe + (Jueg]” — 1)T

0 Ow, 2 0 2 | C§b€|2
+ . + — - A (21

Remark 2.1. In formula (2.16) we have singled out two terms, whose significations in the
case N = 2 are the following:

- the term Fg will be interpreted as the force arising from the interaction between vortices
(viewed, in our setting, as a self-interaction)

- the term F7 represents the interaction between the phase and the vortices.

The terms R and R; will be shown to be of lower order (asymptotically), so that the main
contribution in Fy is

Folt o Vuwe) = [ (Voo x Vi) Ju, (2.18)

where Jw, stands for the spatial Jacobian of w., namely Jw. is the scalar det(Vuw;)
O1we X OoWe.

Proof. Since u. = we exp(i¢), we have Vu, = (Vw, + iw:Vo.) exp(ide), and |we| = |u.|, so
that ) Vo2
\Y%

ee(ue) = ec(we) + | §€| + Vo - we X Vw, + (|u€|2 - 1)T€ ) (2.19)
and similarly

ous? [ow. > |0¢.|? O Owe 9 . |?

= 2 . —1 2.20
ot ot o | trar wex g tlul =D % (2.20)




Inserting these relations in identity (2.7), we obtain

a
dt

Aoz—/ X‘
R2

e ST (o
dt Jrzx{y ™ 2 RN x {t} ot

_d 2 Ve |
As = a/ﬂ@x{t}x <v¢e s we X Vwe + (‘ua‘ - 1)T

/ X(x)es(we) =Ag+ A1+ Ao+ A3+ Ay + As,
R2x{t}

2
+-7:S(t7X7w6)

ow,
ot

2 \V4 2
DAV, Vo — AV

Ope Owe
Az = 2 .
’ /R?x{t} A T
A
Ag=2 (D%(V(ﬁe cwe X Vwe — —X(V(b8 SWe X ng)) = Fr(t, X, e, we)
R2 x {t} 2
¢.|? Ve |?
As = / (1- |u€|2) X ﬁ + DQXV¢6 Ve — AXM .
R2x {t} ot 2
Since ¢, verifies the heat equation, A; vanishes and the conclusion follows. O

Remark 2.2. In Lemma 2.6, we have emphasized the evolution of the measures v!. Likewise,
for ut we have

i/ (x)dt——/ (m)'atw€|2+.7-"(t we) + Fs(t, x, 62)
dt RQX e ]R2><{t}X |10g€| S\l X, We S\ X, Pe

+ f[(t,Xa v¢5,w€) + Eo(t, |u€|a X ¢€) (2'21)

where

¢
_ _ _ 2 €
['O(t7 ’u6’7X7 ¢5) = A5 = /]R2><{t}(1 ‘ua‘ ) (X ot

2 v 2
+ DNV V. - Ay VL)

2.3 Clearing-Out

We recall one version of the Clearing-Out theorem proved in [6]. It is used later to relate
concentration sets and vorticity sets.

Proposition 2.1. Let u. be a solution of (PGL). verifying assumption (Hy). Let xp € RY,
T >0 and R > v/2¢. There exists a constant ng > 0 and a continuous function \ defined on
R} such that, if

y 1 70
s T, Rl=——— ° T S -
(T ) RN—2loge] Blar AT)R) ee(ue(-,T))

then

R
forte [T +Ty,T+Ti andx € Bz, 5)

DN | =

|ue (2, )] >

10



Here Ty and Ty are defined by

Ty = max(2e, TR?), T, = R?,

_2
where T=0 4 N =2 and 7 = (iﬁo) N2 otherwise.

2.4 Pointwise estimates

First, we briefly recall some basic pointwise upper bounds.

Proposition 2.2. Let u. be a solution of (PGL). with E-(ul) < +oo. Then there exists a
constant K > 0 depending only on N such that, for t > €2 and z € RN, we have'

C
‘ué(x7t)’ S37 ‘vué(xvt)‘ < ?7 ’E(xat)‘ < 8_2
The proof relies essentially on some form of the maximum principle.

Our subsequent discussion requires also a careful analysis on the set where |u,| is far from
zero. For this purpose, we consider, for 7" > 0, AT > 0, R > 0 given, the cylinder

A = B(zo,R) x [T, T + AT] c RN x RT,
and we assume that for some constant 0 < o < %,
lue| >1—0 on A. (2.22)

In particular, we may write u. = p. exp(ip-) on A, where p. = |u.| and where ¢, is a smooth
real-valued map on A. For 0 < o < 1, set

Ay = B(zg,aR) x [T + (1 — o*)AT, T + AT).

The following higher-order regularity for u. holds.

Theorem 2.1. Assume (2.22) holds. There exists constants 0 < o9 < 1 and 0 < a,3 < 1

depending only on N, such that if o < oq, then

Ve l1eayg) < C(A) Mollog ] (223)

1= pe lzeay) < CAR+ IVl ay) (224

3
4

19tpellcoay) + 1V eellconaqa,) < C(A) Moe”. (2.25)

There exists a real-valued function @, defined on A1, and satisfying the heat equation, such
2

that
1040 — OrDellcoa(a ) + Ve — VOe|coa(a, ) < C(A) Moe”. (2.26)
2 2

The proof is a little lengthy and requires some care. We postpone it to Appendix C.

! Note in particular that C is independent of the initial data.

11



3 Asymptotics in the original time scale

As a preliminary step for the long-time analysis, we show that vortices do not move in
the original time scale. Here we rely on our previous analysis in [6], which holds in any
dimension N > 2. It asserts first as a consequence of the semi-decreasing property that up
to a subsequence &, — 0,

/‘in — b for all t > 0,

for some Radon measures . Moreover there exist a closed set X, = Uysg UL_ bi(t) in RZxRY

such that |u.| — 1 locally uniformly on R? x R} \ £, and such that for a.e. ¢ > 0,

o VO

l
Hos 2 ('a t)dx + Vi’ where Vi = Z O-i(t)(sbi(t)a

and
either o;(t) > no or oi(t) = 0. (3.1)

The function @, satisfies the heat equation on R? x R}, and I < C' M.

Theorem 3.1. The points b;(t) do not move, i.e.
bl(t) =b; Vit >0, (32)
and the functions o;(t) are non-increasing.

This last statement is consistent with Theorem B of [6] where it is shown that v moves
according to mean curvature: indeed, points have essentially zero mean curvature. Neverthe-
less, some arguments in [6] are not valid for N = 2 so that we present next the appropriate
modifications.

Off the singular set ¥, the main contribution to the time derivative dyu. stems from the
phase ®@.. In this direction, the following proposition, motivated by Lemma 2.1, was stated
without proof in [6]: we provide the details here for N > 2.1%

Proposition 3.1. Let N > 2, and u. be a solution to (PGL).. Then, as e — 0,

|atu€|2

Toge] 0,0, in CO.(RYN x (0,4+00)\ X,)
o (3.3)
% — 0P, - VD, in CO (RN x (0,400)\ £,).

Proof. Since RN x (0, 4-00)\ 2 , s an open set, it suffices to establish the uniform convergences
in (3.3) on a cylindrical domain A1 such that A € RV x (0, +00)\X,,. Since |us| — 1 uniformly

2
on A, we may apply Theorem 2.1 to u. on A. Notice that, writing u. = p. exp(ip.) on A, we
have

Oyue = Oppe exp(igpe) +ipe eXp(iQpe)aﬁpe = Oipe eXp(Z'ng) +ipe eXp(iQpe)at@e
+ ipe exp(ipe) (Orp: — 01®e) + i exp(i:) (1 — pe)dipe = iexp(ie:)0P. + O(e7), (3.4)

15The main part is actually Theorem 2.1, which is proved in Appendix C.
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and analogously for the spatial gradient Vu,, we derive
Ve = iexplip:)VP. + O(e9). (3.5)
Combining (3.4) with (3.5), and invoking (2.24) of Theorem 2.1, the conclusion follows. [

We need next to establish some asymptotics for the measures

Opue|? Oy -
Oel” g ana 2 Ve gy
llog ¢| llog €|
For the first one we will use the inequality
lim inf/ Mx(m)dwdt > / 0, |>x(x)dzdt (3.6)
e—0 JR2xR+ |log 6| = JR2xR+

which is a straightforward consequence of (3.3). The analysis of the second one requires a
little more care. We have

Lemma 3.1. Extracting possibly a further subsequence,

_ Orue - Vug

0 =

dzdt — oy = 0D, - VP,daxdt + hv, , (3.7)
|log €]

weakly as measures on R? x RT, where v, = vidt = pu, L3>, and where h € L3(v).

Proof. Since o, is bounded on R? x [0, T] for any T' > 0, we may extract a further subsequence
such that 0. — o, as measures in R%2 x RT. We claim that o, is absolutely continuous with
respect to p.. In order to prove this, we follow [2] and work at the level : we compute the
Radon-Nikodym derivative of o. with respect to u., obtaining

doe| _ |9rue| - [Vue| (3.9)
dpte es(us)
and therefore ) )
’ doe <2 / el )t < o (3.9)
due L2(u) r2xR+ |loge]

Invoking a result of Reshetnyak [24] (see also [11]), the claim is proved.
It follows from Proposition 3.1 that on R? x [0, 4+00) \ X, 04 = 0P, - VP, dxdt, and the
conclusion follows. O

In the same spirit, we have

Lemma 3.2. Eztracting possibly a further subsequence, we have

A
*—dxdt —~ A, = T(®,)dxdt + Bu,, (3.10)
|log |

weakly as measures on R? x RY, where T is defined in (2.4), and B € L*(vy).

The proof is identical to the proof of Lemma 3.1. Here the Radon-Nikodym derivative
3;‘; are even equibounded in L. The next result expresses the fact that points have “zero
mean curvature”.
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Proposition 3.2. The vector h and the matrix B given above are identically equal to zero.

Proof. Let X be a smooth, compactly supported vector field (independent of time). Passing
to the limit in (2.2) we obtain, for any 0 < 77 < Ty,

/ AH.]..%:/ X.o.. (3.11)
R2x [T}, T Ox;j R2 x [T1,T5]

Since &, verifies the heat equation on R? x R*, we have

0X;
/ T (®y) ——dzxdt = / X 0P, - VO, dxdt, (3.12)
R2 X [T},T%] 8.%'] R2x[T1,T3]
so that 5
/ Bij - ——dv, = / h- Xdv, . (3.13)
R2x [Ty, 5] axj R2x[T1,T>]
It follows that for a.e. ¢ > 0,
0X;
/ Bij - ——dvt = / h- Xdvt. (3.14)
R2 x {t} Ox;j R2 x {t}
Since the support of vl is a finite union of points, the preceding inequality, valid for any
smooth vector field X, shows that B =0 and h = 0. [l

Proof of Theorem 3.1. We claim that for any function y > 0 compactly supported on R?,
we have, for a.e. t > 0,

d
— vt <0. 3.15
i g S (3.15)

Indeed, passing to the limit in (2.1) and using (3.6), Lemma 3.1, Lemma 3.2 and Proposition
3.2, we obtain

g/ Ve, (x)dﬁi/ vt <_/ 0, 2x — 0B, - VP, -V da . (3.16)
i B2 (1) 9 X dt RQX{t}X * R2x (1) tPx| X tL * X . .

On the other hand, since @, solves the heat equation, we have

d P,
_/ |v | X = / v(até*) : V@*X - _/ (at@* : A‘P*X - at@* ’ v¢* ’ VX)
dt Jrzxqey 2 R2x{t} REx{t}

—~ [, (1a0x - 0. - Vo, V) |
R2x{t}
so that (3.15) follows. We deduce that
vt < ylo for any 0 < tg < t;.

The conclusion of Theorem 3.1 follows then easily in view of (3.15) and the uniform bounds
I < CMp. O
Additional comments. In contrast to the accelerated time scale, there is no compactness
property for the functions u. themselves in the original time scale. This is due to possible
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oscillations in the phase, which are reflected in the measure |V®,|?. However the degrees of
the vortices are well defined in the original time scale, as follows from the fact that |uc| — 1
outside of ¥,.

We also would like to draw the attention to the fact that in the original time scale, the
case d; = 0 is not excluded as the following example shows. Take a “prepared” datum with
two vortices of degree +1 and —1. In view of [17], it is known that these two vortices will not
collide before a fixed time of order Cp|log |, whereas they disappear after this time as follows
by Theorem 3. Contracting the initial datum by the factor /|loge| and using the scaling of
the equation it follows that the solution obtained disappears at time Cj in the original time
scale. Moreover,

oi(t)y=2mr ift<Cy
{ O’Z‘(t) =0 ift > Cy. (3.17)

This type of argument may be extended to derive arbitrary jumps of integer multiples of 27
at any prescribed times.

Further properties at the e-level.

In the accelerated time scales considered in the next sections, we have to turn back to
the € level (i.e. we cannot rely on the study of limiting measures introduced so far). In that
analysis the concentration set EZ is replaced by the sets Q5(t), defined, for § > 0, by

Q5(t) = {m cR?, /B( 5 ec(u(-,t))dx > n—;\logs\}, (3.18)

where 7 is the constant appearing in Proposition 2.1. A straightforward covering argument
shows that there exist [ points x5 (t) such that

Q5(t) © Uiy B(x5 (1), 29),

where the number [ of points is uniformly bounded by [ < C MO“ The next lemma describes
the evolution of the concentration sets 5(¢) in the usual time scale.

Lemma 3.3. Let tg > % and 0 < § < Cy _71\/%7 where Cy is some universal constant. There

exists g = €9(0) depending only on 0 such that, if € < eg then

dist (Q5(t), Q5(to)) < 20 (3.19)
for every tg <t <tg+ 2.
Proof. We argue by contradiction. Assume that (3.19) does not hold. Then, translating

possibly the origin, we may assume that, for a sequence e, — 0, there exists a time t,,
to < tn < to+ 2, such that 0 € Q5(t) but

B(0,26) N Q5™ (to) =0, for any n € N. (3.20)

We apply next Theorem 3.1 to the sequence (u.,)nen. Extracting possibly a subsequence
(still denoted €,,), we may assume that p., converges and that the conclusions of the invoked
theorem hold. It follows from (3.20) and the lower density bound given by (3.1)!¢ that

20N B(0,26) =0. (3.21)

16The bound actually holds only for a.e. time, the reader will adapt the argument slightly changing to if
necessary.
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By Theorem 3.1, EZ C Eff for each t > tg, so that EZ N B(0,28) = 0. Therefore

t ’vds*‘Qd

o = on B(0,26) for t > 1o

and in particular

@,|?
/ dﬂi :/ M < C'Mys?
B(0,26) B(0,25) 2

(3.22)
§0M0(6’2 "0) g% for t > to

for an appropriate choice of the constant Cj. Passing possibly to a further subsequence, we
may further assume that ¢, — t,, as n — 400, where tg < too < tg+2. Let 0 < x <1
be a smooth function with compact support in B(0,2§) such that x = 1 on B(0,0). Since
0 € Q5" (t,), we have
o

Xd/’l/an — 2
We next distinguish two cases.

Case 1: t,, = tg. It follows from Lemma 2.4 that
/ xdpl > 2 — C(x)(tn — to) Mo ,

contradicting (3.22) for n sufficiently large and ¢t = .

Case 2: ty # tg. Invoking Lemma 2.4 once more, we write
/ xdpleo—* > 772 C(x)(tn — too + )My .

This contradicts (3.22) for « sufficiently small (independently of €) and n sufficiently large. O

Our next results emphasize the connection between the concentration sets 25(¢) and the
vorticity set

Vo(t) = {2 € B, |uc(2)] < %}. (3.23)
As an immediate consequence of the Clearing-Out, we have
Lemma 3.4. Lettg > 5 and 0 > 0 be given. For every t > tg we have
Ve (t) C Q5(ts), for any t —C6? <t, <t— 2. (3.24)

Combining Lemma 3.3 and Lemma 3.4 we deduce

Lemma 3.5. We have
V.(t) € {x e R%, dist(x,95(to)) < 20} € U'_, B(af,40) (3.25)

for every to + 2e <t <ty+ 2, where x{ = x5 (o).
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Finally, the last result in this section is concerned with Jacobians. As a consequence of
Theorem 3.1 and the previous analysis, we have

Proposition 3.3. Let N = 2 and u. be a solution of (PGL). satisfying the energy bound
(Hp), and let R > 1, 0 < o < 1. There exists a constant C(e, My, R) depending only on ¢,
My and R, 1 points x5 in R? and | integers d; € Z such that

x; € V(1) Vie{l,---,l}, (3.26)
l
(| T e — z; didysdzy A dza|ieoe o pyxpri < Cale; Mo, R). (3.27)
Moreover, .
i |d;] < CMy (3.28)
and, for fited My and R, -
Cu(e, My, R) — 0 as e — 0. (3.29)

Comments. 1) Proposition 3.3 will be used in the proof of Theorem 1. In particular it will
be used not only for u. but also for translates (in space and time).

2) We would like to draw the attention to the fact that (3.28) implies that the space-time
components of the 2-form J, ;u., namely Opu. X Qjue, ¢ = 1,2, are vanishing with € in the
norm considered.

Proof. The argument is by contradiction. Assume the result were false: then, for some § > 0
there would exist a sequence €, — 0 and a sequence u., of solutions to (PGL). satisfying
(Hp), and such that

l
HJ$7tuEn — ; d,éxfn dri N deH[CS’Q(B(O,R)X[LR-FH)]* >4 (3.30)

for any points =5 € V.(1) and integers d;. We invoke next the compactness results for
Jacobians of [19, 1] to assert that, passing possibly to a further subsequence

Jogte, =T in [CP*(B(0,R) x [1, R+ 1])]*,
where %T is an integer multiplicity one-dimensional current. On the other hand, by Theorem
3.1 and the fact that the geometrical support of T"is contained in ¥, we infer that

l
T=m>_ diby,dry A ds,
i=1

for some points b; and some multiplicities d; € Z. This contradicts (3.30), since |u.| converges
uniformly to 1 outside ¥,. O

4 Long-time analysis

In this section we provide a number of estimates for u. whose main feature is that they remain
valid also for long time (in the original time scale). We assume throughout that |loge| > 1.
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4.1 Identifying the linear mode

We will prove the following long-time variant of Theorem 3 in [6], valid in any dimension
N > 2.

Proposition 4.1. Let N > 2 and u. be a solution to (PGL). satisfying (Hy). There exists a
real-valued function ¢. and a complex-valued function w,, defined on RN x RT such that

(i) ue = we exp(igpe)

(ii) ¢. verifies the heat equation on RN x R}

(iii) for every q > 2]2\,]\13, ke N* and t > 1 we have

C(Mo) C (Mo, q)
k /
IVE@e | oo mv 13y < INJA+(h—1)/2 log | + IN/2q+(k—1)/2 (4.1)

(1) [[Vwe| o 1)) < Clp, K, My), Yt > 1, for every 1 < p < % and every compact
subset K C RV,

We would like to stress the main differences (and actually improvements) with Theorem
3 in [6]. The first point is that w. and ¢. are defined globally on RY x R*. The second is
that estimate (iv) is uniform in time: in view of propagation phenomena, this will require
estimates on the whole of R,

As in [6], the proof is based on appropriate Hodge-de Rham decompositions of u. x V.
To this aim, we will denote § and 0" respectively the exterior differentiation operator for
differential forms on RY x R and its formal adjoint, while we will use the standard notations
d and d* when restricting to time slices RY x {t}.

We extend first u. to the whole of R¥N*! = RN x R by standard reflection and consider
its Jacobian J, ;u. defined by

Jp e = %5(% X Oug) on RN+, (4.2)
We consider next the elliptic problem
—Ap ) = Jyp e on RVN*L, (4.3)
We first have
Lemma 4.1. There exists a solution 1) of (4.3) such that
Vm,t¢ = Vm,tG * Jm,tus (4-4)

and
Sup IVa,e¥ll(Lr Loy @™ xfte+1) < Cp, @) Mo, (4.5)

for any p > % and 1 < g < % For the space-time components'™ Y% of 4, j =1, ..., N,
we have moreover

sup IVt | o g1y < C(p) Mo, (4.6)

2N N+1
forcmym<p<T+.

17 Here we write @) = Z P dz; A dzj, with the convention that xo = t¢.
0<i<j<N
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Proof. We invoke first Appendix B, which clearly applies since u. satisfies conditions (B.1),

(B.2) and (B.3). In particular, in view of Proposition B.2 we may write
2J 1ue = we 4+ divy 1 Ae

where w., A. satisfy
|well L@y sperr) < CMo YVt ER,
Al Loy [t 441 < CpMoe™ VteR,
for every 1 < p < 2 and for some ay, > 0, and also

1
q
(/R H‘“a”qu(RNx[t,t+1])) < CyMo

for every q > 2. We write ¢ = 91 + 19, where 1, 1o are the solutions of

~Ap i =we,  —Aggthy =dive e on RV

(4.9)

(4.10)

respectively given by Lemma A.1 and Lemma A.2. In view of Lemma A.1, we may decompose

IVyY| = g7’ + g5, where

N
Sup lgtllzon @y gy < K(p1)Mo - for any p1 >
with an improvement for the space-time components g?j
Sup 92" or (e ey < K (p1) Mo for any pr > o,
and

0;
ig}g 1957 (| Lr> RN x[t,t+1]) = K(p2)Mo for any 1 < p; <
Similarly, in view of Lemma A.2 we have
ig}g IV || Los (v o1y < K (p3) Mo for every 1 < p3 < 2.

The estimates of Lemma 4.1 follow noticing that QJQ\,]X 7 < %

Lemma 4.2. We have
0y =0 on RNHL

Proof. In view of the construction of v,
0 = 2G * 0Jy 1ue.

Since 26J, sus = 6(0(ues X due)) = 0, the conclusion (4.15) follows.
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In view of Lemma 4.2, since —A; ; = 06*+0%0, we deduce 60*¢ = 2J, u.. By subtraction,
we obtain
0(ue X dus — 0%) =0 on RV+L,
We invoke the Poincaré lemma to assert that there exists some function @ defined on RV+!

such that
Ug X Oue = 6P + 6% on RV*L, (4.16)

Equation for the phase ®. Taking the exterior product of (PGL). with u., we are led to

% —div(ue x Vue) =0  on RY x R (4.17)

Ue X

On the other hand, in view of the decomposition (4.16),

{ we X du. = db + 5 — Py(5%)dt
Ou, a@ . (4.18)

Here, for a 1-form o on R¥*! we denote by Pi(a) its time component ag. Inserting into
(4.17) we derive the equation

O~ AB= (5% - P5Y)) - BEY) on BY xR, (419)

which is a heat equation with source terms bounded in appropriate norms, thanks to Lemma
4.1. The source terms can be decomposed into two contributions:

i) A=d*h = d*(§*y — P,(6*¢)dt), which is a derivative with respect to spatial coordinates.
In view of estimate (4.5), we have

sup IAll (Lo +Loy @™ [t e41]) < sup Va0l (L4 Lay@y xee41)) < €0 @) Mo, (4.20)
(SIS

for any p > N ;and 1 <¢g< N+1.
ii) B = P,(6*¢). In coordinates B writes as

B = Z ) “%m (4.21)

Z

It involves only spatial derivatives of space-time components 1% of ¢». This observation turns
out to be important specially in dimension N = 2. In view of estimate (4.6) we have

ig}g ||BHLP(RNx[t,t+1}) < C(p)My, (4.22)

for any 53— N T <p< N H . Taking into account the previous discussion, we are now in position

to complete the proof of Proposition 4.1.

Proof of Proposition 4.1 completed. We consider the initial-value parabolic problem

{ 0Py — Ady=A+B inRY x (0, +00), (4.23)

Dy(x,0) =0 for any = € RY.
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By Lemma A.3 and A.4 of the Appendix, as well as estimates (4.20) and (4.22), we deduce
that |V®@y| = g1 + go, with

sup [|g1ll(r4pay@n xjee417) < C(ry ) Mo, (4.24)
teRt

for any numbers ¢ and r such that ¢ > r, 1 <r < % and ¢ > %, and

N+1
S 4.25
oN_1 PN (4.25)

sup ”gQHLP([t,t-i-l};LP* ®N)) = C(p)Mo for any
teRT

In particular, for every compact subset X C RY, we have

N+1
”VSZSOHLP(KX[t,tJrl]) < C(p, K)Mp for every 1 < p < .

(4.26)
We set

¢€ =9 — ¢05
so that ¢. verifies the heat equation on RV x R*, and (ii) in Proposition 4.1 follows.

Proof of (iii). On every time slice RV x {t}, we have, in view of (4.16) and the definition

Of ¢E7
dde = ue x due — (51 — ddy . (4.27)

Here and throughout, we denote by a the restriction of a given form « defined on RV to
a time slice R x {t}.
In view of (4.20), we have

1) Il (Lo Loy N x[0,1]) < C(P:9) Mo (4.28)
for any p > &5 and 1 < ¢ < &H and in view of (4.24) and (4.25)

||V@0HL1(RNX[0,1})+Lp([o,1],Lp* ®N)) = C(p)Mo (4.29)
for any % <p< % In particular, for any g > %, we may choose some tg € [1/4,1/2]
such that

[(6%9) 1 + dPol| (114 Lay®N x {to}) < C(0)Mo. (4.30)

On the other hand, on every slice RN x {t} for ¢ > 1/4 we have |u.| < 3 (see Proposition
2.2), therefore using the energy inequality we obtain the estimate

[ue X duc|| 2@y (1) < Cy/ Mo|logel. (4.31)

In view of (4.27), (4.30) and (4.31) we may write, for any ¢ > 2]2\,]\13,
Voe(to) = fi+ fat+fz  onRY, (4.32)
where f; and fy satisfy
[ f1ll L2 @y < C (M), [ f2ll Loy < C(Mo, q), (4.33)
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and f3 satisfies

I fsll 2y < C\/Mollogel. (4.34)

Since ¢, solves the heat equation, so does VF¢,, and in particular for k& = 1 inequality (iii)
follows using Lemma A.5 and inequality A.22 of Appendix A. For k > 2, we invoke likewise
(A.23).

Estimates for we. In view of (i), we set
we = e exp(—ige),
so that |w.| = |ue|. A simple computation shows that
we X 0we = e X Ouz — 0. + (1 — |ue|*)de

= 0"+ 0(¢= + Po) — e +( (4.35)

= 0" +0Pg + ¢,
where we have defined ¢ = (1 — |uc|?)d¢.. Clearly, ¢ is a perturbation term. Indeed for
1§p<%andt21,

Clue|?
¢l ety < COOE=EE Nz eageesn 100 Lo rexprasny < C(K, Mp)elloge]

It follows from decomposition (4.35) and the various estimates for ¢, @y and ¢, that for every
1<p<flandt>1

l|we X dwel| Lo (xe xfte41y) < Cp, K, Mo) . (4.36)

The proof of assertion (iv) is then completed as in the proof of [6], Theorem 3, deriving the
corresponding bounds for V ¢|u.| and V(u.).

Remark 4.1. a) It is tempting to believe that
/ |V.|* < C(My +1)|loge], fort >1, (4.37)
RN x {t}

but we have no proof of that fact.

b) Since ¢. satisfies the heat equation, it follows from (4.1) that, for ¢ > 2]%,]\_7 zand t > 1,

C(My) C (Mo, q)
my—k
188" V5 e | oo (v 1) < INJat(k2m—1)/2 V loge| + tN/2q+(k+2m—1)/2"

4.2 Improved properties for w. and u.

In order to derive additional properties for w, the first step is to derive an appropriate
equation. We have

Lemma 4.3. The function w. verifies the equation

% —div(we X Vwg) = re on RY x RY, (4.38)

where the function . is defined on RN x Rt by

we X

re = V(1 — |u)?) - Voo . (4.39)

22



Proof. Since w. = u. exp(—i¢:), we have w: X Vg we = ue X Vg 1te + [ue|*Vy 1¢e. Inserting
this in identity (4.17) yields

ow ) 0 .
we X a—te — div(w. x Vw.) = |u.|? (;Ze — div(Juc|*Vee) .
Since ¢. verifies the heat equation, the conclusion follows. O

Let v/2¢ < R < 1 and consider for (zg,ty) € RV x [1,400) the parabolic cylinder
A = B(zo, R) X [to,to + R?]. (4.40)
We have

Proposition 4.2. Let g, ty and R as above, and assume that |u.| > % on A. Then we have

C (M)

|Vw,| < <~

C(My) ‘%
R 7’ ot

on A1/2 s (441)

where Ay /5 = B(xo, %) X [to + %RQ,tO + R?], and C(My) depends only upon Mj.

Proof. We assume R = 1, the general statement can be handled similarly by scaling. In

view of Proposition 4.1, u. = w, exp(i¢e). On the other hand, since |u.| = |we| > 1/2 on Ax
2

there exists some real-valued function 1. such that'® w. = p.exp(i).). Equation (4.38) is
transformed into the uniformly parabolic equation for ).

— div(pZVye) = V(1 = p2) - V. = re.

By Theorem 2.1, p? € C**(A1) and r. € CO%(A
2
equations with Hoélder coefficients, we deduce
o
H—az lco.aayy + 1IVellcoa(a

1 1
2 2

). Invoking Schauder theory for parabolic

1
2
) < CH%HCO»&(A%) + CHVT/%”LI(A%) <C. -

Combining Proposition 4.2 and assertion iii) of Proposition 4.1 with ¢ = 5 we immediately
derive

Corollary 4.1. Let xg, to and R be as above and assume that |uc| > % on A. We have

1 loge 1
ec(us(z,t)) < C(My) (ﬁ + | . | + 7517) , (4.42)

for every (z,t) € Ay )s.

8Hence, u. = pe exp(ipe ), where e = ¢e + V..
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4.3 On the evolution of V;.

Recall that ! is defined in Section 2.2 by (2.9) and that its evolution in time is given by equa-
tion (2.16) in Lemma 2.6. We first give an estimate for the remainder term R(t, x, Ve, we).

Lemma 4.4. Let K be any compact subset of RN. Let x € D(RYN) be such that suppx C K,
and let 1 <t1 <t;1+1<ty. We have,

17) t
Rt . V6 we) ] < COMo. Kl [y low el Tog(2) + (637 )

t1
2

+ 3+ Vel gep) ( llog el £ 72 +717%)] - (4.43)

i=1
Proof. In view of Lemma 2.6, it suffices to estimate the terms By, By, Bs, where

\m\?)

2

B, = Z(_w‘/

X <V¢5 cwe X Vwe + (Jue|® — 1)

= RN x{t;} 2
t2 9, 0

t1
to a 2
By = / (1 - JueP) <x\a%

We handle each of those terms separately.

v 2
1+ D*\Vé. - Vo — AX%> :

Step 1: estimate for B;. We have, for i = 1,2

Lo et =1 V2R < 913 K[ (/ (1 |2—1>2>1/2
RN (il | LK) IV Pelliee (K x{t:}) e

< Cellog 21 0el e gy K11
and

<Xl oo () IVWe | L1 (r s gt ) IV Pell oo (e {21 -

/ xVo. - w. x Vw,
RN x{t;}

Hence, by iii) of Proposition 4.1 with ¢ =5
2

B1l < Clldlzr 3 (1+ 19wl ecguy) (Vilogel 6 +£,7)

i=1

0
Step 2: estimate for B;. We invoke Lemma 4.3 to assert that w. X % = div(we X
Vwe) 4 ¢, so that

B[ fun

=/t .- ( a¢€>w€ X Ve + (1= Judiv (2x ;fwe).

dlv(wE x Vwe) + V(1 — |ug| )qug)

24



Since 0y = A, we have

09 _
)| < xller (1D%6:1 +10%6.1) < COtixler (logele ™ +710))
where we have used (4.1) with ¢ = 5. Similarly,

. Ope
div { 2

iv ( X,
It follows using iv) of Proposition 4.1 and the bounds on the potential term that the first one
dominates and therefore

| Ba| < C(Mo, K)|| x| (\/@log( )+t3/10 3/10) _

Step 3: estimate for Bjs. Using iii) and iv) of Proposition 4.1 with ¢ = 5, we obtain

V(

loge
)| = Clixlen Vel 1070l < COMler LB

t2
Bal < Clixllal K 2ellog el [ IV e oy

t1

< C(Mo, K )”XHC2€\IOg5\3/2 (t3/5 3/5) .
Combining the previous estimates the conclusion follows. 0

Concerning the interaction term Fj, we provide first a crude estimate, which will be
needed in the Cylinders Lemma. At a later stage of our analysis (see Section 9), we will
perform a refined decomposition of this term in dimension N = 2.

Lemma 4.5. Let K be any compact subset of RN. Let x € D(RYN) be such that suppx C K,
and let 1 <t1 <t;1+1<ty. We have,

| / * Frltx Vo) dt] < COMo K ler (VB — VD llogel + (02 — 1)), (4.44)

Proof. 1t follows from the definition of F; that
to to
[ Frttox Ve dt) < Clixles | (1903 geion IV e e
1 1
Using iii) and iv) of Proposition 4.1 with any admissible choice of ¢ the conclusion follows. [
Combining Lemmas 4.4 and 4.5 we derive

Lemma 4.6. Let K be any compact subset of RY. Let x € D(RY) be such that suppx C K,
and let 1 <t1 <t;1+1<ty. We have,

C
dv? —/ dvit < / (t dt Re(ty,t
[ x@t = [ @t < a7 st it + o e Rettn ).
(4.45)
where C' = C(My, K), Fg is defined as in Lemma 2.3, that is
Fs(t,x,we) = / (DQXng - Vwe — AXes(ws)) dz,
RN x {1}

and where

Re(t1,t, we) = (Z IVwell o1 (g xqey) + (VE2 — \/_)> \/Iogel + (t2 — t1). (4.46)
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4.4 Upper bounds for the velocity of concentration sets

In this section, we turn back to dimension N = 2, to the concentration sets {2§5(¢) introduced
in Section 3, and study their motion for long times. We recall that, by a standard covering
argument,

O5(t) C Uiy B(5,26), (4.47)

where the number [ of points z5 is uniformly bounded by | < C %.

Our main result, Proposition 4.3 below, is inspired by Lemma 5.1 of [17]. However, since
the initial datum is not assumed to be well-prepared, we rely on different type of arguments, in
particular the topological and regularity arguments in [17] are replaced here by the application
of the Clearing-Out Lemma for vorticity and the decomposition in Section 4.2.

Proposition 4.3. (Cylinders Lemma) Let tg > 1 and r > 0 be given. There exists positive
constants og, Yo and ro depending only on My such that, if

QF (o) = 5 4(to) C Uiy B(af, 7). (4.48)

for some |log 8]_1/6 <r <ry and some points (z5)1<i<; verifying

|25 — 5| > o0r,  Vi#j, (4.49)
then oo
(1) € Uiy Bla5, ). (4.50)

for every to <t < tg + yor?|loge].

Proof. The strategy is based on formula (4.45) of Lemma 4.3, and a suitable choice of function
x. For that purpose, we first construct a smooth positive function A defined on R?, satisfying

A(z) =8|z]? if |z| <1/4
Az) =0 if 2| > 1/2 (4.51)
0<A(x)<1 on R2

Next, we consider the points x5 given by (4.48) and (4.49), we set

l

x(m)ng(“””?),

ogr

for some constant og > 0 to be determined later, and we introduce the integral

A(t) = /R X(@)dv}.

Let te be the exit-time, i.e.
€ l e 00T
te = sup{t > to, Q°(s) C U, B(z5, T) for tg < s < t}.
Notice that in view of Lemma 3.3, t, > to+ 4. Our purpose is to apply formula (4.45) and to

prove that we are led to a contradiction if ¢, were too small, thanks to our special choice of
function y. However, in view of the specific form of (4.45), we will first choose suitable times
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t1 € [to,to+1] and t € [te —1,t.] for which good estimates are available on ||Vwe |11k x t,})
i =1,2, where K = supp x.

Step 1. There exists t; € [to + 3,to + 1] and t5 € [t — 1,¢. — 5]'° such that
[Vwel| gy (g xt,y) < C(Mo)(ogr® + 1), fori=1,2,

and such that there exists some . verifying, for some ¢ € {1,...,1},

2o € Q°(ty)  and (% —1)r < |ze — 25| < (% + 1) (4.52)

Proof. In view of the definition of ¢., there exists some Z, € Q(t.), and i € {1,...,l} such
that

o 1 - o 1
(g~ )r <& —afl < (T + 3 (4.53)
It follows by Lemma 3.3 that for every t € [t. — 1,t.], there exists some z(t) such that
(G~ Ur <l — i < (F + . (4.54)

The conclusion follows by averaging, since

IVwell 2 (rex oo +1) < C(Mo)ogr?  and || Vwellp rexpre—1,0)) < C(Mo)ogr?.

Step 2: upper bounds on A(t1). We claim that
C
A(ty) < =My +o(1), where o(1) — 0 as € — 0,
90

and where C does not depend on oy.
Proof. By Lemma 3.5 we have

1 1
uel > 5 on (R*\ ULy B(af,20)) x [to+ . to + 1.

Applying Proposition 4.2 we infer that
C 1
ec(we) < 2 on (RQ \ Uﬁle(xf,?)r)) X [to + §,t0 +1].

In particular,
2

C
/ v < =20 (4.55)
R2\UL_, B(x¢,3r) |log ]

i

C
On the other hand |x| < — on U_; B(zf,3r), and therefore we derive
90

2
/ vt < £ (4.56)
Ul_, B(x¢,3r) [log ¢|

The conclusion follows combining (4.55) with (4.56).

9Notice in particular that t; — ¢ > 1.
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Step 3: lower bounds on A(t2). We claim that A(tg) > 717—; — C(My)(oor + adr?).
Proof. Let z, be given by Step 1. We have, by definition of Q(t2),

/ e (ug)dr > @|loge|.
Blze,5)x{t2} 2

On the other hand, by (4.52), x(z) > 5 on B(x,, ), so that

Rellog

/ xee(ue)dr > @|logs|.
B(ze,5)x{t2} 18

It remains to compare e.(u:) and e-(w:). In view of (2.19) and estimate (ii) of Proposition
4.1, we have

/ e () = xex(w2)] < C(Mo)(aor + o) log .
B(ze,5)x{t2}

and the conclusion follows.

Step 4: We claim that
to
[ Fsttoxw ] < CMo)(1 -+ o)tz — ],
1

Proof. Since x has compact support in U = Uéle(azf, oor/2), we may divide the integration
into two disjoint contributions: the contribution on U; = Ul_, B(z5,09r/4), and that on
Uy = U \ Uy, which is a union of annuli. On Uy, x(z) = S\, 8|z — z5|?, and this specific

(2
form implies a remarkable sign condition in the integration, namely
D*xVw, - Vw. — Axes(w.) = —AxVe(us) <0 on U. (4.57)

The previous fact (and more generally, related identities for the squared distance function
to a manifold) was remarked by De Giorgi [13], Rubinstein and Sternberg [25] and used
extensively since then (see for example [29]).

Turning to Uy we have, in view of the definition of ¢, and our choice to < ¢,

1
QG () C U BGf, ) V-3 <t<t.

1 1
Invoking Lemma 3.5 we deduce |uz| > g on (Z/{\Ué:lB(xf, %OT)) X [t1— 7 to], and therefore,
by Proposition 4.2 we obtain
1
ec(we) < C(My)(1 + W) on Us X [t1,ta], (4.58)

0

so that combining (4.57) and (4.58) we derive
to
[ Fsttoxwa) dtl < Co) (o + 1)t ],
1

which is the desired inequality.
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Step 5: bounds for R.. By Step 1 we have
Re(t1,ta, we) < C(1+ oar® 4+ (Vs — vVt1))y/ [loge| + (t2 — t1).

Step 6: proof of Proposition 4.3 completed. Combining Step 2 and Step 3 we have

M _C

A(t2) = A(tr) > 12 — —5 Mo — C(Mo)(oor + o) + o(1).
0
We choose first o7 such that
C n . C My
—My=—, ie. =6 , 4.59
O'% 0 36 e a1 1o ( )

and then finally set 09p = max{100,0;}. For this choice of oy, we choose first r¢ in such a
way that ogrg <1 and

C(Mp)(ogro + odrd) < %,
so that, if r < rg,

Alts) — Aty) = 2 4 o(1). (4.60)
On the other hand, by formula (4.45),

C(Mo) Re(t1,t2, we)

Ate) — A(ty) < !/ Fs(t, x,we) dt] +

< g ogel 032
to—t1] | Vo=Vt +1 (4.61)
< C(Mo) + t2 2! .
llog ¢| [log ¢|
Combining (4.60) with (4.61) we deduce
C(My) (|ta—t1] | Vo=Vt +1
M= —53 + .
agr [log | [log |
Therefore, we obtain ty > to + C(Mp, 770)7"2]10g el, and the proof is complete. O

It may occur that, as € tends to zero, some part of the set (2° escapes to infinity. This
however does not affect the asymptotics, since we have the following variant of Proposition
4.3 for which we omit the details.

Proposition 4.4. Let 0 < r < rg, and R > 1001 be given, assume the points (x5)i1<i<
verify (4.49), and that
O (to) N B(0, R) C Uj_, B(a5, 7).
Then
IR oogr

O%(t) N B(0, =— L B(af, =
(t) N B(0, 1O)CUM (7, 8)

for tg <t < yor|logel.
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4.5 Consequences of the Cylinders Lemma

We assume in this subsection that (4.48) and (4.49) hold for tp > 1 and 0 < r < 1, 0 > 0y.
In order to describe the energy evolution along concentration sets, we use the following

Lemma 4.7. Let x a smooth nonnegative function, and assume that suppVy C R?\
Ut_,B(z5,07). Then we have

d t 2 (or)™2 1
dt = O, P > " 4.62
dt /R2 x(z)dpz < C(Mp)|supp Vx| - [|D*x|| < Togd +5] (4.62)

for every to + % <t <ty+yor?llogel.

d 1
Proof. By Lemma 2.3, pr /RN x(x) dul < Mfs(t,x,ug). Since

Fs(t, X, ue) =/

D*\Vu, - Vu, — Axec(ue) < CHD2X”LOO / ec(ue),
R2 x {t}

supp Vx
the conclusion follows by Proposition 4.3, Lemma 3.5 and Corollary 4.1. [l
Concerning w,, we deduce from the Cylinders Lemma the pointwise estimate

Lemma 4.8. We have, for some constant K depending on My,

lee(w.) (2, 8)] < K(ov)™2 and |ec(uo)(z,1)| < K ((m«)2 + @) (4.63)

for every x € R2\ UL_, B(a5,0r) and every tg + 1 <t < tg + yor?|loge].

Proof. A direct consequence of Proposition 4.3, Lemma 3.5 and Proposition 4.2. O

5 Limiting measures in the log time scale

Our purpose is to study the asymptotics for the measures v?. This will lead us to the proofs
of Theorem 2, 4 and Theorem 5. From now on, we will work directly with the rescaled time
s = Ilo—gsl' A first step in the argument is to consider limits for fixed s. In a second step,
we prove some continuity property in time so that an abstract compactness argument leads
finally to the existence of a limiting measure for all s. Both 3, and vl are constructed at the

same time.

5.1 Concentration points for fixed s

Lemma 5.1. Let s > 0 be given. There exists a sequence e, — 0 and ls points (a;(s))1<i<i,
(depending only on s) with s < C%, such that for every r > 0 and R > 2sup;<;<;, |a;| there
exists ng € N (depending only on s,r and R) such that

Q76(|log eals) N B(0, R) C Ui Blai(s),r)  Vn > ng. (5.1)
Moreover, for any i =1,...,1ls, and for any n > nyg,

B(a;(s),r) N Qi716(| log en|s) # 0. (5.2)
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Proof. Let 0 < 6 < 1. We consider a covering of Q5(|loge|s) as in (4.48), i.e. such that
Q5(|logels) € U B(a5, 26) (5.3)
with 129 < CMo and
x?’é € Q5(|logels). (5.4)
By a compactness argument, there exists a set {af}lgigl s}, with

C'M,

l5 S )
Mo

)

o — 0, [en% = % is independent of n, and such that,

such that for a subsequence ¢, = ¢
relabeling if necessary, we have
250 s ol

; ; fori=1,...,15,

5n76‘ — 400 forz:l&—i—l’,lé

|;
We choose 0, = 27™ for m € N, and set ai* = af’”, m = ™ and l5, = l. Since
05, (|logels) € €5 (|logels), we notice that

U et c Ul B(al, 26,,).

We deduce that, without need to pass to a subsequence, Uizl{a;”} converges to Uiszl{al-(s)}
as m — 400, and
. 1 l _
dist (UL, {a"}, UL {ai(s)}) <272

The subsequence €, in the statement of the Lemma is easily constructed by a diagonal
argument.

Let 0 < 7 < 1 and R > 2sup;<;<;. |a;| be given and let m € N be such that 27! <
15 < 27™. There exists ng € N such that, for n > no,

]xf”’ém —at<27™ fori=1,...,1n, and \x?"’ém\ >2R fori=ln+1,...,0"

Therefore, for n > ny,

Qi’/llﬁ(\ logey|s) N B(0,R) C ngn(l loge,|s) N B(0, R)
C (U2 B2, 26,,)) N B(0, R) = Uz, B(x5™"", 26,,) 55
c Ul B(al",36,,) C Ul B(a;(s), 30, +27™+2)
c Uk B(ai(s),7).
The proof is complete. O

Remark 5.1. At a later stage, we will consider limiting measures v] for v . A direct
consequence of (5.2) is that

o) ({m}) > 7 (5:6)

From Lemma 5.1 and a further diagonal argument we obtain
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Corollary 5.1. Let Z C Rt be a countable set. There exists a sequence €, — 0 (depending
only on Z) and, for each s € Z, ls points a1(s),...,a;,(s) (with l5 < C’MO) such that for
every r > 0 and R(s) > supj<;<, |ai(s)|, there exists ng € N (dependmg only only on s, r
and R(s)) for which o

/16(\ log e,|s) N B(0, R(s)) C Uk, B(a;(s),7) Vn > ng. (5.7)

Remark 5.2. In the sequel, we take as sequence (g, )nen the one related to Z = 7Q*, where
~o is the constant in Proposition 4.3.

An important part of our analysis will be devoted to prove that there exists a subsequence
€o(n) for which (5.1) holds for any s > 0. The key ingredient is the Cylinders Lemma. In
order to implement this technique we first need the following elementary covering argument.

Lemma 5.2. Consider | distinct points aq, ..., a; in R%. Let rg > 0 and o > 2 be given. Then,
there exists r > 0 such that
ro <1 < (20)'rg (5.8)

and a subset {a;}ics of {ai}i<i<i such that
Ut_ B(ai,m0) C UjesB(aj,7)

and
laj —ai| > or Vi#kinJ (5.9)

Proof. The proof is by iteration, in at most [ steps. First, consider the collection {a;}1<i<;.
If (5.9) is verified with » = 7 there is nothing else to do. Otherwise, take two points, say
ay,az such that |a; — ag| < orp, consider the collection asg,as, ...,a;, and set r = 20ry. If
(5.9) is verified, we stop. Otherwise we go on in the same way. If the process does not stop
in [ — 1 steps, at the I step we are left with one single ball of radius r = (2¢)'rq, and (5.9)
is void. O

5.2 Continuity in time

Proposition 5.1. Let so > 0 and 0 <rg <1 and R > 2supy<;<(s,) [0i(s0)| be given. There
exists ng = no(so, ro, R) such that for n > ng

Qe (| log enls) N B(0, R) C U B(ai(so), o1m0) Vs € [s0, 50 + Yord), (5.10)

where g is the constant in Proposition 4.3 and o1 is some constant depending only on M.
Here the points {a;(s0)}1<i<i(sy), the sequence (en)nen and ng are given in Lemma 5.1. More-
over,

., (te,) < C(rg?+651) on [B(0, R) \ UL B(ai(s0), 0170)| x s+ so+70rZ]. (5.11)

1
llog e|’
Proof. We apply Lemma 5.1 with s = 59 and r = rp. Combining with Lemma 5.2, for the
choice o0 = 0, where o is the constant in Proposition 4.3, we are led to

O 16(|logen|s) N B(0, R) C UjesB(ai,r)

for some 19 < r < (200)'r0, and |a; — ag| > oor for j # k € J. Conclusion (5.10) then follows
from the Cylinders Lemma (Proposition 4.3). For (5.11) we invoke once more Lemma 4.8. [
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5.3 Construction of ¥, and proof of Theorem 2

Given a length rg > 0 we consider the set
¥7e = Us>0827, j16(/log €]5)

and cover it by “chains” of cylinders of radius of order ry and height of order rZ. We then
define the set X, as the intersection, as rp — 0 and € — 0 of these chains. To implement
this idea, we discretize time by slices of thickness vorg. More precisely, we fix ry € QT and
consider the time slices s; = j’yorg, for j€N, j>1. For S >0 and R > 0 we set

Yo (5, R) = %0 0 B(0, R) x [0, 5],

where (&, )nen is the sequence considered in Remark 5.2. In view of Proposition 5.1, for given
S >0,
R(S)=2 sup |a;(s)] < +oc.
s€2N(0,9)

As an immediate consequence of Proposition 5.1 we have

Lemma 5.3. Consider the sequence (gn)nen given in Remark 5.2. Assume rg € QT and
S >0, R > R(S) be given. Then there exists ng = no(S, R,r9) depending only on S, R and
ro such that, for any n > ng,

U(s5)

(S, R) < U | U Blailsg), o1ro) x [s5, 8541
i>1 \i=1
5; <8

1
We next specify the choice for rg, taking namely ro = —, m € N, and set

om’
-, JV, 01 Jv (G + 1
=) U B(az‘(?—m)72—m)x [22—,”7227,”]- (5.12)
meN j>1
1<i<i

By definition, X, is an intersection of closed sets, hence it is closed. Moreover, by definition
of parabolic?® Hausdorff measure Hﬂ?;., we have

H2H (2, NR? x [0,8]) < C(My)S. (5.13)

This yields the first assertion of Theorem 2. Next, we first observe that for some [ depending
only on My 2!

1y <1 for any s > 0, (5.14)
and the second assertion follows directly from the construction (5.12) of %,, taking a = 5.

1
At this stage we have established Theorem 2.%2

20The parabolic ball Bp(z,7) C RY x R of radius r centered at z = (x,t) € RY x R is given by Bp(z,7) =
B(z,r) x [t —r? t 4+ 12].

2ndeed, in view of the definition of ¥y, X% is included the union of at most ! intervals of arbitrarily small
size.

22 Actually we have constructed a set X, satisfying the properties stated in Theorem 2. The important point
of course is that the set X, satisfies also the properties stated in Theorem 1, in particular the convergence
stated in (3). This will be established at a later stage of the analysis.
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Notice that the above construction of 3, also yields some properties stated in Theorem
1. Indeed, let K C R? x RT \ ¥, be a compact set. By definition of ¥,, there exists some
m € N such that

/. /JY0\ O1 Jv G+ Dy, _
Kn B(ai(zg—m)a Q—m) X [QQ—m, 2277”] = 0.
Jj21
1<i<l
Therefore, by Proposition 5.1 we deduce that
e, (uz,) <2°"C on K, (5.15)
and hence
[lue, | — 1] < 2™Ce on K, (5.16)

so that |uc, | — 1 uniformly on K and moreover the energy is uniformly bounded on K.

Remark 5.3. Since, for any s > 0, X is finite, we may write
28 = U ai(s)} (5.17)
It follows from the very construction of ¥, that for each s € Z we have the inclusion

{ai(s) h<i<i, C{ai(s) h<icigs)- (5.18)

The two sets may not coincide for every s, in particular when collisions occur. However, in
view of the above construction, we have

Eu = Usez Ui‘szl {ai(s)}7
and more precisely, for s > 0,

U ai(s)} = lim U {ai()}-

s'—s, S'€EZ, s'<s

In particular, for any neighborhood O; of a;(s),

liminf 13 (0)) > . (5.19)

s'—s, s'<s 2

Notice also that a consequence of Theorem 5 iii) will be that equality in (5.18) holds for all
but finitely many times s.

5.4 The abstract compactness argument
The following is an easy variant of Helly’s selection principle.

Lemma 5.4. Let I be an at most countable set, and let (ff@)neN, ic1 be a collection of real-
valued functions defined on some interval (a,b). Assume that for each i € I the family
(f ) nen is equibounded and satisfies the following semi-decreasing property®

V' > 0 there exists T > 0 and n; € N such that, if s1,s2 € (a,b)

4 . 5.20
and so — 7 < 51 < s9, then f;(s2) < fy(s1) +9, Vn > n,. (5.20)

23Such a condition appears in the literature under various forms, the one we adopt here does not require
differentiability.
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Then there exists a subsequence o(n) and a family (fi)ie[ of real-valued functions on (a,b)
such that ‘ ‘
fomy(8) = f'(s)  Vse€(ad), Viel

We apply the previous lemma to the following situation. Let (x;)icr be a countable family
of compactly supported nonnegative smooth functions on RY, and assume that span (x;)icr
is dense in CO(RY). For s € (a,b) and n € N, let {v3} be a family of measures on R" and set

Fils) = /N xado?, for s € (a,b), n€N, i€ 1. (5.21)
R
Assume that, for some constant C' > 0

los|| < C Vs € (a,b), Yn € N. (5.22)

Lemma 5.5. Assume that the family (fi)nen defined by (5.21) satisfies (5.20). Then there
exists a subsequence (0(n))nen and a family of measures {05} sc(ap) Such that

s
o(n

Vo(n) — o weakly as measures, as n — +o0o, for all s € (a,b).

Proof. In view of Lemma 5.4, there exists a subsequence (o(n)),en such that
Yo (Xi) converges, as n — +oo, for every s € (a,b). (5.23)

Next let sy € (a,b) be arbitrary but fixed. Since (5.22) holds and in view of (5.23), since
span {x;} is dense, for s = sy the family {Ui(zn) (X) }nen is a Cauchy sequence in R, hence it
converges. This determines the measure v° and establishes the convergence for s = sg. Since
so was arbitrary, the conclusion follows. O

5.5 Pseudo-decreasing property

Recall that at this stage the convergence of v to a limiting measure vi has already been
established for s € Z = Q" (see Corollary 5.1 and Remark 5.2). In this section we
show that, extracting possibly a subsequence, convergence holds for all s € RT. The main
ingredient is a pseudo-decreasing property.

For s € Z consider the class

I(s)
Y(s) = {x € C.(R*R"), suppVx C R*\ | J{ai(s)} }-

i=1

We have

Lemma 5.6. Let so € Z and x € Y(sp) be given. Set
r= o7 - dist (supp Vx, Uf" {ai(s0)})-

Then

d
p /11@2 xdol <C on [so+ , S0 + 'yor2], (5.24)

1
|logen|

where the constant C depends only on x.
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Proof. Tt is an immediate consequence of inequality (2.7) of Lemma 2.3 combined with in-
equality (5.11) of Proposition 5.1, and the fact that Vx vanishes on UiS?)B(ai(so), or). O

Remark 5.4. Notice that (5.24) is only valid on an interval depending on Y.

We introduce next the class, for s € Z,

Yi(s) ={x € Y(s), dist(supp Vx,{ai(s)hi<icys)) = o17}.
The main step in the proof of Theorem 4 is the following

Proposition 5.2. There ezists a fixed subsequence of (e,)nen (still denoted (gy,)nen) such
that for any sq € Z, any r > 0, any x € Y,(sq) and every s € [sq, 5o + Yor?],

v (Xx) converges as n — +o00.

Proof. Let sg € Z = 4Q" and r € Q" be given. Thanks to Lemma 5.6 we can apply Lemma
5.4 with [a, b] C (so, s0+70r?] and fi(s) = vs (x;), where {x;}icr is a countable dense subset
of Y,.(s). It follows that, for a subsequence (6(n))nen = (05,r(1))neny depending on sp and
’,"’

f5(n)(s) converges on [a,b].

Using a diagonal argument for sp € Z and r» € Q" we get rid of the dependence on sg and 7,
and the conclusion follows by density of the family {x;}ier in Y (so). O

5.6 Proof of Theorem 4 completed.

We inverse the role of s and sg, i.e. let s > 0 be given and fixed (whereas s¢ will vary). Define
Z(s) = {x € C/(R*,R"), suppVyx C R*\ X3}

Recall that for any s > 0, 37 is a finite set. Let x € Z(s) and set r = dist (supp Vi, X).
2

%, so that

in particular, since o = Z—g, s € (sg,50 + 0r?). We claim that y € Y, /2(s0). Indeed, by
1
I(s0)
construction ¥¢ ¢ R? x {s} N U Polai(so), so), that is
i=1

Next, we are going to choose sy € Z such that sp < s and 0 < s — 59 <

I(s0)

Eg C U B(ai(so),
=1

s — 80

!
-
o ) - ZL:J1 B(al(30)7 Z)v
and the claim follows. We apply next Proposition 5.2 to so and § to deduce that vZ (x)
converges as n — +00. Since x was arbitrary in Z(s) and since Z(s) is dense in CO(R?,R"),
it follows that v () converges for every x € C2(R?% R"), and the proof of Theorem 4 is
completed. O
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5.7 Proof of Theorem 5 i).

In view of (5.11), we have, for every s > 0 and K C R? x R* \ 5,
p¥(KNR? x {s}) =0 (5.25)

It follows from the fact that X, is closed and (5.25), that for any compact set Q C R?\ 2§ =
R\ U {ai(s)},

1=

so that

o~

(s
vE=">0i(5)0u(s)

i=1

~

for some positive numbers 6;(s), so that the first statement in Theorem 5 i) is established.
Concerning the second statement (i.e. (8)), it requires to define the degrees d;, and this will
be done in Section 6. Once the degrees are defined, inequality (8) follows immediately from
standard lower energy bounds (see e.g. [19]). O

6 Convergence results for u. in the log time scale

In order to prove Theorem 1, we use the decomposition given by Proposition 4.1, i.e. we
write u. = w, expi¢g. so that

uzs X Vue, = w, X Vw, + p?VqﬁE. (6.1)

We handle each of the terms on the r.h.s. of (6.1) separately.
Recall that from Proposition 4.1 ¢. solves the heat equation. Moreover, applying iii) and
Remark 4.1 b) with ¢ = 5, we have, for s > 0 and s|loge| > 1,

V(- g ef)] < COM) (2 + ). (6:2)

2 C'(My) 1 1
’D ¢6('7 Hoge’f’S)’ < W (% + W) s (6.3)

C(Mp) [ 1 1
|05V e (-, [loge|s)| < sJlog | <% + W> : (6.4)

We deduce

Proposition 6.1. Extracting possibly a subsequence, there exists a function c : Rf — R?
such that
V(- sllogel) — c(s)

on every compact subset K of R? x (0,400). Moreover,

C(Mo)
s

les)] <

Vs> 0. (6.5)



The proof is a straightforward consequence of (6.2),(6.3),(6.4) and Ascoli-Arzela Theorem.
Next we turn to we X Vw,, and recall the decomposition given in (4.35)

we X dwe = 6" + 0Py + (, (6.6)
where ¢ = (1 — |uc|?)6¢., the 2-form 1 is defined on R? x R* by the elliptic problem
~Apyp = Jpue  on RY xR, (6.7)

and where the function &g is defined by the parabolic problem

_ — 2
{atgbo Ady=A+B onRZxR (6.8)

®.(x,0) =0 for z € R?,

where A = d*(6*y — P,(0*¢)dt) and B = —P;(0*¢). We would like to emphasize the fact
that ¢ is a perturbation term, whereas the definition of @, involves only 1, and thus J, ;u..
Therefore, the system of equations for ¢ and $g has J,;u. as source term. On the other
hand, we know by Proposition 3.3 that J,; is essentially time-independent (in the original
time scale). We will show that @ tends to zero as € goes to zero in suitable norms, whereas
1) is essentially the solution of a static 2-dimensional problem. At this stage, we still work in
the original time variable ¢ and let t. > 0 be given. We start our analysis with .

6.1 Relaxation of Vi to static fields

Let R > 10 be given. We apply Proposition 3.3 to the translated function u.(-,t. — %),
assuming t. > 2R. This yields [ points x5 in V.(t.) and integers d; € Z such that

l
||J:B,tu5 - Z dz(sxfdxl AN dx2”[CO’O‘(B(O,R)X[tE*ZR,t5+§])}* < Ca(ﬁ, Mo, R).24 (69)
i=1

We compare 1 with the solution v of the problem
l
—Am?/; =7 Z di&vfdxl A dxo on R? x R,
i=1
explicitly given by } !
Yz, t) = — Zdi log |z — 5| dxy A dxa,
i=1
which is independent of time ¢. Notice however that the definition of 1/; depends on the choice
of t.. We have

Lemma 6.1. Let 1 < p < % There exists constants C1(g,p, R) depending only on €, p and
R, and Cy(My), depending only on My, such that for every compact set Q@ C B(0, %) X [te —
%,te + %], we have

Co(Mp)
R9/20

Vet (¥ — )| Loy < Ci(e.p, R) + Q7.

Moreover, for fized p and R, Ci(e,p,R) — 0 as € — 0.

24Recall that Ca(e,Mo,R) — 0 ase — 0.
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To illustrate the way Lemma 6.1 induces relaxation, take for example 2. = B(0,1) x (¢ —
1,te +1) and let ¢ — 0, t. — 400 and R = R, = t./4. Then

Proof. In view of estimate (4.5) we have
va,t(¢ - 1&)||L4/3+L5/2(R2><[t57§7t5+§]) < CR3/4,
and therefore, by averaging, there exists some Ry € [%R, R] such that

) 3/4-2/5 _ 7/20
Hvx,t(w - rlp)HL4/3+L5/2(8B(0,R0)X[t57%7t5+%]) < CR / /5 — CR / .

Next, we decompose ) — 1/; as B
Y=t =84+ &,

where &) is harmonic on Pr, = B(0, Ry) X [te — %, te + %] and where & solves

{ —A$7t§2 = Jg e — 772%:1 (5xfdl'1 Adxy in Pg, (6 10)

& =0 on 0P,
By standard elliptic estimates and a straightforward scaling argument, we have
< CR™9/?0.

Ve t&all o (o, 2) et 2.1+

On the other hand, if p < 2 there exists 0 < a < 1 such that [C%®]* — WP, so that, in
view of (6.9) and standard elliptic estimates once more,

va,t&HLp(B(o,%)X [t57}827t6+%]) < C(e,p, R)a

where C'(g,p, R) — 0 as € — 0 by Proposition 3.3, and the proof is complete. O

Corollary 6.1. Let 1 < p < 3/2 and let K C R? be a fired compact set. For a given § > 0
there exists €(6, K) > 0 and T'(6, K) > 0 such that, if ¢ < (6, K) and t. > T(9, K), then

va,tw - &)HLP(KX[tg—l,tg—l—l]) <. (6-11)

6.2 Vanishing of V@,

Lemma 6.2. Let K C R? be a fized compact set. For a given § > 0 there exists (6, K) > 0
and T'(6,K) > 0 such that, ife < (6, K) and t. > T(9, K), then

HVQSOHL‘V?’(KX[tg—l,ts—f—l]) <. (6.12)

Proof. We begin with the observation that, since v is independent of time, we have, for the

r.h.s. of (6.8),
A=d'h=d"(5"(p — ) — B(6* (v —¥)dt))  and B = P(6* (¢ — 1)),

so that we may take advantage of the smallness of 1) — 1/; derived in the previous paragraph.
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We also recall the estimates obtained so far for @g, namely |V®q| = g1 + g2, with?

sup (|91l 45115y @2 x41)) < € Mo, sup |92l pro/7 (¢ 417,25 w2)) < CMo.
teR+ teR+

Let R > 100 and 1 < L < v/R/4 to be determined later, and let t. > 2R. By averaging, there
exists some tg € [t. — (L? + 1),t. — L?] such that

IV®oll(zars 4 s)mex (10}) < CMo-
On R? x [tg, +00) we decompose ®q as
Do = Bg + B + B, (6.13)

where @} satisfies
OPy — APy =0 on R? x [tg, +00)
D} (z,t9) = Py for z € R?,

and 5153 satisfies

P - APZ=A+B onRZxR
®3(z,t9) =0 for z € R?,

where A = d*(xh), B = xB, with 0 < x < 1 is a cut-off function on R? such that y = 1 on
B(0,L), x = 0 on R?\ B(0,2L), and |Vx| < 2. In view of estimate (A.22) we obtain, for
every t > t. — 1,
C
||V@é\|Loo(R2x{t}) < 125" (6.14)
For % we estimate A using Lemma 6.1 with p = 4/3 and Q = B(0,2L) X [to, t.]. This yields
_ 3
IVae( = V)l Lars o) < Cile, B) + Co(Mo) 15755
It follows from standard parabolic theory that there exists a constant C3(L) such that

Hv¢%||(L4/3+L4)(R2><[t571,t5+1}) < C5(L)|[Vae (v — 12)HL4/3(Q)

< Cg(L)[Cl(&‘, R) + CQ(MO)W]

where we have set C (e, R) = C4(¢,4/3, R) (for C; given in Lemma 6.1). Finally, we turn to
@3. Arguing as in the proof of (4.24) and (4.25), we have |V®3| = g1.3 + g2.3, with

sup H91,3||(L4/3+L5)(R2x[t,t+1}) < C'Mp, and sup H92,3||L10/7([t,t+1],L5(R2)) < CMp.
teERT teRT

On the other hand, @} satisfies the homogeneous heat equation on B(0, L) x [to, t.]. It follows
from standard heat equations, after scaling®® and a few computations, that

C(Mp)

3
Hv@O”LC’O(B(O,%)X[tg—LT2,t5+1D_ L2/5 -

(6.16)

?We specify estimates (4.24) with r = 4/3, ¢ = 5 and (4.25) with p* = 5, i.e. p = 10/7.
26Tntroduce the function &} (x,t) = &3(x- L, (t —to) - L?), which verifies the heat equation on B(0,1) x [0, 1].
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We collect the estimates for &f (i = 1,2,3) given in (6.13), (6.14), (6.16) to assert that for
any compact set K C B(0,L) we have

1 L3
IV®oll /s s it 1,841y < CU) 7175 + C3(L) - (Cl(ﬁ,R)+C2(M0)W)]- (6.17)

In order to establish the vanishing of V@y we specify the values of L and R. We first choose
L sufficiently large such that K C B(0, L) and

C(K) ¢
25 =3
Next, determine R so that
C(K)Cy(Mo)C3(L)L? <90
R9/20 =3
Finally, we invoke the fact (see Lemma 6.1) that Cy (e, R) tends to zero as € tends to zero, to
derive (6.12). O

6.3 Convergence of u. x Vu, to static fields

We express the results of sections 6.1 and 6.2 and in the log time scale. This straightforwardly
yields

Proposition 6.2. Let § > 0 and sg > 0 be given and let K C R? be any compact subset. For
every s > so there exists | points x5(s) in V.(s|loge|), | integers d5(s) depending only on s
and a constant (9, s, |K|) > 0 depending only on §, so and |K| such that, if e < (9, so, | K|),

HU’E X Ve — Zde log ‘.%' - T (8)‘) - 06(8)HL4/3(K><[s|log€|71,s|loge\+1]) <9, (618)

where c. : RT — R? is a function verifying
C(Mo)
NCa
Whereas estimate (6.18) provides an estimate in a weak norm but holds for arbitrary
sets K, even those containing the concentration sets, better estimates can be deduced from

(6.18) provided K is far from the concentration sets. In this direction, we have, as a direct
consequence of Lemma 3.5 and Theorem 2.1

lee(s)] <

(6.19)

Proposition 6.3. Letr >0, § > 0 and s be given. Let s > sy, €1 > 0 and let K C R? be a
compact set such that, if € < ey,

dist(K, Q° (s|loge| — 2)) > 4r.

There exists a constant £g < &1 depending only on r, §, K and sy such that, for € < ey,

[[ue x Vue — Zde )og |z — a5 (s)]) — c=(s)ller (x x {sf1ogely) < 0- (6.20)

Moreover, there exists T, € [0, 27] such that

L[z —a5(s) 4its)
. — exp(iTe H( ;(S)|>

CC—IEZ

<. (6.21)
Cl(K x{s|logel|})
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Remark 6.1. In estimates (6.20) and (6.21) one may replace the slice t = s|log ¢| by [s|log e|—
1, s|loge| + 1J.

6.4 Proof of Theorem 1 completed

Formula (6.20) offers already a strong rigidity of possible behavior for u. x Vu.. Indeed, it
reduces the problem, for fixed time s, to finite dimensional objects, namely the points z5(s)
and the degrees d5(s).2” As for the construction in Section 5, the main point is to find a fixed
subsequence for which convergence holds at all positive times. We developed in full details
an argument for p. in Section 5. Our argument here for z{ and df is somewhat parallel.
Therefore we omit the details and point out the main adaptations.

First, whereas a semi-decreasing property was used in Section 5, here we invoke instead
the fact that the topological degrees d(s) are constant on each of the pieces of the chains of
cylinders. Second, concerning the points z5, by construction they are confined in the vorticity
set, and hence in the concentration set ¥:» of Lemma 5.3, whose limit is precisely X,. Once
the fixed subsequence is determined, the conclusion is an immediate consequence of (6.20).

7 Computation of the interaction terms

In this section, we take advantage of the compactness and rigidity results of the previous
section to derive explicit expansions of the various interaction terms, as functions of the
points a;(s) and their degrees d;(s). To that aim, we restrict our attention here to test
functions xy € D(R?) verifying the following assumption, for some r > 0,

X L)
(H,(s)) 557 = 0 on U7 B(ai(s),r/8).
7.1 Refined estimates for the self-interaction term Fg

In the log-time scale, we write the self-interaction term as
B, w2) = F(sllog el x,we) = Asls,xwe) — [ AV (w)
R2x{s|loge|}

where we have set, for a complex valued function w

[Vw]?

Ag(s,x,w):/ D*xVwVw — Ax
R2x{s|loge|} 2

We have

Proposition 7.1. Let so > 0, » > 0 and § > 0 be given. For some s > sg assume that
X € D(R?) verifies H.(s). There exists ¢9 > 0 depending only on &, so and x such that, for
0<e<eg,

l(s
As(s', X, we) ng )Ax(ai(s 4Rez(w Lo (E(ar(s) = Flals)| <6,

(7.1)

2"From subsection 6.1 we already know that the function c. converges on RT to a function ¢, extracting
possibly a subsequence.
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/ 1 1
for every s' € (s — Toga]? S T W)'

The proof of Proposition 7.1 is based on the asymptotics of w. x Vw. and of some

properties of merely algebraic nature of Ag. First we have

Lemma 7.1. With the same assumptions as in Proposition 7.1, there exists €9 depending
only on sy, 0 and x, such that for 0 < e < g,

s|logel+1 t
/ Ag(——,x,ws)dt — 4 Re
s|loge|—1 |log 6|

2
/ l w(w*)a—_é() | <4,
suppx\Ui(:SiB(ai (s),r/8))x{s|loge|} 0z

where

wy(z) = ll(f[) <%>di(8) on R?.

1 \z —ai(s)

Proof. In view of (2.6), we have for X = 2%

0y
AS(SaX>w6) =2Re (/RQX{sHoge}W(we)ﬁ) .

Note that on B(a;(s),r/8), 327)2‘ = 0 by assumption H,(s). On the other hand, from (6.21)
we infer that on (suppx \ UigB(ai(s),r/S)) x [s|loge| — 1, s|loge| + 1]

w(we) — w(ws) uniformly.?8
The conclusion follows. O

Proof of Proposition 7.1 completed. In view of Lemma 7.1 it suffices to establish the
formula

82X I(s)

wwe) 5z =7y di(s)Ax(ai(s))
/(suppx\ui(fiBwi(s)vr/&)x{suogeu oz Z

-2y I () - Sha). (72

o ( — a(s

Notice that w(wy) is not locally integrable, but however it defines a distribution in view of
the formula?”

1) e 2
wiw,) ==(3 L)S)) . (7.3)

— z— ai(
On the other hand, by assumption H,(s), g;g = 0 on Ul(s)B( i(s),7/8) and therefore we
obtain®"

0%y 0%x
*) =9 — *)y 3o . 4
/RQ\B(a,g)X{sﬂogd}w(w )022 <w(w ) 072 >D’D (7-4)

28The domain here is not fixed, but identified modulo time translation to a fixed domain K x [—1,1].
Convergence here and in the sequel is meant in this last domain.

see e.g. [4], chapter VIIL.

30this is a standard exercise in distribution theory.
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The expansion of (7.3) yields for (7.4)

2 28 9 )
<w(w*)’g—2§>:_ <( dk(()8)2)’g;2<>_2z dkdl< L 8X>.

_ — —a’ 072
S —ap Nz —ap Z—a 0z

For the first terms, we integrate by parts

1 0 I 9/ 1 0
_<(z—ak(s))2’ 6;2(> - _<z—ak’6z—8X22> - <£(z—ak)’6z—g2>

0%y 0?x m
f— = == —A .
™0 5297) = Tz () = gAX(@)

For the second terms, we obtain similarly

1 02 0 1 0 0
_<z —ay’ 3—;2(> - <% (z — ak) ’8_>zf> - ”a_if(a’“)'

The conclusion (7.2) follows by summation. O

7.2 Refined estimates for Fr

Recall that F;y = Fj+ Ry, where F is given by (2.18) and Ry by (2.15). Concerning F; we
have, setting Fs(s, x, Ve, ws) = Fy(sllogel|, x, Ve, we).

Proposition 7.2. Let so > 0, r > 0 and § > 0. For some s > sq assume that x € D(R?)
verifies H.(s). There exists eg > 0 depending only on §, sg and x such that, for 0 < e < gq,

1(s)
Fi(s,x, Voo, we) — ﬂZdi(S)C(S) x Vx(a;(s))] <. (7.5)
i=1

Proof. Recall that

Balsx Voo, uwe) = | (Voe x V) Ju..
R2x{s|loge|}
The conclusion then follows from the convergence of Jw, to Zig didq, in (C'(suppx))* and
the convergence of V. to c in C!(suppy). O
We next show that R is of lower order.

Proposition 7.3. Let sg > 0,7 >0, § > 0 and let x € D(R?). There exists eg > 0 depending
only on §, sy and x such that, for 0 < e < gy,

s|loge|+1 5
[ Ritox Voo wde] < . (7.6)
s|loge| r
Proof. Recall that
Ri(s, X, Ve, we) = /]RQ (sl ‘}_AQS&:VX' (we x Vwe) + Vo - Vxdiv(we x Vwe).  (7.7)
x {s|loge
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For the first integrated term on the r.h.s. of (7.7) we invoke Proposition 4.1 iii) (for k = N =
2) and iv) to assert that

< ¢ (7.8)

= sy/|logelr

For the second term, we invoke the convergence (6.18) (see also remark 6.1)

/ ApVx - (we x Vwy)
R2x{s|loge|}

I(s)
we X Vw, — V' (z d;(s) log |z — ai<s>r> in L/ (R? x [s[log |, s|log | + 1))

i=1
so that
div(we X Vwe) =0 in I/I/'lgcl’4/3(R2 X [s|logel, s|loge| + 1])
and the conclusion follows by Proposition 4.1 iii) once more. O

Remark 7.1. If we assume moreover that the test function y satisfies
dist(suppVyx, U'_; (s){ai(s)}) > r > 0,

then the integrated estimate (7.6) may be replaced by

S|l

R1(s[logel, x, Ve, w:)| < . (7.9)

In the next two sections, we deduce consequences of the previous estimates with suitable
choices of test functions x.

8 Proof of Theorem 5 ii)

Let sg > 0. Throughout this section, we choose the non-negative test function y such that
dist(suppVy;, Ui(zs(l)){ai(so)}) =8r > 0. (8.1)

In particular x is constant on a neighborhood of the points a;(s¢), and assumption H,(sq) is
therefore satisfied.
The main point in the proof of Theorem 5 ii) is

Proposition 8.1. Let sg > 0 be given, and assume that x € D(R?) satisfies (8.1). There
exists po depending only on sg, My, x such that for 6 > 0 there exists €9 such that for

0<e<eg,
d
— do? <§
dS/[RQX Ug_

for every s € (sg, 80 + por?).

Proof. Invoking formula (2.21)

d
2= [ xdos < B, w0) + B, X 02) + B, X Vo) + Lol e . 62).
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For the first term on the right hand side, we invoke Proposition 7.1. For the third term, we
invoke likewise Proposition 7.2 and Remark 7.1. £y = Ajs is clearly a perturbation term and
can be shown to be arbitrarily small as in Step 3 of Lemma 4.4.

Finally, we turn to

_ 2 V.|
35(8, X ¢€) = D*xV¢-Vo. — Ax .
R2x {s|loge|} 2

Since V. (s[loge|) converges in C! to the function c(s) which is constant in z, it follows that
Ss(s,x, ) converges to

</R2 D2x> c(s)e(s) — </R2 Ax) |C(;)|2 = 0.

It follows from Proposition 8.1, passing to the limit &, — 0, that

d
— dovs <0
= [ o <

(in the sense of distribution), and the proof of Theorem 5 ii) is completed.

9 Degree zero and collisions

The main focus of this section is to provide the proof of Theorem 3, Theorem 5 and Propo-
sition 1. The starting point is once more the evolution equation for the energy : however
here it will be used to derive estimates for the potential V.(uc). In particular, its integral
will be shown to be small on a vortex patch of total degree zero. Therefore, we use again
the remarkable properties of the function |x|?> = 2Z and specify throughout the choice of test
function  as follows. Let a € R?, and 7 > 0 be given. We set

r—a

Xa,r(2) = A( ) (9.1)

,
where A is defined by (4.51) and modeled on |z|%. Let s > 0. We say that H,,(s) is satisfied
if and only if, for every i € {1,--- ,I(s)}

(Hqr(s)) either dist(a;(s),a) < or dist(a;(s),a) > r.

ol 3

If a and r satisfy H, ,(s), we set
I'={ie{l,---,l(s)}, s.t. ai(s) € B(a,r/8)} J=A{1---,l(s)}\ I

We also define
d(a,s,r) = Zdi(s).

i€l
Notice that if H,,(s) is met, then x, , satisfies H,(s). In particular, Proposition 7.1 and
7.2 may be specified as follows :
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Lemma 9.1. Let so > 0, 7 > 0 and § > 0 be given. There exists g depending only on 9, sg
and r such that if e < eg, s > so and H,(s) is satisfied, then

16 (s) —
AS(S=Xa,rawa) T d2(a s, 7’ +2 Z d d ( )Rem <6
re icl, jeJ ai(s) — a;(s)
and
167
85, Xaurs Veywe) = <5 > dil —a) x c(s)| < 4.
el

Proof. Notice that if k € I, Ax(ar(s)) = 3—% whereas if k € J, a;?gg (ar(s)) = 0. Notice also
that if k € I, X“ “(ar(s)) = Z(ak(s) — a), whereas if k € J, Oxe, 52" (ax(s)) = 0. It suffices then
to substitute these expressions in (7.1) and (7.5). O

9.1 Estimates for the potential V_(u.)

Combining the evolution of localized energies with the refined estimates of the previous
subsection, we are led to

Proposition 9.1. Let so > 0, a € R%, r > 0 be such that H,,(so) holds. Let § > 0 and
k < 1/16 be given, and assume the stronger confinement assumption

la — ai(so)| < kr, for every i€ 1. (9.2)

Then, there exists a constant £g > 0 depending only on 0, v, k and sg, and constants C,Cy > 0
depending only on My such that for every 2k < pu < % and 0 < € < g9 we have

At/ Ve(ue) — %d2(a,s,r)

<y ((;)2 +p+ 5r2) . (9.3)

@ [/( )Xar( )|atw€| +/+ A Xares ws

where A(u) = B(a,r/8) x [so|logel, so|loge| + At], T A(u) = B(a,r/8) x {solloge| + At},
and At = Cop’r?|logel.

Proof. The starting point is Lemma 2.6 specified with the choice x = X4, given in (9.1).
This yields, setting ¢; = so|loge|, ta = (s0 + Cur?)|logel, and after integration,

xew)+ [ o+ MVl = [ xeatws)
R2><{t2} RQX[t17t2} RQX{tl}
to

t
+ ] AS(@aX’we)_F(fJ+RI+R)(t?XaV¢€aw€) dt. (94)
1

We next bound each of the terms on the r.h.s. of (9.4). For the first term, which involves
only the initial time ¢; = so|log ¢|, we invoke hypothesis H, (so), together with the stronger
confinement assumption (9.2), to obtain, if ¢ is sufficiently small,

/ xeo(we)| < Cr?|logel. (9.5)
R2 X{tl}
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For R; we invoke Proposition 7.3 (which does not rely on assumption H,(sg)) to assert
that, if € is sufficiently small, then

to
Ri(t, x, Voo, w:) dt| < Cop’rllogel. (9.6)

t1

For R we use (4.43) together with the observation that, since |V¢.| is bounded,

IVwe |l L1 Bar) < (i) < VAT Vwell 2 (amx ity < Cry/[logel.

This yields
to

R(t7X7v¢67w€) dt S T_CQHOgE‘g/S' (97)

t1
For the last terms Ag and Fj; we rely on the Cylinders Lemma, which has the following
consequence: if the constant Cy > 0 is chosen sufficiently small (depending only on M),
then assumption H, ,(s) is satisfied for every s € [sg, sg + Copr?] (for 209 < p < 1/8).
Therefore we may apply Propositions 7.1 and 7.2 with r replaced by ur. We have, for
5 € [s0,80 + Cop?r?) and every i € I, j € J,

a; —a

<Cu,

a; — aj
so that

Zdi(s)(ai(s) —a) x ¢(s)

i€l
Hence, it follows from (7.1) and (7.5) that

< Cur. (9.8)

/tQA (— w)dt‘<0(ﬂ+5)c 22| log |
" S Hogg’,Xa 5 = 7"2 21 g

and

t2
Fy(t,x, Vo, w.) dt' < 0(§ +8)Copr?|loge|. (9.9)

t1
Combining (9.4) to (9.9), we are led to

/A( ) Ax - Ve(ue) < Ci(r* + p2(0r° + ) |loge] . (9.10)
n

Notice that on B(a,r/8), Ax = 32/r2. On the other hand, by the Cylinders Lemma and
Theorem 2.1, (2.23), we know that

C
Vel (@, 1)] < e*logef?

for (z,t) in B(a,r)\ B(a,r/8) X [t1,t2]. The conclusion (9.3) follows. O
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9.2 Clearing-Out via potential estimates

The philosophy of the Clearing-Out theorem presented in Section 2 was that smallness of
integral energy bounds imply pointwise bounds. In this section we derive results in the same
spirit, but based only on potential estimates. Our proofs rely heavily on the fact that N = 2.
We begin with the following lemma, where time derivatives are treated as perturbation terms
for the corresponding elliptic equations on time slices.

Lemma 9.2. Let u. be a solution of (PGL). on R? x RY and let t > 1. Then, we have, for
every r > \/2¢,

o) < Cft+flogel( [ Vew)P+ [ @How 20 [ VP,
B(0,r)x{t} B(0,4r)x {t} B(0,47)x {t} B(0,47)x {t}
(9.11)
where C' depends only on M.

Proof. We follow some arguments developed in Section 3.6 of [6]. We assume r = 1, the
general case follows then by scaling. Let y € C°(R?) be such that 0 < x <1, x = 1 on
B(0,2) and x = 0 on R?\ B(0,4). We assume moreover ||Vx| s < 1. We consider the 2-form
Yy defined on R? x {t} by

1
Py = 5 log || * [d(ues X du)x],
so that in particular
—Ay = dd* Py = d(ue X dug)x on R? x {t} (9.12)

Since x = 1 on B(0,2) it follows that d(us x du. — d*¢;) = 0 on B(0,2) x {t}. Invoking
Poincaré Lemma, there exists some real-valued function ¢, defined on B(0,2) x {t} such that

Ue X due = doy + d* Yy on B(0,2) x {t}. (9.13)

Applying the d* operator to (9.13) we obtain d*(us X du.) = —Ad¢y, so that by (4.17) we are
led to the equation

—Ady = ue X %, on B(0,2) x {t}. (9.14)
Step 1. Estimate for ;. We will prove that
Vel <Ot flogel( [ Ve(w))?]. (9.15)
B(0,2r)x{t} B(0,4r)x{t}

To this aim, we first define a re-projection of u. in the following way. Let 7 be the real-valued
function defined on R? x (0,+00) by 7(z,t) = p(|uc(z,t)|), where p : [0,3] — [1/3,2] is a
function verifying the properties

p(s) =1 if s > 3, p(s) =1 if0<s<1, Ip'(s)] <4 Vs. (9.16)
By construction, |1 — 72(z)| < K(1 — |us()|?). Set @i = T u,., so that

e =ue if fue| < 1, i =1 if juc| > 3. (9.17)
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Notice that, since |i.| = 1 if |u:| > 3, we have
d(iie x diie) =0 if |u| > 3. (9.18)
On the other hand, since |Vu,| < %, it follows?!
A x diz)| < CVe(ue) (9.19)

We decompose 1 = 114 + 12, on R? x {t}, where

(9.20)

—Atp1 = d(Ue x dag) x on R? x {t}
—Athgy = d((1 — 72)ue x dus) x  on R? x {t}.

By our previous estimates we have the pointwise inequality ((1 — 7%)us x duc)? < CV(u.),
and hence

(1 = 7%)ue X due||r2(po.ayx 1 < ClIVe(ue) L1 50,4y %13 -
It follows therefore by standard elliptic theory that

/ (Vo s|* < C Ve(ue). (9.21)
B(0,4)x {t} B(0,4)x{t}

In view of (9.19), we have

A <K £
1ALl R2x gy < B(0,4)x {t} ()

and therefore we obtain the L? estimate

/ |Vipy 4| < C/ V(ue). (9.22)
B(0,4)x {t} B(0,4)x{t}

To obtain an L? estimate for V1, recall that by the Brezis-Gallouét inequality [9], for any
u € H?(R?),
1
ol ooy < Kllullan gy [1+1og? (1 + Jullir2g2))] -

We apply the previous inequality to 11,:x. Since |91t x| g2(m2) < K we obtain

= 2>

1
[91,ex oo (m2) < K901t 1 (m2) [log €] 2. (9.23)
On the other hand, we have
A(1ax) = (AP1e)x + 2Vib1 Vi + 1, Ax

so that by (9.22)

A1) I w2y < K Ve(ue). (9.24)
B(0,4)x {1}

it suffices, in view of (9.18), to establish (9.19) for |uc| < 3. In that case Vz(uc) > =%5.
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Using standard estimates, we finally write
H¢17tXH%{1(]R2) < K[ AW 100 Ly w2) 191,6x) oo (r2)

1
< K[|A@ex) L1 @2y 1916 X1 1 2y log ]2, (9.25)

which combined with (9.24) yields

2
/ |Vapy 4| < Cllogel [/ Vg(ue)l . (9.26)
B(0,2)x{t} B(0,4)x{t}

The claim (9.15) is proved.
Step 2. Estimates for ¢;. We claim that

/B(O Z)X{t}w(?t\Q < C[”atus”%Q(B(OA)X{t}) +[IVue |71 (moayx ey + ”VS(UE)”%l(B(OA)X{t})}'

(9.27)
Indeed, by Caccioppoli estimates we obtain from (9.14)

/B(O 2)><{t}|v¢t|2 <C [||atu€||%2(3(0,4)><{t}) + H¢t - gz;tH%Q(B(OA)X{t})} 5
where ¢; denotes the mean value of ¢; on B(0,4) x {t}. By Sobolev embedding,

l6e = G2 (0.0)x (1) < CINVEN 1 (B0.4)x 1))
so that

2 2 2
B(O,Z)x{t}’v¢t‘ <C [Hatutf”LQ(B(OA)X{t}) + ”vétHLl(B(OA)x{t})} :

On the other hand, on B(0,4) x {t}, by (9.13), [V¢:| < C(|Vue| + |V¥y|), and hence using
(9.26) we obtain (9.27).

Step 3. Estimates for V|u.|. We claim that

1/2
/ V| ? < © [ / va<ua>] [( / ec(us))'/? +auoga\] (9.28)
B(0,2)x{t} B(0,4)x {t} B(0,4)x{t}

Set 0. = 1 — |uc|?, so that
2 2
8t0'5—A0'5 :2\Vu5\ - 5—20'5(1—0'5). (929)
We multiply (9.29) by o.x? and integrate by parts. This yields
Lo WPz VuPo+c[ o,
B(0,2)x{t} B(0,4)x{t} B(0,4)x{t}

2.2

(9.30)
+ / X
B(0,4)x {t}
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Hence, in view of the estimate |Vu.| < g we are led to

1/2
v52<c/ V. (u. / Vu D)2 4 gl
/19(072>x{t}‘ (el < o )] [( B(074>x{t}‘ uel )7 ellogel] g g

+ ellOue | L2 (B0,4)x (1)) -

Since |Vog| = |ug| - |V]ue| |, we have

Vi]u 2<2/ 2+1—u2Vu2,
/B<o,2>x{}’ el ooy 0 L fuelD Vel

and using once more the bound |Vu.| < % we derive (9.28).
Combining (9.26), (9.27), (9.28), the identity

4\u5\2]Vu5]2 = 4|u. x Vug\z + \V!uEHQ

and the estimate

4|(1 = Jue)|Vue* < ©

1 _ 2
1D g < 29+ Vi)

conclusion (9.11) follows. O
As a consequence of Lemma 9.2 and the Cylinders Lemma, we have

Proposition 9.2. Let u. be a solution of (PGL)c, so > 0, R > 0 and As > 0 be given. There
exists a universal constant n, > 0, and constants By, €9 and C(My) depending only on M
such that, if

VA
loge| ™6 < vas < R < |loge|"/®, (9.32)
Bo
and )
— < myll .
As J Velue) < moogel, (9.33)
where A = B(0, R) x [so|logel, (so + As)|loge|], then, for e < ey,
C(M,
ec(us) < (ASO) on  B(0,8) x [(so + 252)|logel, (s + As)|loge]].

Proof. By averaging, there exists some s; € [sg, so + As] such that

/ Vi) < Oy [ Guel? < . Vue| < O(R +1),
(0,R)x{s1]|loge|} B(0,R)x{s1|loge|} B(0,R)x{s1|loge|}

where C' depends possibly on M. Invoking (9.11) and scaling, we deduce??

R™2 R 1
ee(ue) < (nv\log5\+—+CE+E>

/B(o,%)x{slloge}

32 Actually, in (9.11) 47 can be replaced by ar, for any arbitrary « > 1, at a price of a larger constant Cl.
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Choosing 7, and ¢( sufficiently small, we obtain, for & < &g,

/ ee() < Plloge]. (9.34)
B(0,2 %) x{s1[log |} 4
In particular, for r = 110%0 o -1

Q4 (s1]logel) N B(0, 3) = 0. (9.35)
It follows from Proposition 4.4 that Q7 ,(s[loge|) N B(0, BhRY — () for every s € [s1,81 +
Coy 'yoR2]. In particular, if 3y is chosen sufficiently small, Coy 240R? > As. The proof is
then completed as the one of Lemma 4.8. O

9.3 Proof of Theorem 3

The proof of Theorem 3 is completed combining Proposition 9.1 and Proposition 9.2. We
choose the parameters p,r,0 so that the r.h.s. of inequality (9.3) is less than 7,. First

let 7 = 8R, and choose § so that C16r? < . Set pg(k) = 1/30116 and pi; = gB-. For

K< K1 = (35 )3/2 we have (k) < p1, and by construction

Ci((5)? + p+6r®) <my  for po(k) < p < . (9.36)

In particular, it follows from Proposition 9.1 that if ¢ is sufficiently small, then for every
wo(k) < p < py, we have, since d(a, s,r) =0,

1 /
— Ve(us) < nyllog e,
As(i) Jag) =(us) < nylloge|

where A(u) = B(a, R) x [sollogel, (so + As)|logel], and As(u) = 64C2u2R2. On the other
hand, if g < pg = 86\/—0—2, we have vAs < ByR. Set kg = ,/% min{ g, pue}. For k < Ko,
to(k) < pg = min{puq, pa}, so that for po(k) < p < ps we may apply Proposition 9.2 which
yields

lec(ue)| < C(w) on B(a, &) x [so + 3AS(“ [log |, so + As(u)|loge]].

This completes the proof, setting K7 = 1447?7102 and Ky = min{fy, 64;%22"“ }. O
v 1

9.4 Proof of Theorem 5 iii) and Proposition 1

Let so > 0 and i € {1,---,I(s9)} be such that d;(s9) = 0, and let R > 0 be such that
B(ai(so), R) N %5 = {ai(s0)}-
Step 1. We have

limsup v;(B(a;(so),

$—80, $>S0 2

) =0.

Indeed, assumption (6) of Theorem 3 is verified for every 0 < x < 1. In particular it follows
from Theorem 3 that

Eg N B(ai(so), g) =0

for every s € (so, so + K2 R?).
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Step 2. We have

o s '
Silga 1§1<f80 vy (B(a;(so),

|

Ul
))250.

This was already proved in (5.19).
Step 3. It follows from Step 1, Step 2 and Theorem 5 ii) that equation (9) is satisfied.

Step 4. It follows from Theorem 5 iii) that d;(s) = 0 (for some i € {1,--- ,I(s)}) may happen
for at most % times s. This yields the conclusion of Proposition 1.

Appendix A : Linear elliptic and parabolic estimates

A.1 Elliptic problems in RV*!

The first part of this Appendix is devoted to the study of elliptic problems on RV ! = RY xR,
of the form
—Ap=w on RY x Ry, (A1)

where A = A, + denotes the Laplacian on RN*1 Whereas classical theory deals with sources
w for which some global bounds on RV*! are assumed, here we focus on the case where we
only have at our disposal bounds for each time slice RN x [t,¢ 4+ 1]. Our first result in this
direction is

Lemma A.1. Assume that w is a measure on RNTL set
p(t) = |w|(RY x [t,t +1]),  forteR,

and assume that pu(t) belongs to L> N LP(R) for some 1 < p < +oo. Then there exists a
solution p of (A.1) such that |V p| = g1 + g2, where

pN
<K _ A2
sup g1l o1 @~ (1) < K(p1,p)||pllow) — for any pr > N1 (A.2)

N+1

sup 1911 2 N x(t,641) < KP2) |l eowy  for any 1 < ps < (A.3)

Proof. Let G be the fundamental solution for the Laplacian on RV*! so that in particular
|v$,tG(x’ t)| < O-(x’ t)a

where the function o is explicitly defined by
1
O-(x7t) = (.%'2 + t2)N/2 ’
We next show that G * w is a well-defined function. We write

o= O,zn 4 O_out7

where ¢ = 1pNny(_1,1) - 0, where BY denotes the unit ball in RY, and 0°* = ¢ — 0. In
particular ¢ has compact support and ¢°* is bounded. Let ™ = ¢ %w and foU = ¢ xw.
We bound each of the functions f and f°“ in appropriate norms.
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Step 1. We have

sup HfOUtHLp(RNX{t}) < Kpsup |w||(RY x [t,t +1]) for each p > (A4)
teR teR

N-1
Proof. We may assume without loss of generality that w is smooth. Since the norms in-
volved in inequality (A.4) are invariant under time translations, we merely have to bound
£ (-, 0)]l 1o ®n)- The starting point is an estimate for the kernel o, We obviously have
that

2c
x,t) < i

out
maxX —————-
(00 = L B (e + 272

o for |z| > 1.

A simple computation shows that, if a < %,

|x|2a

<O+t N

so that e N
1 t))s*—
O'OUt(m',t)<C( +‘ ‘)

V(z,t) e RY x R.
ST

In particular, we obtain

£ (y,0)| < Ga * Hal(y), (A.5)
where o
= H — 1 2a=N . A
Colt) = e Halo) = [+ )Nl (A.6)
Notice that N
Go € LPY(RY) for every p; > %0 (A.7)
«

On the other hand, we may bound ||Hq|[11 g~y by Fubini theorem:

[ Ha(@)dsl = [ (1 002N o, Ol v de
< C [ W 1PN ol vyt
< C’/(l + [¢)2 N p(t)dt

. 1/p
<o La+it®@ )"

If (2a — N)p' < —1, that is 2a < N + 1 — %, then the explicit integral on the r.h.s. of the

last inequality converges. Going back to (A.7), choosing p; > # and invoking Young’s
P
inequality, (A.4) follows.
Step 2. We have, for every 1< g < %,
Sup || F | ca @~ xjt.e41) < Cosup lwl|(RY x [t, ¢ +1]). (A.8)
teR teR
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Proof. By construction, o has compact support included in the strip RN x [—1,1]. Therefore
the restriction of f™ to the strip RY x [tg, tg + 1], for tg € R is identical to the restriction on
the same strip of the convolution o™ * x - w, where x(z,t) verifies y(z,t) = 1 if |t — to| < 2,
x(z,t) = 0 otherwise. We notice that x - w € L*(RN*1), more precisely we have

llx - WHLl(RNH) < Ciu]g ||WHL1(JRNx[t,t+1])-
€

On the other hand,

. N+1
o™ e LIRNTY) forany 1 < g < ; ,

and the conclusion (A.8) follows once more by Young’s inequality.

Proof of Lemma A.1 completed. It follows from Step 1 and Step 2 that VG * w is
well-defined and may be written as VG xw = g1 + g2, where g1 and gy verify (A.2) and (A.3)
respectively. The existence of p follows by integration. O

We next turn to the problem
—Ap ¢ =divy s h on RV x R, (A.9)

where h = (hi,...,hn,hn41) and A,y and div, represent respectively the Laplacian and
divergence operators on R¥*1, We have

Lemma A.2. Let 1 < p < 400 and assume
sup |l prare ey x[t41]) < +00-
teR
Then there exists a solution ¢ of (A.9) such that
sup ”Va:,tC”LP(RNx ti41)) < Kpsup Hh”LlﬂLP(RNx [t,t+1])
teR teR

Proof. As in the proof of Lemma A.1, we consider VGxdiv h and show that this is well-defined.
We will first assume that h is smooth and compactly supported, so that the convolution
VG * div h makes sense. Moreover, in this case we may integrate by parts, so that we have
to consider the terms

0*G
fij - 8%1({9%]

xh, fori,j=1,...,N + 1.

We write once more, for ¢,5 =1,..., N + 1,

_ pin out
fij = ij T lij

mn o in out _ _out in _ . . _0%G out __ _ . _9%@
where fi' = o7} x h, f7" = o7/ x h, and o} = x oon; O = (1—-x) Boow; - Here X

denotes some radial smooth function compactly supported in By = {z € RN+ |z| < 2} and
identically equal to 1 in the unit ball B; of RN*1,

By construction, UZL has compact support included in the strip RY x [~1,1]. Therefore
the restriction of f;]” to any strip RY x [tg, o + 1], tg € R, coincides with the convolution

mn
o xp-h,
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where p(z,t) verifies p(z,t) = 1 if |t — to] < 2, p(x,t) = 0 otherwise. We have

lp- h||LP(iRN+1) < Cig}%{? HhHLP(RNX[Lt—i-l})-

On the other hand, convolution by U;.']ﬂ is a bounded operator on LP(RV*1) for any 1 < p <
+o0 in view of Calderon-Zygmund theory. Hence

sup || i | r @~ x[t,e41) < Cpsup [|All o @n e, e41))-
teR teR

out

o are handled as in Lemma A.1. O

The terms

Remark A.l. One may wonder if the L' bound on h in Lemma A.2 is necessary, and if
V.. is bounded in LP(RY x [t,t + 1]) under the only assumption that h is bounded in LP.
In the case p = 2, we will show that this is not the case. More precisely, we will exhibit some
function h verifying

sup HhHL2(RNx[t,t+1]) < +00, (A.10)
teR
and such that
ig{g 1 fijll L2 @ xft,041)) = 00 (A.11)

To this aim we work in Fourier variables and consider the Fourier transform G &, 1)= W
with respect to space and time variables, and its Fourier transform with respect to the time

variable only

- 1 exp(itT)
G- (&) = — = —\/|€]t).
© = 52 | Bryadr = g ovl(—ylel)
Hence,
7 _ 1 fzfj 7
£ii(€,0) £z£g §)h-(&)dt S xXp(—y/[E[E)hr () dt. (A.12)
For fixed ¢, the multiplier ﬂflj exp(—+/|{|t) achieves its maximum for || ~ ¢, and the max-

imum value is proportional to l. It is clear from the proof of Lemma A.2 that difficulties
stem from the lack of integrability at infinity in time, and therefore, in view of the previous
relation &4 =~ §, for small frequencies at large time. In view of this remark, we construct a
function h(-,t) as follows:

he (&) = tN/21{\5\§%} fort > 1, he(€) =0 otherwise.
Clearly
L P tde = @oN [ (©Fde = emMB] fort> 1
RN RN

and ||h[|2my « (1) = 0 otherwise, so that (A.10) is satisfied. On the other hand, we claim

that if |¢] < 1

1
(6,0 > e (A.13)
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Indeed, [§]exp(—+/[{[t) > ¢ for ﬁ <t< ‘?1‘, and h(€) = tN/2 for ¢t < Ilf’ and therefore

1

. € N-2 c
[ el exot—lelie €t > e [T Tar >

2[¢]

This establish the claim (A.13), and hence f(0) ¢ L2(RYN), f ¢ L?*(RN) and similarly one
establishes (A.11).

Remark A.2. The same type of arguments shows that the high frequency part of f re-
mains bounded in L?(RY). For this purpose we consider the functions g;j defined in Fourier
coordinates by

9ij(&£,0) = /{ﬂZl} %1{|§|>0} exp(—y/[€]t)dt.
The functions g;; represent the high-frequency terms in f arising from the contribution of h
for [t| > 1.3% Since for |¢| > 1 and [t| > 1, |¢] exp(—+/[€]t) < exp(—g), we have

R Vit s
[9i5 (.0l 2@y < C eXP(—7)||h||L2(RN)dt,
{lt>1}

so that
1g(-, 0)[[ 2 mvy < Cigg 1Al 22 (v e t41)) -

A.2 Parabolic problems

We consider the initial value parabolic problem

— —Ap=w on RY x (0, 4+00),
4 (0, +o00) (A.14)
o(x,0) =0 for z € RV,
Lemma A.3. Let 1 < p < N and assume that

supger+ ||l o ¥ xft 417 < F00-

Then, there ezists a unique solution ¢ to (A.14) such that |V | < g1+9g2 where the functions
g1 and go satisfy

supyer+ |91l r @y x gy < K (1) supger+ |l Lo @y x[t,441)) (A.15)
where T is any number satisfying r > p* and
subier+ 1921l Lo (10410, 207 ) < K (P) suPsert Wl Lo @Y x[t,041)) (A.16)

where p* is the Sobolev exponent in dimension N, i.e. p* = Np/(N — p).

33The contribution for || < 1 is handled by standard estimates.
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Proof. Let G be the fundamental solution of the heat operator on RY x R*, given by

_ 1 |z[? N
G(x,t)—mexp<—?>, fOI'QTGR ,t>0

so that for some explicit constant C' > 0 we have

2
|V.G(z,t) | < CAi(x) =C @ exp (—%) .
t2

Consider the function ¢ defined by

t
o(x,t) =G*xw= / et=9)8 0, ds.
0

We split this integral in two terms ;1 and (o by restricting the integration on the intervals
[0,t — 1] and [t — 1, t] respectively. The term ¢; is the contribution from the source wy in the
“remote” past, and the term ¢ is the contribution from the “near” past. We handle each of
these terms in a different way.

Step 1: Estimates for Vp;. We have

t—1 t—1
Vi (z,t)| < ; Ap_s * |lws|ds = ; fs(z) ds.
By Young’s inequality,
[ fsllr @y < | Ae—sll Loy llws e )
for any numbers 1 < p, q,r < 400 satisfying the relation

11 1
- =14 - (A.17)
poq r

An elementary computation shows that

(N+1)g-N

HAt”LQ(RN) =Cyt™7, where = >

In particular, v > 1 and

+o00
/ | Asll Loy ds < +o0 if and only if ¢ > (A.18)
1

N-1

Therefore, if p < N, for any number r satisfying the relation r > (1/p —1/N)~! we may find
some ¢, satisfying (A.17) and (A.18). In particular,

t—1 t—1
I fedsloeny < [ il ds

t—1
<G [ (=9 il

< C supyep+ ||WHLP(RNx[t,t+1})-
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Step 2: Estimates for V3. The function ¢s satisfies the heat equation

2
ot Apy =w l]RNx[t—l,t]
oz, t —1) = 0.
By the classical LP — L? theory for the heat operator, we thus obtain
HVQOZHLP(RNx[t—l,t]) < CHWHLP(RNx[t—l,t])
and relation (A.15) follows by the Sobolev embedding. O

We turn now to the problem

Oy . N
— — Ap=div, h R 0
gt ~ A9 =divah on RT < (0, +00), (A.19)
©(x,0) =0 for z € RY,
where h = (hy,--- ,hy) and div, represents the divergence operator on RY. We have

Lemma A.4. Let 1 < p < 400 and assume that

SupteR+HhHLP(RNx[m.;_H) < 400.

Then, there ezists a unique solution ¢ to (A.19) such that |Vzp| < g1+9g2 where the functions
g1 and go satisfy

SUPter+ ”gl”LT(RNX{t}) < K(r) supsep+ Hh”LP(RNx[mH}) (A.20)
for every r > p and
supyer+ 192/l o @y x[t41]) < K(P) subrer+ 12l Lo 2 x[t,041))- (A.21)

Proof. As in Lemma A.3, we decompose ¢ = 1 + 2, where

t—1 t
o1(t,.) = / et =2 div h(., s) ds, wa(t,.) = / e =92 div h(., s) ds,
0 t—1

The function G still denoting the fundamental solution of the heat equation, we have

2 _ o J2P 1 |z
|D;G(2,t)| S CB(x) =C | o7 + 533 | exp | — |
t 2 t 2
Step 1: Estimates for V. We have
t—1 t—1

Vi (z,t)] < ; By |hs|ds = ; fs(z)ds.

By Young’s inequality,
[ fsllzr@ny < I1Be-slla@my sl Lo vy
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for any numbers 1 < p, g,r < 400 satisfying % + % =1+ % We compute

N+2)g— N
By = Ct ™ where = X2,

In particular, for every ¢ > 1 we have v > 1 so that f1+oo | Bsl| Larvy ds < +o0. Inequality
(A.20) follows, setting g1 = |V ].

Step 2: Estimates for Va. Estimate (A.21) for go = |Va| is derived as in Step 2 of
Lemma A.3, using standard LP — L? estimates for the heat operator. O

We end this section recalling some classical results concerning the initial value problem
for the heat operator.

Lemma A.5. We have, for everyt > 0,

| G
L(L2(RN),L>(RN))  tIN/4
where the constant Cn depends only on N.

Proof. For t = 1, the estimate is a direct consequence of the Cauchy-Schwartz inequality and
the fact that G(.,1) is bounded in L?. The estimate for arbitrary ¢ follows by scaling. O

Remark A.3. i) The supremum defining the norm in Lemma A.5 is achieved only by the
Gaussian exp(—|z|?/4t), its multiples and its translates.
ii) More generally, we also have, for 1 < p < +00, the estimate

C(N,
HetAHE(LP(RN),LOO(RN)) - t(N/zf)' (A.22)
and
[ ke _ CWN.p. k) (A.23)

L(LP(RN),L=(RN))  N/2p+k/2 "

A.3 Local parabolic estimates

In this section we provide some pointwise and smoothing estimates for the heat operator on
bounded domains. Let

A=DB(0,1) x[0,1], A

NI

We first have

Lemma A.6. Let u and a be respectively a smooth and a continuous real-valued function on
A such that a =infpa > 2 and let b > 0, d > 0. Assume that

lul <d on OpA = B(0,1) x {0} U0B(0,1) x [0,1]

and
|Ovu — Au~+au| < b on A.

Then, there exists a constant ¢ > 0 depending only on N such that

b+d>

|u|sc<

on A1.
a 2
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Proof. By linearity, it suffices to consider the case d = 1. Let x be a smooth cut-off function
defined on RY such that 0 < y < 1 and y =1 on B(0,3), x =0 on RV \ B(0, 2. Consider
the function 7 defined on [0,1] by 7(t) = 1 — exp(—at), so that 0 < 7(t) < 1 and set
oo(z,t) =1 —7(t)x(z). We have g > 0 on A, and

B+ a0 >0, |Aco| < 7] - |AX(@)| < Co o A,
so that 0,09 — Aog + acg > —Cy on A. Finally set o0 = 0g + (Qo&ib) By construction,
0o — Ao +aoc > b > du— Au+ au on A.

On the other hand,
c=1+

b
Co + >1>u on OpA,
a

so that, by the maximum principle, u < o on A. Since x =1 on B(0,1/2), we have on A1
2

a

3 Co+b b
u<o<exp(—-=a)+ ot SC(+ )
4 a
Applying the same argument to —u we complete the proof. O

Lemma A.7. Let u be a smooth real-valued function on A and assume
|Oyu — Au| < b on A, (A.24)
lu| <d on A. (A.25)
Then, there exists 0 < a <1, 0< 3 <1 and ¢ > 0 depending only on N such that

IVullgoay ) < C(Pe=P 4 d).

)

(S

Here the norm CIOD’O‘ denotes the parabolic Holder norm defined by

|g($,t) —g(ﬁl,t,”
T — ,II| + |7f _ t/|1/2)a’

”gHC%O‘(A) = Sup{ (| (.%',t) ’ (.%'/,t/) € A}

Proof. Since (A.24) and (A.25) are L* bounds, we deduce from standard linear theory that,
for every 1 < q1,q2 < 400,

[ullwra (1,00 (B, 5)) < C(0+d), lwll o (7, w100 (Bij2)) = C(b+d),

where I = [3/4,1]. Interpolating these inequalities we obtain [[ully1/5.6 W4/3a2 (B, ) <
C(b+ d). Choosing ¢ and go sufficiently large (in particular ¢ > 3, g2 > 3N), we ob-
tain that for every 0 < v < 1, ||UHCOJ/‘*(I,CLV(BI/Q)) < C,(b + d). On the other hand,
(A.25) can be rephrased as |[ulze(1,L>(B,,,)) < d, and therefore, by interpolation again,
”UHCO’1/5(I,CW(BU2)) < C(Pd* =P + d), for some a < 1/5 and 0 < 8 = B(a) < 1. O
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Appendix B : Estimates for Jacobians

The fact that Jacobians have remarkable compensation properties, in particular in the context
of the Ginzburg-Landau functional, has played an expanding role in recent years, after the
pioneering work of Jerrard and Soner [19]. In this appendix we provide some variants, using
the results of [7], adapted to the parabolic situation considered in this paper. Throughout
this appendix, we assume that w, is defined on RY x R and satisfies the following bounds

/ ec(w.) < CMolloge|, V>0 (B.1)
RN x[t,t+1]
[ 10w < Chiglioge], (.2)
RN xR
.| < 3. (B.3)

The following is a direct consequence of Theorem 2 of [7].

Proposition B.1. Assume w. verifies (B.1), (B.2) and (B.3). Then we may write
Jx,tws = we + 0he,

where w. and he verify
lwell L@y xt,e417) < CMo, vt >0, (B.4)

HhEHLP(RNx[mH}) < CpMoer (B.5)
for every 1 < p < 2, where o, > 0 is some number depending only on p.

Proof. We apply Theorem 2 of [7] to w, restricted to the slices A, = RN x [n — %, n+ 2], for
n € N*.35 This provides a function v? : A,, — C such that

vl <1, / ec(v2) < C/ ec(ws) < CMyllogel,
An Ap
| Jz,evE | 21 (a,) < C Mo, [ve — well2(a,) < CMoe®,

(B.6)

where 0 < a < 1 is some positive number. We set

1
wi = Jp vl hY = 5(1}? —wg) X (6vl + dwe), on A,

so that Jw. = w2 + dh? on A,,. Clearly ||w?||;1a.y < CMy. Moreover, by Cauchy-Schwarz
€ € € (An)
inequality,
P21 (8 < C Mo [loge|'/2.

On the other hand, since [v7| < 1, Jwe| < 3, we deduce ||h][[12(a,) < CM0|loge|1/2, <o that
by interpolation
P21 LA,y < CpMoe® for every 1 < p < 2.

34Here we will denote § and ¢* respectively the exterior differentiation operator for differential forms on
RY x R and its formal adjoint, while we will use the standard notations d and d* when restricting to time
slices RY x {t}.

35 Although the domain Q in [7] was assumed to be bounded, a careful reading of the proof shows that the
arguments carry over to the situation considered here.
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To complete the proof, we merely have to reconnect the functions h7, defined on the sets A,
in the overlapping regions. For this purpose we use a partition of unity on the time axis. We
write

1= g(t—i), teR,
1€EZ

where the function g has compact support on Ay and is lipschitz. Hence
Juawe =Y g(t — i) (Wi +0he) = gt —i)wi +g'(t —i)dt Ahp+Y d(g(t —i)hi).
i€Z i€Z i€Z
We set w, = Zg(t —i)wl +¢'(t —i)dt AL, and h, = Zg(t —i)h, and one easily verifies

1€EL 1€Z
the desired estimates, since the sums involve a finite number of non-zero terms. [l

If we restrict the attention to space-time components of the Jacobians, i.e. the quantities

0 0
th 5:%X 3?;}%’ fori=1,...N,
(2

then better estimates can be obtained in view of assumption (B.2). This important observa-
tion was already stressed in [26] (see also [16] and [6], Section 6, for related ideas).

Proposition B.2. Let w. verify conditions (B.1), (B.2) and (B.3). Then we may write
JriWe = we + divg 1 A,
where w, is a real-valued two-form and . is a two-form with coefficients in RN satisfying®
||we||L1(RNx[t,t+1] < C'My, (B.7)

[Aell Loy xe,41)) < CqMoe™ (B.8)

for every 1 < q < 2, where oy > 0 is some number depending only on p. Moreover, writing

Zwozdt Adz; + Z éjdxi A dzx;,
1<i<j<N

the space-time components w% wverify, for p > 2,

1
7 P
(/ Hwo HLl ]RN tt+1 ) S CMO (Bg)

Proof. We consider again the slices A, = RY x [n — ,n + 2] and set

1
An:/
An

Let be given p > 2. We distinguish two cases:

dw, |2

dxdt, Bn:/ ee(we(x, t))dxdt.
An

Ndda; A dxj, we define divy Ae = ZN

SO Writing Ae = 2V ¢ im0 dive AT dg A dj.

1,7=0
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+2
Case 2. A, > (My|loge|)~ »=2. In this case, we rescale (as in [16, 6, 26]) the function w,
with respect to the time variable, and set

o /B, 1 o
" (z,5) = we(z, A_nern_Z)’ for (v,5) € An =RY x [0, 2 B—n]_

Notice that the width of the strip A,, is larger than [loge|™" for some 7 > 0. We compute

R
/[\n es(wl(x,s))dxds = \/g:Z/An ee(we(z,t))dzdt = /A, B,.

We argue as in Proposition B.1 and apply®” Theorem 2 of [7] to @w? on A,. This yields a
complex-valued function o7 on A,, such that [97| < 1, and

owr

dw, |?

— VA, B,

and

1]007|? 1|9w?
/ = + e (07 (x, s)dzds < C —i—eg( *(x, s)dxds < C\/ApBn,
A, 2| Os Os
C ow? A, B
2,50¢ < dxds < =
12,502 | 1 (5,,) < Toge] Ja. 2| 05 +6€( " (x,s)dzds < C Togz|

15— @2 ok, < C(AnBa) e,

We inverse next the scaling and go back to the original strip A,,, where we define the functions
v as follows

A 1
v?(m,t) :f}?(ﬁﬂ, B_nt_n_i'Z)’ (x’t) € An.
n

The integral of space-time components of J, ;07 are invariant under this transformation, that

is
C\/A B,

B.10
lloge| ’ ( )

12502 | any = 19202 N 1 iy

whereas, for 1 <i<j < N,

122402 121 () \/ HmssHLl ) < CMo. (B.11)

On the other hand, we have [[v — we||z2(a,) < CVB,e®. We set
wi = Jp vl hY = (v —ws) x (007 + dw,),

and
AP = (0,0, (0F = we) X O, (0 +we), -+, —(vF — we) X Oy, (V] 4 w2)).

37This is possible because the width of the strip is not too small.
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In view of (B.10), we have

1/2 Ap

0 < CM, .
Hw ”Ll(An) \logs\

(B.12)

Case 1. A, < (My|loge|)™ = 2 In this case, the previous method may not apply, since
the width of the scaled strip A,, might be too small. Therefore we argue differently, and
distinguish spatial and space-time components. For ¢ =1,--- , N, we set

w0 = Jgftwg , A0 — on A,.
By Cauchy-Schwarz inequality, we have in particular
w2l an) < AY2BY? < OMy" log e V242, (B.13)
For the spatial components w™% we use the construction of Proposition B.1, and set as above
Wi = J”tv?, AV = (0, , (v — w.) X O; (VT +we), -+, —(vl = we) X O, (V7 + we)),

where v! is defined by Theorem 2 of [7] restricted to A,, and verifying (B.6).

We need now to recombine the different strips. To that aim, set I; = {n € Z, A, <

2
(Mp|log €|)7%}, i.e. the set of indices n where Case 2 holds, and Iy = Z \ I;. In view of
(B.12) and (B.2), we have

> ”W?’OiHil(An) <C

nels

> A, <CMg. (B.14)

\log el et

On the other hand, by (B.13), we have

n,0¢ 2
S w20y < CMY[logeP/? 3 AP/,

nel; nel;

We write
Z AP/? < supA = Z A, < CMpllogel - |loge|

nely nelh nez
so that finally
Do B,y < OMS. (B.15)

nely

Combining (B.14) and (B.15), we are led to

Z Hw?,OZHLI(A ) < CMp (B16)
ne”L

The proof of Proposition B.2 is then completed as in Proposition B.1, reconnecting the w[
and A using a partition of unity. Estimates (B.7) and (B.8) are derived as in Proposition
B.1, whereas estimate (B.9) is a direct consequence of (B.16). O
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Appendix C : Higher order regularity for (PGL).

The aim of this section is to provide the proof of Theorem 2.1. The starting point of the
analysis is the following Harnack-Moser-Struwe type inequality

Proposition C.1. Assume (2.22) holds. There exists a constant 0 < o9 < & such that, if
o < og, then

ec(u2) (2, t) < C(A) /A ec(u) (C.1)

for any (x,t) € As.

w100

The proof of Proposition C.1 is given in [6], Theorem 2. The case [, e-(uc) is small was
treated before by Struwe [31], whereas in [6] we allow a |loge| divergence.

Proof of Theorem 2.1. By scaling, it suffices to consider the case A = B(0,1) x [0, 1].
Step 1: proof of i). It is an immediate consequence of (C.1). For the proof of ii) and iii)

we heavily rely on the system of equations for 6. =1 — p. and ¢,

0. — A, + ab. = (1 —6.)|Ve.|%, (C.2)
p20vpe — div (p2Vep:) =0, (C3)
where
1+ (1-0.)
a = 72.
&

In particular, @ = infy a > e 2.

Step 2: proof of (2.24). We apply Lemma A.6 to equation (C.2) on A% with v = 0.,
b=2[[Vee|re(as,,)s d =1. We therefore obtain

11 = pellzoe(ag ) < CA)E(IVelToe(ay 1)) (C.4)

so that (2.24) follows.

Step 3: estimates on |Vpe|. It follows from (C.4) that |[afc| e
therefore

Ayjs) < Cllogel, and

040 — A0.| < Cllog].
We apply Lemma A.7 on Aj/g to 0. with b = C|loge| and d = Ce?[loge|. This yields

IV pelleo.c (g 1) = Ve llcoa(ag ) < C™ (C.5)

for some 0 < «, 31 < 1, which gives the desired estimate for the right-hand side of (2.25). We
turn next to 9;0.. For that purpose, we will differentiate (C.2) according to time: however,
this requires higher order estimates on ..

Step 4: estimates on D2¢p.. We turn to (C.3); expanding the r.h.s. and dividing by p.
we are led to

Vpe

£

Oppe — A, =2

-Ve. (C.6)
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Since Vp, € CO’O‘(Ag/w) and p. > % we obtain, invoking standard Schauder theory (see e.g.
[15]) that
1/2
1D [lco.a (ays ) < Clloge]"?. (C.7)

Step 5: estimates on D2p.. We differentiate (C.2) with respect to z. Setting u = V6. we
obtain

2 0
Ou — Au + 8_2u = —V,O5|v305|2 +2(1 - ae)DiQpev@e + (4 - 396)5_;VH€'

In view of estimates (C.4), (C.5) and (C.7), the r.h.s. of the previous equation is uniformly
bounded on Air by Clloge|. On the other hand, we already know that u is bounded by Ce”.
36

Invoking Lemma A.6 once more, we deduce
IVull Lo (Agy60) = HDgﬂeHLw(Agg/m) < Ce?, (C.8)
for some 0 < B2 < 1.

Step 6: estimates on 9;V .. Differentiating (C.6) with respect to x and by Step 5 we
obtain
10: Vel Lo (A5 155) < Clloge] /2. (C.9)

Step 7: proof of (2.25) completed. In view of Step 6, we may now differentiate equation
(C.2) with respect to t. Setting u = 9;6. we obtain

Ou — Au+au =2(1 — 0.)Vp-0, Ve, (C.10)
where 5 430
2 - 5
a = ? — ‘V(pg‘ - 52 95.

We notice that a > 2% (if € is sufficiently small). In view of (C.9) we obtain

|Oyu — Au + au| < Clloge] on Ass .

128

On the other hand,

14 (1—6.)>
lu| = |040:] = |Ab. — 1+0-6) = c) 6. + (1 —6.)|Ve. | < Clloge.
Invoking Lemma A.6 we obtain |u| < Ce?[loge] on Ai. Applying Lemma A.7 we are
256

led to
||uHCO’a(A1/2) = HatvaHCO’a(Al/g) S Ceﬁl

In particular, this completes the proof of (2.25), and hence ii).

Proof of iii). We introduce the solution @, of the boundary value problem on A1
2

0P — ADP. =0 on Az,
2 (C.11)
P (z,t) = pe(x,t) on 6PA%.
— —9oVepe |
8,5@1 A@l =2 e thg on A%, (C‘12)
&1(x,0) =0 on (9PA%.

The r.h.s. of (C.12) is estimated by Cag for some 0 < 83 < 1 in C%¥(A1). Estimate iii)
2
follows immediately.
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