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Abstract

In this paper we describe a natural framework for the vortex dynamics in the parabolic
complex Ginzburg-Landau equation in R2. This general setting does not rely on any as-
sumption of well-preparedness and has the advantage to be valid even after collision times.
We analyze carefully collisions leading to annihilation. A new phenomenon is identified,
the phase-vortex interaction, related to persistence of low frequency oscillations, and lead-
ing to an unexpected drift in the motion of vortices.
2000 Mathematics Subject Classification : 35B40, 35K55, 35Q40.

1 Introduction

In this paper we continue our investigations initiated in [6] on the complex-valued parabolic
Ginzburg-Landau equation

(PGL)ε











∂uε

∂t
− ∆uε =

1

ε2
uε(1 − |uε|2) on RN × R+

∗ ,

uε(x, 0) = u0
ε(x) for x ∈ RN ,

where the initial datum u0
ε verifies the bound

(H0) Eε(u
0
ε) =

∫

RN
eε(u

0
ε) =

∫

RN

|∇u0
ε|2

2
+

1

4ε2
(1 − |u0

ε|2)2 ≤M0|log ε|

and M0 is some fixed given constant. Our main focus in this sequel is on the specificities
of the two-dimensional case N = 2. However, a part of the analysis is valid in arbitrary
dimension and completes the one in [6] (where the emphasis was put on N ≥ 3).

The evolution in time, and in particular its asymptotics as ε → 0, has already attracted
much attention. The picture in dimension two is somewhat different from the one in higher
dimensions. In dimension N ≥ 3, the original time scale is essentially the only appropriate
one in order to describe the evolution. On the other hand, it is necessary to introduce an
accelerated time scale in dimension N = 2 in order to describe some part of the dynamics.

Evidence for the last assertion was first provided on a formal level in [22, 23, 14], and
then rigorously in the case of “well-prepared” data in [20, 17, 30, 27]. In particular, such
well-prepared data have well defined vortices of degree +1 or −1, and the diverging part
of the energy is entirely provided by those vortices. In this framework, it is shown that in
the accelerated time t = |log ε|s vortices evolve according to a simple ordinary differential
equation up to the first collision time.
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Our purpose in this paper is to study similarly the asymptotics in dimension N = 2 relax-
ing completely the assumption on the well-preparedness. More precisely, the only assumption
on the initial data is the natural energy bound (H0). The motivation comes from our previous
investigation on the higher dimensional case [6], where important differences with the case of
prepared data were pointed out1.

A typical initial datum which we wish to handle2 is given by

u0
ε(z) = exp(iϕ0

ε(z))
l
∏

i=1

f(
|z − ai|

ε
)

(

z − ai

|z − ai|

)di

on R2, (1)

where f is a smooth non negative function on R+ such that f(0) = 0, f ≡ 1 outside of a
compact set, di ∈ Z with

∑

i di = 0, and the phase ϕ0
ε verifies the bound

‖∇ϕ0
ε‖2

L2(R2) ≤ C|log ε|.
Our analysis shows that, in contrast with the higher dimensional case and with existing

results on the two-dimensional case, the phase and the vortices3 do actually interact in the
accelerated time scale t = |log ε|s. This phenomenon is related to persistence of low frequency
oscillations in the phase, leading to an additional and somewhat unexpected drift term acting
on vortices. This phenomenon would not be observed on a fixed bounded domain.4

The second point we wish to emphasize is that our analysis is not restricted by the
occurrence of collisions. On the other hand, our results provide only a weak form of regularity
for motion of vortices: in particular the motion of multiple degree vortices, with possible
splittings and recombinations, remains a delicate open issue. A first step in this direction
is provided by Theorem 3, where we describe the evolution of clusters of vortices of total
degree zero. We show complete annihilation after a time proportional to the square of the
confinement radius. In particular, vortices of degree zero are excluded except at a finite
number of occurrences, which correspond to collisions. Even in the case of well-prepared
data, this provides some new information, and also answers an open question raised by
Jerrard and Soner ([17], Remark 2.2).

In the accelerated time, we set

uε(z, s) = uε(z, s|log ε|).
Our first result establishes some compactness and rigidity for uε.

Theorem 1. There exist a function ~c : R+
∗ → R2, and for each s>0, a finite set {ai(s)}1≤i≤l(s)

of R2 and l(s) integers di(s) ∈ Z, such that, for a subsequence εn → 0,

uεn ×∇uεn(z, s) → w∗ ×∇w∗(z, s) + ~c (s) as n→ +∞, (2)

and |uεn | → 1, uniformly on every compact set K ⊂ R2 × R+
∗ \ Σv. Here, we have set

w∗(z, s) =

l(s)
∏

i=1

(

z − ai(s)

|z − ai(s)|

)di(s)

, (3)

1The evolution in case of prepared data in dimension N ≥ 3 has been studied in [23, 18, 21].
2Assumption (H0) obviously allows to handle a much larger class.
3Which we termed the linear and the topological modes respectively in [6].
4One may wonder if it is physically relevant to work on the whole of R2. For the related Gorkov-Eliashberg

equation for superconductivity, the physical domain has to be rescaled by a factor diverging with ε, which
allows the same long-range interaction phenomenon.
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and
Σv = ∪s>0Σ

s
v = ∪s>0 ∪l(s)

i=1 {ai(s)}.
Moreover, there exist constants l0, d0 and c0 depending only on M0 such that for every s > 0,

l(s) ≤ l0, |di(s)| ≤ d0, and |~c (s)| ≤ c0√
s
.

We would like to draw the attention of the reader to the fact that degree zero vortices,
i.e. points ai(s) such that di(s) = 0 do not enter explicitly in the expression (3) of w∗(z, s).
However, their possible presence plays an important role in the description of the set Σν and
in the convergence stated in (2), so that at this stage of the analysis they cannot be removed
a priori (see Proposition 1 below for further results on this issue).

Theorem 1 should be compared with the higher dimensional counterpart obtained in [6].
In the original time scale, there is no compactness for the functions due to possible wild
oscillations in the phase. After times of the order of |log ε|, these oscillations have been
damped to order one.

In the special case of well-prepared data, similar results have been established, up to
collision time, in [17, 20]: in their case, however, the additional term ~c is not observed. This
new term is related to possible divergence of energy in the phase, and more precisely to
(extremely) low frequency terms. Here is an explicit example of initial datum giving rise to
a non-zero term ~c : take uε

0 as in (1) and

ϕ0
ε(z) =

√

|log ε|e−
|z−a(ε)|2

4|log ε| ,

where a(ε) =
√

|log ε|~e1. Using the explicit evolution of Gaussians by the heat equation, an
elementary computation leads to the formula5 ~c (s) = 1

2(1+s)2
exp(− 1

4(1+s))~e1.

Clearly, the set Σv in Theorem 1 contains the trajectory of vortices (as far as they can be
defined!). Our next result provides some regularity properties for Σv.

Theorem 2. The set Σv is closed in R2 ×R+
∗ and of locally finite two-dimensional parabolic

Hausdorff measure. Moreover, there exists α > 0 depending only on M0 such that for each
s > 0 there exists s′ > s such that

Σv ∩ R2 × [s, s′) ⊂ ∪l(s)
i=1P(ai(s), s), (4)

where, for (z, s) ∈ R2 × R+
∗ , P(z, s) denotes the parabolic cone defined by

P(z, s) = {(z′, s′) ∈ R2 × R+ s.t. s′ − s ≥ α|z′ − z|2}.

In the case of well-prepared initial data, with di = ±1, it is known from [20, 17] that the
points ai(s) evolve according to the motion law

d

ds
ai(s) = 2∇ai

(

∑

j 6=i

didj log |ai − aj|
)

,

5In order to keep this paper of reasonable size we will not work out the details here.
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up to the first collision time. For initial data of the form (1) and with di = ±1 for all i, the
motion law for the vortices would be given, similarly, by

d

ds
ai(s) = 2∇ai

(

∑

j 6=i

didj log |ai − aj |
)

+ di~c(s)
⊥. (5)

In particular, in this range, the set Σv is a disjoint finite union of smooth curves. We therefore
strongly believe that Theorem 2 is not optimal, and that in the general case Σv is a finite union
of smooth curves, with possible branching corresponding to collisions and splitting of vortices
of multiple degree. As a consequence, such a set would be one-dimensional rectifiable, whereas
we only obtained a bound on the two-dimensional parabolic Hausdorff measure. However, to
improve Theorem 2 and go beyond the parabolic scaling, one will need some way to describe
the evolution of the vortex cores.6

Our next theorem settles the question of annihilation.7

Theorem 3. Let s0 > 0, R > 0 and a ∈ R2. Assume that
∑

ai(s0)∈B(a,R)
di(s0) = 0 and that

for some 0 < κ < 1
Σs0

v ∩B(a,R) ⊂ B(a, κR). (6)

There exists positive constants κ0, K1 and K2 depending only on M0 such that, if κ ≤ κ0

then

Σs
v ∩B(a,

R

2
) = ∅,

for every s ∈ [s0 +K1κ
2R2, s0 +K2R

2].

Theorem 3 has several consequences, both of global and local nature. First, if at some
time s0 all vortices ai(s0) are contained in a ball of radius R, and of total degree zero8, then
at a later time s0 +CR2 they have completely disappeared and w∗ is constant. A second one
is the following:

Proposition 1. The topological degrees di(s) are non zero except for a finite number of times.

Remark 1. The result described in Theorem 3 and Proposition 1 do not hold for the original
time scale, or even intermediate time scales. In particular degree zero vortices may survive
on a full time interval in the original time scale. A way to construct such limit vortices is to
take a vortex-antivortex pair (for more details, see the ”additional comments” in Section 3,
after the proof of Theorem 3.1).

As previously mentioned, the above results allow to give an answer to Remark 2.2 in [17]9,
concerning collision for a prepared datum with two vortices of degree +1 and −1, for instance

u0
ε(z) = f(

z − 1

ε
)f(

z + 1

ε
)
(z − 1)

|z − 1|

(

(z + 1)

|z + 1|

)−1

.

6This can be done in some specific cases, for instance we believe that our method would allow us to handle
the case |di| ≤ 1, but that the general case presumably does not have a simple answer. Indeed, splitting
of multiple degree vortices involves discussions related to stable and unstable manifolds, and the resulting
behavior is therefore very sensitive to the initial datum.

7Related results are announced for [28] based on different type of arguments.
8This is not always the case under assumption (H0). Take as initial datum u0

ε with a +1 vortex at the origin
and a -1 vortex at a distance of order ε−1. Then l(s) = 1 for all s, a1(s) = 0, d1(s) = 1 and w∗(z) = z/|z|.

9The method described allows to treat collisions of total degree zero. However collisions with total non
zero degree are not excluded, and are not treated here.
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In view of [17], it is known that the solution has two vortices ai, i = −1, 1 given by ai(s) =
(−1)i

√
1 − 2s. In particular, these two vortices will collide at time S = 1

2 . They disappear
after this collision time, as a consequence of Theorem 3, and w∗ is constant afterward.

Although they did not appear explicitly in our previous statements, the Radon measures
vs

ε defined for s ≥ 0 on R2 × {s} by

vs
ε(x) =

eε(uε(x, s))

|log ε| dx

are central in the proofs. These quantities possess remarkable properties inherited from the
equation (PGL)ε. As a matter of fact, the points ai will appear as concentration points of
these measures. The following preliminary result insures first that their asymptotic limits
actually do exist.

Theorem 4. Assume (H0) holds. There exist a sequence εn → 0 and, for each s ≥ 0, a
measure vs

∗ on R2 × {s} such that

vs
εn
⇀ vs

∗ as n→ ∞. (7)

In view of assumption (H0) and the energy inequality ‖vs
ε‖ ≤ M0, ∀s ≥ 0, for fixed s it

is straightforward to find a sequence εn → 0 such that vs
εn

converges as n→ +∞. The main
difficulty in Theorem 4 is to find a sequence εn for which the convergence holds for all positive
times. Clearly, convergence in (7) requires some specific property for the family (vs

ε)0<ε<1,
which may be interpreted as a regularity in time. In the original time scale, the result
described in Theorem 4 is well-known, and its proof relies on the so-called semi-decreasing
property (see [8]). In contrast, in the accelerated time scale, the proof is much less direct,
and is obtained at a late stage of our PDE analysis.

Finally, our last result relates the points ai(s) with the measures vs
∗, and provides some

further properties of vs
∗.

Theorem 5. i) For every s > 0, we have

vs
∗ =

l(s)
∑

i=1

θi(s)δai(s)

for some non negative densities θi(s). Moreover, we have

θi(s) ≥ π|di(s)| ∀ i = 1, ..., l(s). (8)

ii) For every s0 > 0 and every χ ∈ D(R2,R+) such that supp(∇χ) ∩ ∪l(s)
i=1{ai(s0)} = ∅, the

function s 7→ vs
∗(χ) is non-increasing on some interval [s0, s

′
0] with s′0 > s0. Moreover, the

function s 7→ ‖vs
∗‖ is non-increasing on R+

∗ .

iii) There exists some universal constant η0 > 0 such that if for some time s0 > 0, and some
i ∈ {1, ..., l(s0)},

di(s0) = 0,

then
lim

s→s−0

||vs
∗|| − lim

s→s+
0

||vs
∗|| ≥

η0

2
. (9)

In particular, for all but finitely many s > 0, |di(s)| ≥ 1 and thus θi(s) ≥ π.
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The plan of the paper does not follow the order of the Theorems, which was chosen for
expository purposes. As already mentioned, the guiding thread will be the concentration
points of energy measures which in turn allow to define the vortices and their degrees. A
preliminary step is to describe the asymptotic in the original time scale.10 We then first prove
Theorem 2, 4 and 5 i). Our analysis relies heavily on three distinct ingredients. The first one
is the decomposition of uε given in Proposition 4.1, which allows to identify and remove the
oscillatory and non topological part of the energy. This technique was used extensively in [6],
here we extend it to the long time range. It requires therefore specific parabolic and elliptic
linear estimates for measure data unbounded in one direction.11 The second ingredient, the
Cylinders Lemma (Proposition 4.3), gives an upper bound on the speed of concentration sets.
This kind of lemma have already a long history [10, 25, 20, 19], our arguments are however
qualitatively different and do not rely on energy lower bounds nor on the precise description
of vortex cores. Finally, concentration sets and vortices are related through a third ingredient,
the Clearing-Out Lemma.12

In the last part of the paper, starting in Section 6, we prove some compactness properties for
the functions uε themselves, and obtain rigidity formulas leading to Theorem 1, 3, and 5 ii)
and iii).

In order to conclude this introduction, we would like to emphasize once more that our work
has left aside the difficult question of the precise dynamics in the general setting considered
here. As mentioned, this would require a further understanding of high multiplicity vortices,
and in particular the mechanism of their splittings and possible recombinations. The case
di = ±1 is much simpler, we intend to establish rigorously the motion law (5) in a different
place. The general case is still a challenge to us.

Acknowledgments. We wish to thank warmly the referee for his judicious remarks and his
very careful reading, which we believe led to a substantial improvement of the manuscript.

2 Some properties of (PGL)ε

In this section we collect some elements entering in the study of (PGL)ε. Set

µt
ε(x) =

eε(uε(x, t))

|log ε| dx.

We begin with

2.1 Classical identities for the evolution of µt
ε

Lemma 2.1. Let uε be a solution of (PGL)ε. Then, ∀χ ∈ D(RN ) and ∀ t ≥ 0 we have

d

dt

∫

RN
χ(x) dµt

ε = −
∫

RN×{t}
χ(x)

|∂tuε|2
|log ε| dx+

∫

RN×{t}
∇χ(x) · −∂tuε · ∇uε

|log ε| dx. (2.1)

In most applications we will assume χ ≥ 0, so that the first term on the r.h.s. of (2.1) is
non positive. In order to handle the second term, and to get rid of the time derivative ∂tuε,
it is often useful to invoke another identity involving the stress-energy tensor.

10In particular, we complete in Appendix C some arguments which were only briefly sketched in [6].
11These are developed in an Appendix.
12Another approach avoiding this type of argument is exposed in [27] and [28].
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Lemma 2.2. Let ~X ∈ D(RN ,RN ). Then, ∀ t ≥ 0,

1

|log ε|

∫

RN×{t}

(

eε(uε)δij −
∂uε

∂xi
· ∂uε

∂xj

)

∂Xi

∂xj
dx = −

∫

RN×{t}
~X · −∂tuε · ∇uε

|log ε| dx. (2.2)

The proofs of the above identities are standard (see [6] and references therein). The l.h.s.
of (2.2) involves the stress-energy matrix Aε given, in case N = 2, by

Aε ≡ Aε(uε) = T (uε) + Vε(uε) Id , (2.3)

where the matrix T (u) is defined by

T (u) =
1

2

(

|ux2|2 − |ux1 |2 −2ux1 · ux2

−2ux1 · ux2 |ux1|2 − |ux2 |2
)

, (2.4)

and the function Vε denotes the potential

Vε(uε) =
(1 − |uε|2)2

4ε2
. (2.5)

In dimension two, the product Tij
∂Xi
∂xj

has a particularly simple expression using complex

notation. Set13

X = X1 + iX2 and ω = |ux1 |2 − |ux2 |2 − 2iux1 · ux2 .

Then, we have
∫

R2
Tij(u)

∂Xi

∂xj
= Re

(

−
∫

R2
ω
∂X

∂z̄

)

. (2.6)

Combining Lemma 2.1 and Lemma 2.2 with the choice ~X = ∇χ, we get rid of the time
derivative on the r.h.s. of (2.1). More precisely

Lemma 2.3. We have, for t ≥ 0,

d

dt

∫

RN
χ(x) dµt

ε = −
∫

RN×{t}
χ(x)

|∂tuε|2
|log ε| dx+

1

|log ε|FS(t, χ, uε), (2.7)

where

FS(t, χ, uε) =

∫

RN×{t}

(

D2χ∇uε · ∇uε − ∆χeε(uε)
)

dx.

Another simple yet important consequence of Lemma 2.1 is

Lemma 2.4. Let χ be as above. Then

d

dt

∫

RN×{t}
χ2(x)eε(uε)dx ≤ 2‖∇χ‖2

L∞M0|log ε| . (2.8)

13The quantity ω is usually termed the Hopf differential of u.
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2.2 Phase-Vortex interaction

In this paragraph we consider a real-valued function φε defined on R2 × R+ satisfying the
heat equation, the function wε defined by wε = uε exp(−iφε), and the measure νt

ε defined by

νt
ε =

eε(wε(·, t))
|log ε| dx. (2.9)

This kind of decomposition will be motivated in particular by Proposition 4.1. The purpose
is to describe the evolution of νt

ε in the spirit of Lemma 2.3. In view of the r.h.s. of formula
(2.7), we are led to consider the bilinear form

Bχ(A,B) =

∫

RN
D2χA · B − ∆χ

2
(A ·B). (2.10)

This quantity has remarkable algebraic properties, as the following formula shows.

Lemma 2.5. Let χ ∈ D(RN ,R), and consider two 1-forms A and B belonging to H1
loc

(RN ).
The following identity holds:

Bχ(A,B) =
1

2

∫

RN
dA · (dχ ∧B) + dB · (dχ ∧A) − 1

2

∫

RN
d∗A(dχ · B) + d∗B(dχ ·A). (2.11)

Proof. First we write in coordinates

D2χA ·B =
∑

i,j

∂2
ijχAiBj =

1

2

∑

i,j

(∂2
ijχ+ ∂2

jiχ)AiBj.

Integrating by parts on RN we obtain
∫

RN
D2χA · B = − 1

2

∑

i,j

∫

RN
∂iAi∂jχBj +Ai∂jχ∂iBj

− 1

2

∑

i,j

∫

RN
∂jAi∂iχBj +Ai∂iχ∂jBj .

(2.12)

Similarly, we can write

−1

2

∑

i,j

∫

RN
∂2

iiχAjBj =
1

2

∑

i,j

∫

RN
∂iAj∂iχBj +Ai∂jχ∂jBi.

The result follows adding the previous equalities.

Specifying (2.11) with A = dφε, B = wε × dwε, we obtain

Corollary 2.1. Set

FI(t, χ,∇φε, wε) = Bχ(dφε(·, t) , wε × dwε(·, t)). (2.13)

If N = 2, we have the identity

FI(t, χ,∇φε, wε) =

∫

R2×{t}
(∇φε ×∇χ)Jwε + RI(t, χ,∇φε, wε), (2.14)

where

RI(t, χ,∇φε, wε) = −
∫

R2×{t}
∇φε · ∇χdiv(wε ×∇wε) + ∆φε∇χ(wε ×∇wε). (2.15)
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After this digression we go back to the description of the evolution of νt
ε.

Lemma 2.6. We have

d

dt

∫

R2
χ(x)dνt

ε = −
∫

R2
χ(x)

|∂twε|2
|log ε| +

1

|log ε|FS(t, χ,wε)

+
1

|log ε|FI(t, χ,∇φε, wε) +
1

|log ε|R(t, χ,∇φε, wε),

(2.16)

where

R(t, χ,∇φε, wε) = − d

dt

∫

R2×{t}
χ

(

∇φε · wε ×∇wε + (|uε|2 − 1)
|∇φε|2

2

)

+

∫

R2
2χ
∂φε

∂t
· wε ×

∂wε

∂t
+

∫

R2
(1 − |uε|2)

(

χ

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

− ∆χ
|∇φε|2

2

)

. (2.17)

Remark 2.1. In formula (2.16) we have singled out two terms, whose significations in the
case N = 2 are the following:
- the term FS will be interpreted as the force arising from the interaction between vortices
(viewed, in our setting, as a self-interaction)
- the term FI represents the interaction between the phase and the vortices.
The terms R and RI will be shown to be of lower order (asymptotically), so that the main
contribution in FI is

FJ (t, χ,∇φε, wε) =

∫

R2×{t}
(∇φε ×∇χ)Jwε, (2.18)

where Jwε stands for the spatial Jacobian of wε, namely Jwε is the scalar det(∇wε) ≡
∂1wε × ∂2wε.

Proof. Since uε = wε exp(iφε), we have ∇uε = (∇wε + iwε∇φε) exp(iφε), and |wε| = |uε|, so
that

eε(uε) = eε(wε) +
|∇φε|2

2
+ ∇φε · wε ×∇wε + (|uε|2 − 1)

|∇φε|2
2

, (2.19)

and similarly

∣

∣

∣

∣

∂uε

∂t

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∂wε

∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

+ 2
∂φε

∂t
· wε ×

∂wε

∂t
+ (|uε|2 − 1)

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

. (2.20)
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Inserting these relations in identity (2.7), we obtain

d

dt

∫

R2×{t}
χ(x)eε(wε) = A0 +A1 +A2 +A3 +A4 +A5,

A0 = −
∫

R2
χ

∣

∣

∣

∣

∂wε

∂t

∣

∣

∣

∣

2

+ FS(t, χ,wε)

A1 = − d

dt

∫

R2×{t}
χ
|∇φε|2

2
−
∫

RN×{t}

(

χ

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

+D2χ∇φε · ∇φε − ∆χ
|∇φε|2

2

)

A2 =
d

dt

∫

R2×{t}
χ

(

∇φε · wε ×∇wε + (|uε|2 − 1)
|∇φε|2

2

)

A3 =

∫

R2×{t}
2χ
∂φε

∂t
· wε ×

∂wε

∂t

A4 = 2

∫

R2×{t}

(

D2χ∇φε · wε ×∇wε −
∆χ

2
(∇φε · wε ×∇wε)

)

= FI(t, χ, φε, wε)

A5 =

∫

R2×{t}
(1 − |uε|2)

(

χ

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

+D2χ∇φε · ∇φε − ∆χ
|∇φε|2

2

)

.

Since φε verifies the heat equation, A1 vanishes and the conclusion follows.

Remark 2.2. In Lemma 2.6, we have emphasized the evolution of the measures νt
ε. Likewise,

for µt
ε we have

d

dt

∫

R2
χ(x) dµt

ε = −
∫

R2×{t}
χ(x)

|∂twε|2
|log ε| + FS(t, χ,wε) + FS(t, χ, φε)

+ FI(t, χ,∇φε, wε) + L0(t, |uε|, χ, φε) (2.21)

where

L0(t, |uε|, χ, φε) = A5 =

∫

R2×{t}
(1 − |uε|2)

(

χ

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

+D2χ∇φε · ∇φε − ∆χ
|∇φε|2

2

)

.

2.3 Clearing-Out

We recall one version of the Clearing-Out theorem proved in [6]. It is used later to relate
concentration sets and vorticity sets.

Proposition 2.1. Let uε be a solution of (PGL)ε verifying assumption (H0). Let xT ∈ RN ,
T > 0 and R ≥

√
2ε. There exists a constant η0 > 0 and a continuous function λ defined on

R+
∗ such that, if

η̌(xT , T,R) ≡ 1

RN−2|log ε|

∫

B(xT ,λ(T )R)
eε(uε(·, T )) ≤ η0

2

then

|uε(x, t)| ≥
1

2
for t ∈ [T + T0, T + T1] and x ∈ B(xT ,

R

2
) .
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Here T0 and T1 are defined by

T0 = max(2ε, τR2), T1 = R2,

where τ = 0 if N = 2 and τ =
(

2η̌
η0

) 2
N−2 otherwise.

2.4 Pointwise estimates

First, we briefly recall some basic pointwise upper bounds.

Proposition 2.2. Let uε be a solution of (PGL)ε with Eε(u
0
ε) < +∞. Then there exists a

constant K > 0 depending only on N such that, for t ≥ ε2 and x ∈ RN , we have14

|uε(x, t)| ≤ 3, |∇uε(x, t)| ≤
C

ε
, |∂uε

∂t
(x, t)| ≤ C

ε2
.

The proof relies essentially on some form of the maximum principle.

Our subsequent discussion requires also a careful analysis on the set where |uε| is far from
zero. For this purpose, we consider, for T > 0, ∆T > 0, R > 0 given, the cylinder

Λ = B(x0, R) × [T, T + ∆T ] ⊂ RN × R+,

and we assume that for some constant 0 < σ < 1
2 ,

|uε| ≥ 1 − σ on Λ. (2.22)

In particular, we may write uε = ρε exp(iϕε) on Λ, where ρε = |uε| and where ϕε is a smooth
real-valued map on Λ. For 0 < α ≤ 1, set

Λα = B(x0, αR) × [T + (1 − α2)∆T, T + ∆T ].

The following higher-order regularity for uε holds.

Theorem 2.1. Assume (2.22) holds. There exists constants 0 < σ0 ≤ 1
2 and 0 < α, β < 1

depending only on N, such that if σ < σ0, then

‖∇ϕε‖L∞(Λ 3
4
) ≤ C(Λ)

√

M0|log ε| (2.23)

‖1 − ρε ‖L∞(Λ 1
2
) ≤ C(Λ)ε2(1 + ‖∇ϕε‖2

L∞(Λ 3
4
)) (2.24)

‖∂tρε‖C0,α(Λ 1
2
) + ‖∇ρε‖C0,α(Λ 1

2
) ≤ C(Λ)M0ε

β. (2.25)

There exists a real-valued function Φε defined on Λ 1
2
, and satisfying the heat equation, such

that
‖∂tϕε − ∂tΦε‖C0,α(Λ 1

2
) + ‖∇ϕε −∇Φε‖C0,α(Λ 1

2
) ≤ C(Λ)M0ε

β . (2.26)

The proof is a little lengthy and requires some care. We postpone it to Appendix C.

14Note in particular that C is independent of the initial data.
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3 Asymptotics in the original time scale

As a preliminary step for the long-time analysis, we show that vortices do not move in
the original time scale. Here we rely on our previous analysis in [6], which holds in any
dimension N ≥ 2. It asserts first as a consequence of the semi-decreasing property that up
to a subsequence εn → 0,

µt
εn

→ µt
∗ for all t ≥ 0,

for some Radon measures µt
∗. Moreover there exist a closed set Σµ = ∪t>0∪l

i=1bi(t) in R2×R+
∗

such that |uε| → 1 locally uniformly on R2 × R+
∗ \ Σµ and such that for a.e. t ≥ 0,

µt
∗ =

|∇Φ∗|2
2

(., t)dx+ νt
∗, where νt

∗ =
l
∑

i=1

σi(t)δbi(t),

and
either σi(t) ≥ η0 or σi(t) = 0. (3.1)

The function Φ∗ satisfies the heat equation on R2 × R+
∗ , and l ≤ CM0.

Theorem 3.1. The points bi(t) do not move, i.e.

bi(t) = bi ∀ t > 0, (3.2)

and the functions σi(t) are non-increasing.

This last statement is consistent with Theorem B of [6] where it is shown that νt
∗ moves

according to mean curvature: indeed, points have essentially zero mean curvature. Neverthe-
less, some arguments in [6] are not valid for N = 2 so that we present next the appropriate
modifications.

Off the singular set Σµ, the main contribution to the time derivative ∂tuε stems from the
phase Φε. In this direction, the following proposition, motivated by Lemma 2.1, was stated
without proof in [6]: we provide the details here for N ≥ 2.15

Proposition 3.1. Let N ≥ 2, and uε be a solution to (PGL)ε. Then, as ε→ 0,

|∂tuε|2
|log ε| → |∂tΦ∗|2 in C0

loc(R
N × (0,+∞) \ Σµ)

∂tuε · ∇uε

|log ε| → ∂tΦ∗ · ∇Φ∗ in C0
loc(R

N × (0,+∞) \ Σµ).

(3.3)

Proof. Since RN×(0,+∞)\Σµ is an open set, it suffices to establish the uniform convergences
in (3.3) on a cylindrical domain Λ 1

2
such that Λ ⊂ RN×(0,+∞)\Σµ. Since |uε| → 1 uniformly

on Λ, we may apply Theorem 2.1 to uε on Λ. Notice that, writing uε = ρε exp(iϕε) on Λ, we
have

∂tuε = ∂tρε exp(iϕε) + iρε exp(iϕε)∂tϕε = ∂tρε exp(iϕε) + iρε exp(iϕε)∂tΦε

+ iρε exp(iϕε)(∂tϕε − ∂tΦε) + i exp(iϕε)(1 − ρε)∂tϕε = i exp(iϕε)∂tΦε +O(εβ), (3.4)

15The main part is actually Theorem 2.1, which is proved in Appendix C.
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and analogously for the spatial gradient ∇uε, we derive

∇uε = i exp(iϕε)∇Φε +O(εβ). (3.5)

Combining (3.4) with (3.5), and invoking (2.24) of Theorem 2.1, the conclusion follows.

We need next to establish some asymptotics for the measures

|∂tuε|2
|log ε| dxdt and

∂tuε · ∇uε

|log ε| dxdt.

For the first one we will use the inequality

lim inf
ε→0

∫

R2×R+

|∂tuε|2
|log ε| χ(x)dxdt ≥

∫

R2×R+
|∂tΦ∗|2χ(x)dxdt , (3.6)

which is a straightforward consequence of (3.3). The analysis of the second one requires a
little more care. We have

Lemma 3.1. Extracting possibly a further subsequence,

σε ≡
∂tuε · ∇uε

|log ε| dxdt ⇀ σ∗ ≡ ∂tΦ∗ · ∇Φ∗dxdt+ hν∗ , (3.7)

weakly as measures on R2 × R+, where ν∗ = νt
∗dt = µ∗ Σµ, and where h ∈ L2(ν∗).

Proof. Since σε is bounded on R2×[0, T ] for any T > 0, we may extract a further subsequence
such that σε ⇀ σ∗ as measures in R2 × R+. We claim that σ∗ is absolutely continuous with
respect to µ∗. In order to prove this, we follow [2] and work at the level ε: we compute the
Radon-Nikodym derivative of σε with respect to µε, obtaining

∣

∣

∣

∣

dσε

dµε

∣

∣

∣

∣

≤ |∂tuε| · |∇uε|
eε(uε)

, (3.8)

and therefore
∣

∣

∣

∣

∣

∣

∣

∣

dσε

dµε

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(µε)

≤ 2

∫

R2×R+

|∂tuε|2
|log ε| dxdt ≤ 2M0 . (3.9)

Invoking a result of Reshetnyak [24] (see also [11]), the claim is proved.
It follows from Proposition 3.1 that on R2 × [0,+∞) \ Σµ, σ∗ = ∂tΦ∗ · ∇Φ∗dxdt, and the

conclusion follows.

In the same spirit, we have

Lemma 3.2. Extracting possibly a further subsequence, we have

Aε

|log ε|dxdt ⇀ A∗ = T (Φ∗)dxdt +Bν∗ , (3.10)

weakly as measures on R2 × R+, where T is defined in (2.4), and B ∈ L∞(ν∗).

The proof is identical to the proof of Lemma 3.1. Here the Radon-Nikodym derivative
dAε
dµε

are even equibounded in L∞. The next result expresses the fact that points have “zero
mean curvature”.
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Proposition 3.2. The vector h and the matrix B given above are identically equal to zero.

Proof. Let X be a smooth, compactly supported vector field (independent of time). Passing
to the limit in (2.2) we obtain, for any 0 < T1 < T2,

∫

R2×[T1,T2]
A∗ ij ·

∂Xi

∂xj
=

∫

R2×[T1,T2]
X · σ∗ . (3.11)

Since Φ∗ verifies the heat equation on R2 × R+, we have

∫

R2×[T1,T2]
Tij(Φ∗)

∂Xi

∂xj
dxdt =

∫

R2×[T1,T2]
X · ∂tΦ∗ · ∇Φ∗dxdt , (3.12)

so that
∫

R2×[T1,T2]
Bij ·

∂Xi

∂xj
dν∗ =

∫

R2×[T1,T2]
h ·Xdν∗ . (3.13)

It follows that for a.e. t > 0,

∫

R2×{t}
Bij ·

∂Xi

∂xj
dνt

∗ =

∫

R2×{t}
h ·Xdνt

∗ . (3.14)

Since the support of νt
∗ is a finite union of points, the preceding inequality, valid for any

smooth vector field X, shows that B = 0 and h = 0.

Proof of Theorem 3.1. We claim that for any function χ ≥ 0 compactly supported on R2,
we have, for a.e. t > 0,

d

dt

∫

R2×{t}
χdνt

∗ ≤ 0 . (3.15)

Indeed, passing to the limit in (2.1) and using (3.6), Lemma 3.1, Lemma 3.2 and Proposition
3.2, we obtain

d

dt

∫

R2×{t}

|∇Φ∗|2
2

χ(x)dx+
d

dt

∫

R2×{t}
χdνt

∗ ≤ −
∫

R2×{t}
|∂tΦ∗|2χ−∂tΦ∗ ·∇Φ∗ ·∇χdx . (3.16)

On the other hand, since Φ∗ solves the heat equation, we have

d

dt

∫

R2×{t}

|∇Φ∗|2
2

χ =

∫

R2×{t}
∇(∂tΦ∗) · ∇Φ∗χ = −

∫

R2×{t}
(∂tΦ∗ · ∆Φ∗χ− ∂tΦ∗ · ∇Φ∗ · ∇χ)

= −
∫

R2×{t}

(

|∂tΦ∗|2χ− ∂tΦ∗ · ∇Φ∗ · ∇χ
)

,

so that (3.15) follows. We deduce that

νt1
∗ ≤ νt0

∗ for any 0 < t0 ≤ t1.

The conclusion of Theorem 3.1 follows then easily in view of (3.15) and the uniform bounds
l ≤ CM0.

Additional comments. In contrast to the accelerated time scale, there is no compactness
property for the functions uε themselves in the original time scale. This is due to possible
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oscillations in the phase, which are reflected in the measure |∇Φ∗|2. However the degrees of
the vortices are well defined in the original time scale, as follows from the fact that |uε| → 1
outside of Σµ.

We also would like to draw the attention to the fact that in the original time scale, the
case di = 0 is not excluded as the following example shows. Take a “prepared” datum with
two vortices of degree +1 and −1. In view of [17], it is known that these two vortices will not
collide before a fixed time of order C0|log ε|, whereas they disappear after this time as follows
by Theorem 3. Contracting the initial datum by the factor

√

|log ε| and using the scaling of
the equation it follows that the solution obtained disappears at time C0 in the original time
scale. Moreover,

{

σi(t) = 2π if t < C0

σi(t) = 0 if t > C0 .
(3.17)

This type of argument may be extended to derive arbitrary jumps of integer multiples of 2π
at any prescribed times.

Further properties at the ε-level.

In the accelerated time scales considered in the next sections, we have to turn back to
the ε level (i.e. we cannot rely on the study of limiting measures introduced so far). In that
analysis the concentration set Σt

µ is replaced by the sets Ωε
δ(t), defined, for δ > 0, by

Ωε
δ(t) =

{

x ∈ R2 ,

∫

B(x,δ)
eε(u(·, t))dx ≥ η0

2
|log ε|

}

, (3.18)

where η0 is the constant appearing in Proposition 2.1. A straightforward covering argument
shows that there exist l points xε

i (t) such that

Ωε
δ(t) ⊂ ∪l

i=1B(xε
i (t), 2δ),

where the number l of points is uniformly bounded by l ≤ CM0
η0
. The next lemma describes

the evolution of the concentration sets Ωε
δ(t) in the usual time scale.

Lemma 3.3. Let t0 ≥ 1
2 and 0 < δ ≤ C0

√

η0

M0
, where C0 is some universal constant. There

exists ε0 = ε0(δ) depending only on δ such that, if ε ≤ ε0 then

dist (Ωε
δ(t),Ω

ε
δ(t0)) ≤ 2δ (3.19)

for every t0 ≤ t ≤ t0 + 2.

Proof. We argue by contradiction. Assume that (3.19) does not hold. Then, translating
possibly the origin, we may assume that, for a sequence εn → 0, there exists a time tn,
t0 ≤ tn ≤ t0 + 2, such that 0 ∈ Ωε

δ(t) but

B(0, 2δ) ∩ Ωεn
δ (t0) = ∅ , for any n ∈ N. (3.20)

We apply next Theorem 3.1 to the sequence (uεn)n∈N . Extracting possibly a subsequence
(still denoted εn), we may assume that µεn converges and that the conclusions of the invoked
theorem hold. It follows from (3.20) and the lower density bound given by (3.1)16 that

Σt0
µ ∩B(0, 2δ) = ∅ . (3.21)

16The bound actually holds only for a.e. time, the reader will adapt the argument slightly changing t0 if
necessary.

15



By Theorem 3.1, Σt
µ ⊂ Σt0

µ for each t ≥ t0, so that Σt
µ ∩B(0, 2δ) = ∅. Therefore

µt
∗ =

|∇Φ∗|
2

2

dx on B(0, 2δ) for t ≥ t0

and in particular

∫

B(0,2δ)
dµt

∗ =

∫

B(0,2δ)

|∇Φ∗|
2

2

≤ CM0δ
2

≤ CM0

(

C2
0

η0

M0

)

≤ η0

4
for t ≥ t0

(3.22)

for an appropriate choice of the constant C0. Passing possibly to a further subsequence, we
may further assume that tn → t∞ as n → +∞, where t0 ≤ t∞ ≤ t0 + 2. Let 0 ≤ χ ≤ 1
be a smooth function with compact support in B(0, 2δ) such that χ ≡ 1 on B(0, δ). Since
0 ∈ Ωεn

δ (tn), we have
∫

RN
χdµtn

εn
≥ η0

2
.

We next distinguish two cases.

Case 1: t∞ = t0. It follows from Lemma 2.4 that

∫

R2
χdµt0

εn
≥ η0

2
− C(χ)(tn − t0)M0 ,

contradicting (3.22) for n sufficiently large and t = t0.

Case 2: t∞ 6= t0. Invoking Lemma 2.4 once more, we write

∫

R2
χdµt∞−α

εn
≥ η0

2
− C(χ)(tn − t∞ + α)M0 .

This contradicts (3.22) for α sufficiently small (independently of ε) and n sufficiently large.

Our next results emphasize the connection between the concentration sets Ωε
δ(t) and the

vorticity set

Vε(t) = {x ∈ R2 , |uε(x)| ≤
1

2
} . (3.23)

As an immediate consequence of the Clearing-Out, we have

Lemma 3.4. Let t0 ≥ 1
2 and δ > 0 be given. For every t ≥ t0 we have

Vε(t) ⊂ Ωε
δ(t∗), for any t− Cδ2 ≤ t∗ ≤ t− 2ε . (3.24)

Combining Lemma 3.3 and Lemma 3.4 we deduce

Lemma 3.5. We have

Vε(t) ⊂ {x ∈ R2 , dist (x,Ωε
δ(t0)) ≤ 2δ} ⊂ ∪l

i=1B(xε
i , 4δ) (3.25)

for every t0 + 2ε ≤ t ≤ t0 + 2, where xε
i = xε

i (t0).
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Finally, the last result in this section is concerned with Jacobians. As a consequence of
Theorem 3.1 and the previous analysis, we have

Proposition 3.3. Let N = 2 and uε be a solution of (PGL)ε satisfying the energy bound
(H0), and let R > 1, 0 < α < 1. There exists a constant C(ε,M0, R) depending only on ε,
M0 and R, l points xε

i in R2 and l integers di ∈ Z such that

xε
i ∈ Vε(1) ∀i ∈ {1, · · · , l}, (3.26)

‖Jx,tuε −
l
∑

i=1

diδxε
i
dx1 ∧ dx2‖[C0,α

c (B(0,R)×[1,R+1])]∗ ≤ Cα(ε,M0, R). (3.27)

Moreover,
l
∑

i=1

|di| ≤ CM0 (3.28)

and, for fixed M0 and R,
Cα(ε,M0, R) → 0 as ε→ 0. (3.29)

Comments. 1) Proposition 3.3 will be used in the proof of Theorem 1. In particular it will
be used not only for uε but also for translates (in space and time).

2) We would like to draw the attention to the fact that (3.28) implies that the space-time
components of the 2-form Jx,tuε, namely ∂tuε × ∂iuε, i = 1, 2, are vanishing with ε in the
norm considered.

Proof. The argument is by contradiction. Assume the result were false: then, for some δ > 0
there would exist a sequence εn → 0 and a sequence uεn of solutions to (PGL)ε satisfying
(H0), and such that

‖Jx,tuεn −
l
∑

i=1

diδxεn
i
dx1 ∧ dx2‖[C0,α

c (B(0,R)×[1,R+1])]∗
≥ δ (3.30)

for any points xε
i ∈ Vε(1) and integers di. We invoke next the compactness results for

Jacobians of [19, 1] to assert that, passing possibly to a further subsequence

Jx,tuεn ⇀ T in [C0,α
c (B(0, R) × [1, R + 1])]∗,

where 1
πT is an integer multiplicity one-dimensional current. On the other hand, by Theorem

3.1 and the fact that the geometrical support of T is contained in Σµ, we infer that

T = π
l
∑

i=1

diδbi
dx1 ∧ dx2,

for some points bi and some multiplicities di ∈ Z. This contradicts (3.30), since |uε| converges
uniformly to 1 outside Σµ.

4 Long-time analysis

In this section we provide a number of estimates for uε whose main feature is that they remain
valid also for long time (in the original time scale). We assume throughout that |log ε| ≥ 1.
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4.1 Identifying the linear mode

We will prove the following long-time variant of Theorem 3 in [6], valid in any dimension
N ≥ 2.

Proposition 4.1. Let N ≥ 2 and uε be a solution to (PGL)ε satisfying (H0). There exists a
real-valued function φε and a complex-valued function wε, defined on RN × R+ such that

(i) uε = wε exp(iφε)

(ii) φε verifies the heat equation on RN × R+
∗

(iii) for every q > 2N
2N−3 , k ∈ N∗ and t ≥ 1 we have

‖∇kφε‖L∞(RN×{t}) ≤
C(M0)

tN/4+(k−1)/2

√

|log ε| + C(M0, q)

tN/2q+(k−1)/2
(4.1)

(iv) ‖∇wε‖Lp(K×[t,t+1]) ≤ C(p,K,M0), ∀ t ≥ 1, for every 1 ≤ p < N+1
N and every compact

subset K ⊂ RN .

We would like to stress the main differences (and actually improvements) with Theorem
3 in [6]. The first point is that wε and φε are defined globally on RN × R+. The second is
that estimate (iv) is uniform in time: in view of propagation phenomena, this will require
estimates on the whole of RN .

As in [6], the proof is based on appropriate Hodge-de Rham decompositions of uε ×∇uε.
To this aim, we will denote δ and δ∗ respectively the exterior differentiation operator for
differential forms on RN ×R and its formal adjoint, while we will use the standard notations
d and d∗ when restricting to time slices RN × {t}.

We extend first uε to the whole of RN+1 = RN × R by standard reflection and consider
its Jacobian Jx,tuε defined by

Jx,tuε =
1

2
δ(uε × δuε) on RN+1 . (4.2)

We consider next the elliptic problem

−∆x,tψ = Jx,tuε on RN+1. (4.3)

We first have

Lemma 4.1. There exists a solution ψ of (4.3) such that

∇x,tψ = ∇x,tG ∗ Jx,tuε (4.4)

and
sup
t∈R

‖∇x,tψ‖(Lp+Lq)(RN×[t,t+1]) ≤ C(p, q)M0 , (4.5)

for any p > N
N−1 and 1 ≤ q < N+1

N . For the space-time components17 ψ0j of ψ, j = 1, ...,N ,
we have moreover

sup
t∈R

‖∇x,tψ
0j‖Lp(RN×[t,t+1]) ≤ C(p)M0 , (4.6)

for any 2N
2N−1 < p < N+1

N .

17 Here we write ψ =
∑

0≤i<j≤N

ψijdxi ∧ dxj , with the convention that x0 = t.
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Proof. We invoke first Appendix B, which clearly applies since uε satisfies conditions (B.1),
(B.2) and (B.3). In particular, in view of Proposition B.2 we may write

2Jx,tuε = ωε + divx,tλε ,

where ωε, λε satisfy
‖ωε‖L1(RN×[t,t+1]) ≤ CM0 ∀ t ∈ R, (4.7)

‖λε‖Lp(RN×[t,t+1]) ≤ CpM0ε
αp ∀ t ∈ R, (4.8)

for every 1 ≤ p < 2 and for some αp > 0, and also

(∫

R
‖ωε‖q

L1(RN×[t,t+1])

) 1
q ≤ CqM0 (4.9)

for every q > 2. We write ψ = ψ1 + ψ2, where ψ1, ψ2 are the solutions of

−∆x,tψ1 = ωε, −∆x,tψ2 = divx,tλε on RN+1 (4.10)

respectively given by Lemma A.1 and Lemma A.2. In view of Lemma A.1, we may decompose
|∇ψij

1 | = gij
1 + gij

2 , where

sup
t∈R

‖g1‖Lp1 (RN×{t}) ≤ K(p1)M0 for any p1 >
N

N − 1
, (4.11)

with an improvement for the space-time components g0j
1

sup
t∈R

‖g0j
1 ‖Lp1 (RN×{t} ≤ K(p1)M0 for any p1 >

2N

2N − 1
, (4.12)

and

sup
t∈R

‖g0j
2 ‖Lp2 (RN×[t,t+1]) ≤ K(p2)M0 for any 1 ≤ p2 <

N + 1

N
. (4.13)

Similarly, in view of Lemma A.2 we have

sup
t∈R

‖∇ψij
2 ‖Lp3 (RN×[t,t+1]) ≤ K(p3)M0 for every 1 < p3 < 2. (4.14)

The estimates of Lemma 4.1 follow noticing that 2N
2N−1 <

N+1
N .

Lemma 4.2. We have
δψ = 0 on RN+1. (4.15)

Proof. In view of the construction of ψ,

δψ = 2G ∗ δJx,tuε.

Since 2δJx,tuε = δ(δ(uε × δuε)) = 0, the conclusion (4.15) follows.
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In view of Lemma 4.2, since −∆x,t = δδ∗+δ∗δ, we deduce δδ∗ψ = 2Jx,tuε. By subtraction,
we obtain

δ(uε × δuε − δ∗ψ) = 0 on RN+1.

We invoke the Poincaré lemma to assert that there exists some function Φ defined on RN+1

such that
uε × δuε = δΦ+ δ∗ψ on RN+1. (4.16)

Equation for the phase Φ. Taking the exterior product of (PGL)ε with uε, we are led to

uε ×
∂uε

∂t
− div (uε ×∇uε) = 0 on RN × R+. (4.17)

On the other hand, in view of the decomposition (4.16),






uε × duε = dΦ+ δ∗ψ − Pt(δ
∗ψ)dt,

uε ×
∂uε

∂t
=
∂Φ

∂t
+ Pt(δ

∗ψ).
(4.18)

Here, for a 1-form α on RN+1, we denote by Pt(α) its time component α0. Inserting into
(4.17) we derive the equation

∂Φ

∂t
− ∆Φ = d∗(δ∗ψ − Pt(δ

∗ψ)dt) − Pt(δ
∗ψ) on RN × R+, (4.19)

which is a heat equation with source terms bounded in appropriate norms, thanks to Lemma
4.1. The source terms can be decomposed into two contributions:

i) A = d∗h ≡ d∗(δ∗ψ − Pt(δ
∗ψ)dt), which is a derivative with respect to spatial coordinates.

In view of estimate (4.5), we have

sup
t∈R+

‖h‖(Lp+Lq)(RN×[t,t+1]) ≤ sup
t∈R+

‖∇x,tψ‖(Lp+Lq)(RN×[t,t+1]) ≤ C(p, q)M0 , (4.20)

for any p > N
N−1 and 1 ≤ q < N+1

N .

ii) B = Pt(δ
∗ψ). In coordinates B writes as

B =
N
∑

i=1

(−1)i−1 ∂ψ
0i

∂xi
. (4.21)

It involves only spatial derivatives of space-time components ψ0i of ψ. This observation turns
out to be important specially in dimension N = 2. In view of estimate (4.6) we have

sup
t∈R

‖B‖Lp(RN×[t,t+1]) ≤ C(p)M0 , (4.22)

for any 2N
2N−1 < p < N+1

N . Taking into account the previous discussion, we are now in position
to complete the proof of Proposition 4.1.

Proof of Proposition 4.1 completed. We consider the initial-value parabolic problem

{

∂tΦ0 − ∆Φ0 = A+B in RN × (0,+∞),
Φ0(x, 0) = 0 for any x ∈ RN .

(4.23)
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By Lemma A.3 and A.4 of the Appendix, as well as estimates (4.20) and (4.22), we deduce
that |∇Φ0| = g1 + g2, with

sup
t∈R+

‖g1‖(Lr+Lq)(RN×[t,t+1]) ≤ C(r, q)M0, (4.24)

for any numbers q and r such that q ≥ r, 1 ≤ r < N+1
N and q > 2N

2N−3 , and

sup
t∈R+

‖g2‖Lp([t,t+1];Lp∗(RN )) ≤ C(p)M0 for any
2N

2N − 1
< p <

N + 1

N
. (4.25)

In particular, for every compact subset K ⊂ RN , we have

‖∇Φ0‖Lp(K×[t,t+1]) ≤ C(p,K)M0 for every 1 ≤ p <
N + 1

N
. (4.26)

We set
φε = Φ− Φ0,

so that φε verifies the heat equation on RN × R+, and (ii) in Proposition 4.1 follows.

Proof of (iii). On every time slice RN × {t}, we have, in view of (4.16) and the definition
of φε,

dφε = uε × duε − (δ∗ψ)⊤ − dΦ0 . (4.27)

Here and throughout, we denote by α⊤ the restriction of a given form α defined on RN+1 to
a time slice RN × {t}.

In view of (4.20), we have

‖(δ∗ψ)⊤‖(Lp+Lq)(RN×[0,1]) ≤ C(p, q)M0 (4.28)

for any p > N
N−1 and 1 ≤ q < N+1

N , and in view of (4.24) and (4.25)

‖∇Φ0‖L1(RN×[0,1])+Lp([0,1],Lp∗(RN )) ≤ C(p)M0 (4.29)

for any 2N
2N−1 < p < N+1

N . In particular, for any q > 2N
2N−3 , we may choose some t0 ∈ [1/4, 1/2]

such that
‖(δ∗ψ)⊤ + dΦ0‖(L1+Lq)(RN×{t0}) ≤ C(q)M0. (4.30)

On the other hand, on every slice RN × {t} for t ≥ 1/4 we have |uε| ≤ 3 (see Proposition
2.2), therefore using the energy inequality we obtain the estimate

‖uε × duε‖L2(RN×{t}) ≤ C
√

M0|log ε|. (4.31)

In view of (4.27), (4.30) and (4.31) we may write, for any q > 2N
2N−3 ,

∇φε(·, t0) = f1 + f2 + f3 on RN , (4.32)

where f1 and f2 satisfy

‖f1‖L1(RN ) ≤ C(M0) , ‖f2‖Lq(RN ) ≤ C(M0, q), (4.33)
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and f3 satisfies

‖f3‖L2(RN ) ≤ C
√

M0|log ε|. (4.34)

Since φε solves the heat equation, so does ∇kφε, and in particular for k = 1 inequality (iii)
follows using Lemma A.5 and inequality A.22 of Appendix A. For k ≥ 2, we invoke likewise
(A.23).

Estimates for wε. In view of (i), we set

wε = uε exp(−iφε),

so that |wε| = |uε|. A simple computation shows that

wε × δwε = uε × δuε − δφε + (1 − |uε|2)δφε

= δ∗ψ + δ(φε + Φ0) − δφε + ζ

= δ∗ψ + δΦ0 + ζ,

(4.35)

where we have defined ζ = (1 − |uε|2)δφε. Clearly, ζ is a perturbation term. Indeed for
1 ≤ p < N+1

N and t ≥ 1,

‖ζ‖Lp(K×[t,t+1]) ≤ C(K)ε‖1−|uε|2
ε ‖L2(K×[t,t+1])‖δφε‖L∞(K×[t,t+1]) ≤ C(K,M0)ε|log ε|.

It follows from decomposition (4.35) and the various estimates for ψ, Φ0 and ζ, that for every
1 ≤ p < N+1

N and t ≥ 1

‖wε × δwε‖Lp(K×[t,t+1]) ≤ C(p,K,M0) . (4.36)

The proof of assertion (iv) is then completed as in the proof of [6], Theorem 3, deriving the
corresponding bounds for ∇x,t|uε| and Vε(uε).

Remark 4.1. a) It is tempting to believe that
∫

RN×{t}
|∇φε|2 ≤ C(M0 + 1)|log ε|, for t ≥ 1 , (4.37)

but we have no proof of that fact.
b) Since φε satisfies the heat equation, it follows from (4.1) that, for q > 2N

2N−3 and t ≥ 1,

‖∂m
t ∇kφε‖L∞(RN×{t}) ≤

C(M0)

tN/4+(k+2m−1)/2

√

|log ε| + C(M0, q)

tN/2q+(k+2m−1)/2
.

4.2 Improved properties for wε and uε

In order to derive additional properties for wε, the first step is to derive an appropriate
equation. We have

Lemma 4.3. The function wε verifies the equation

wε ×
∂wε

∂t
− div(wε ×∇wε) = rε on RN × R+, (4.38)

where the function rε is defined on RN × R+ by

rε = ∇(1 − |uε|2) · ∇φε . (4.39)
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Proof. Since wε = uε exp(−iφε), we have wε ×∇x,twε = uε ×∇x,tuε + |uε|2∇x,tφε. Inserting
this in identity (4.17) yields

wε ×
∂wε

∂t
− div(wε ×∇wε) = |uε|2

∂φε

∂t
− div(|uε|2∇φε) .

Since φε verifies the heat equation, the conclusion follows.

Let
√

2ε ≤ R ≤ 1 and consider for (x0, t0) ∈ RN × [1,+∞) the parabolic cylinder

Λ = B(x0, R) × [t0, t0 +R2] . (4.40)

We have

Proposition 4.2. Let x0, t0 and R as above, and assume that |uε| ≥ 1
2 on Λ. Then we have

|∇wε| ≤
C(M0)

R
,

∣

∣

∣

∣

∂wε

∂t

∣

∣

∣

∣

≤ C(M0)

R2
on Λ1/2 , (4.41)

where Λ1/2 = B(x0,
R
2 ) × [t0 + 3

4R
2, t0 +R2], and C(M0) depends only upon M0.

Proof. We assume R = 1, the general statement can be handled similarly by scaling. In
view of Proposition 4.1, uε = wε exp(iφε). On the other hand, since |uε| = |wε| ≥ 1/2 on Λ 1

2

there exists some real-valued function ψε such that18 wε = ρε exp(iψε). Equation (4.38) is
transformed into the uniformly parabolic equation for ψε

ρ2
ε

∂ψε

∂t
− div(ρ2

ε∇ψε) = ∇(1 − ρ2
ε) · ∇φε = rε.

By Theorem 2.1, ρ2
ε ∈ C1,α(Λ 1

2
) and rε ∈ C0,α(Λ 1

2
). Invoking Schauder theory for parabolic

equations with Hölder coefficients, we deduce

‖∂ψε

∂t
‖C0,α(Λ 1

2
) + ‖∇ψε‖C0,α(Λ 1

2
) ≤ C‖rε‖C0,α(Λ 1

2
) +C‖∇ψε‖L1(Λ 3

4
) ≤ C.

Combining Proposition 4.2 and assertion iii) of Proposition 4.1 with q = 5 we immediately
derive

Corollary 4.1. Let x0, t0 and R be as above and assume that |uε| ≥ 1
2 on Λ. We have

eε(uε(x, t)) ≤ C(M0)

(

1

R2
+

|log ε|
t

+
1

t1/5

)

, (4.42)

for every (x, t) ∈ Λ1/2.

18Hence, uε = ρε exp(iϕε), where ϕε = φε + ψε.
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4.3 On the evolution of νt

ε
.

Recall that νt
ε is defined in Section 2.2 by (2.9) and that its evolution in time is given by equa-

tion (2.16) in Lemma 2.6. We first give an estimate for the remainder term R(t, χ,∇φε, wε).

Lemma 4.4. Let K be any compact subset of RN . Let χ ∈ D(RN ) be such that suppχ ⊂ K,
and let 1 ≤ t1 ≤ t1 + 1 ≤ t2. We have,

∣

∣

∣

∣

∫ t2

t1
R(t, χ,∇φε, wε) dt

∣

∣

∣

∣

≤ C(M0,K)‖χ‖C2

[
√

|log ε| log(
t2
t1

) + (t
3/5
2 − t

3/5
1 )

+
2
∑

i=1

(

1 + ‖∇wε‖L1(K×{ti})
)(

√

|log ε| t−1/2
i + t

−1/5
i

)

]

. (4.43)

Proof. In view of Lemma 2.6, it suffices to estimate the terms B1, B2, B3, where

B1 =
2
∑

i=1

(−1)i
∫

RN×{ti}
χ

(

∇φε · wε ×∇wε + (|uε|2 − 1)
|∇φε|2

2

)

B2 =

∫ t2

t1

∫

RN
2χ
∂φε

∂t
· wε ×

∂wε

∂t

B3 =

∫ t2

t1

∫

RN
(1 − |uε|2)

(

χ

∣

∣

∣

∣

∂φε

∂t

∣

∣

∣

∣

2

+D2χ∇φε · ∇φε − ∆χ
|∇φε|2

2

)

.

We handle each of those terms separately.

Step 1: estimate for B1. We have, for i = 1, 2

∫

RN×{ti}
χ
∣

∣

∣|uε|2 − 1
∣

∣

∣

|∇φε|2
2

≤ ‖χ‖L∞(K)‖∇φε‖2
L∞(K×{ti})|K|1/2

(

∫

RN×{ti}
(|uε|2 − 1)2

)1/2

≤ Cε|log ε|1/2‖∇φε‖2
L∞(K×{ti})|K|1/2

and
∣

∣

∣

∣

∣

∫

RN×{ti}
χ∇φε · wε ×∇wε

∣

∣

∣

∣

∣

≤ ‖χ‖L∞(K)‖∇wε‖L1(K×{ti})‖∇φε‖L∞(K×{ti}).

Hence, by iii) of Proposition 4.1 with q = 5

|B1| ≤ C‖χ‖L∞(K)

2
∑

i=1

(

1 + ‖∇wε‖L1(K×{ti})
)

(

√

|log ε| t−1/2
i + t

−1/5
i

)

.

Step 2: estimate for B2. We invoke Lemma 4.3 to assert that wε × ∂wε

∂t
= div(wε ×

∇wε) + rε, so that

B2 =

∫ t2

t1

∫

RN
2χ
∂φε

∂t

(

div(wε ×∇wε) + ∇(1 − |uε|2)∇φε

)

=

∫ t2

t1

∫

RN
−∇

(

2χ
∂φε

∂t

)

wε ×∇wε + (1 − |uε|2)div

(

2χ
∂φε

∂t
∇φε

)

.
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Since ∂tφε = ∆φε, we have
∣

∣

∣

∣

∇(χ
∂φε

∂t
)

∣

∣

∣

∣

≤ ‖χ‖C1

(

|D3φε| + |D2φε|
)

≤ C(M0)‖χ‖C1

(

√

|log ε|t−1 + t7/10
)

,

where we have used (4.1) with q = 5. Similarly,
∣

∣

∣

∣

div

(

2χ
∂φε

∂t
∇φε

)∣

∣

∣

∣

≤ C‖χ‖C1‖∇φε‖C2 ‖D2φε‖C1 ≤ C(M0)‖χ‖C1

|log ε|
t9/10

.

It follows using iv) of Proposition 4.1 and the bounds on the potential term that the first one
dominates and therefore

|B2| ≤ C(M0,K)‖χ‖C1

(

√

|log ε| log(
t2
t1

) + t
3/10
2 − t

3/10
1

)

.

Step 3: estimate for B3. Using iii) and iv) of Proposition 4.1 with q = 5, we obtain

|B3| ≤ C‖χ‖C2 |K|1/2ε|log ε|1/2
∫ t2

t1
‖∇x,tφε‖2

L∞(K×{t})dt

≤ C(M0,K)‖χ‖C2ε|log ε|3/2
(

t
3/5
2 − t

3/5
1

)

.

Combining the previous estimates the conclusion follows.

Concerning the interaction term FI , we provide first a crude estimate, which will be
needed in the Cylinders Lemma. At a later stage of our analysis (see Section 9), we will
perform a refined decomposition of this term in dimension N = 2.

Lemma 4.5. Let K be any compact subset of RN . Let χ ∈ D(RN ) be such that suppχ ⊂ K,
and let 1 ≤ t1 ≤ t1 + 1 ≤ t2. We have,

|
∫ t2

t1
FI(t, χ,∇φε, wε) dt| ≤ C(M0,K)‖χ‖C2

(

(
√
t2 −

√
t1)
√

|log ε| + (t2 − t1)
)

. (4.44)

Proof. It follows from the definition of FI that

|
∫ t2

t1
FI(t, χ,∇φε, wε) dt| ≤ C‖χ‖C2

∫ t2

t1

(

‖∇wε‖L1(K×{t})‖∇φε‖L∞(K×{t})
)

dt .

Using iii) and iv) of Proposition 4.1 with any admissible choice of q the conclusion follows.

Combining Lemmas 4.4 and 4.5 we derive

Lemma 4.6. Let K be any compact subset of RN . Let χ ∈ D(RN ) be such that suppχ ⊂ K,
and let 1 ≤ t1 ≤ t1 + 1 ≤ t2. We have,
∫

RN
χ(x)dνt2

ε −
∫

RN
χ(x)dνt1

ε ≤ 1

|log ε| |
∫ t2

t1
FS(t, χ,wε) dt| +

C

|log ε|‖χ‖C2Rε(t1, t2, wε) ,

(4.45)
where C = C(M0,K), FS is defined as in Lemma 2.3, that is

FS(t, χ,wε) =

∫

RN×{t}

(

D2χ∇wε · ∇wε − ∆χeε(wε)
)

dx,

and where

Rε(t1, t2, wε) =

(

2
∑

i=1

‖∇wε‖L1(K×{ti}) + (
√
t2 −

√
t1)

)

√

|log ε| + (t2 − t1). (4.46)
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4.4 Upper bounds for the velocity of concentration sets

In this section, we turn back to dimension N = 2, to the concentration sets Ωε
δ(t) introduced

in Section 3, and study their motion for long times. We recall that, by a standard covering
argument,

Ωε
δ(t) ⊂ ∪l

i=1B(xε
i , 2δ) , (4.47)

where the number l of points xε
i is uniformly bounded by l ≤ CM0

η0
.

Our main result, Proposition 4.3 below, is inspired by Lemma 5.1 of [17]. However, since
the initial datum is not assumed to be well-prepared, we rely on different type of arguments, in
particular the topological and regularity arguments in [17] are replaced here by the application
of the Clearing-Out Lemma for vorticity and the decomposition in Section 4.2.

Proposition 4.3. (Cylinders Lemma) Let t0 ≥ 1 and r > 0 be given. There exists positive
constants σ0, γ0 and r0 depending only on M0 such that, if

Ωε(t0) ≡ Ωε
r/4(t0) ⊂ ∪l

i=1B(xε
i , r) , (4.48)

for some |log ε|−1/6 ≤ r ≤ r0 and some points (xε
i )1≤i≤l verifying

|xε
i − xε

j | ≥ σ0r , ∀ i 6= j, (4.49)

then
Ωε(t) ⊂ ∪l

i=1B(xε
i ,
σ0r

8
) , (4.50)

for every t0 ≤ t ≤ t0 + γ0r
2|log ε|.

Proof. The strategy is based on formula (4.45) of Lemma 4.3, and a suitable choice of function
χ. For that purpose, we first construct a smooth positive function Λ defined on R2, satisfying











Λ(x) = 8|x|2 if |x| ≤ 1/4
Λ(x) = 0 if |x| ≥ 1/2
0 ≤ Λ(x) ≤ 1 on R2

(4.51)

Next, we consider the points xε
i given by (4.48) and (4.49), we set

χ(x) =
l
∑

i=1

Λ

(

x− xε
i

σ0r

)

,

for some constant σ0 > 0 to be determined later, and we introduce the integral

A(t) =

∫

R2
χ(x)dνt

ε .

Let te be the exit-time, i.e.

te = sup{t ≥ t0, Ωε(s) ⊂ ∪l
i=1B(xε

i ,
σ0r

4
) for t0 ≤ s < t} .

Notice that in view of Lemma 3.3, te ≥ t0 +4. Our purpose is to apply formula (4.45) and to
prove that we are led to a contradiction if te were too small, thanks to our special choice of
function χ. However, in view of the specific form of (4.45), we will first choose suitable times

26



t1 ∈ [t0, t0 +1] and t2 ∈ [te−1, te] for which good estimates are available on ‖∇wε‖L1(K×{ti}),
i = 1, 2, where K = supp χ.

Step 1. There exists t1 ∈ [t0 + 1
2 , t0 + 1] and t2 ∈ [te − 1, te − 1

2 ]19 such that

‖∇wε‖L1(K×{ti}) ≤ C(M0)(σ
2
0r

2 + 1) , for i = 1, 2 ,

and such that there exists some xe verifying, for some i ∈ {1, ..., l},

xe ∈ Ωε(t2) and (
σ0

8
− 1)r ≤ |xe − xε

i | ≤ (
σ0

8
+ 1)r. (4.52)

Proof. In view of the definition of te, there exists some x̃e ∈ Ω(te), and i ∈ {1, ..., l} such
that

(
σ0

8
− 1

2
)r ≤ |x̃e − xε

i | ≤ (
σ0

8
+

1

2
)r. (4.53)

It follows by Lemma 3.3 that for every t ∈ [te − 1, te], there exists some x(t) such that

(
σ0

8
− 1)r ≤ |x̃e − xε

i | ≤ (
σ0

8
+ 1)r. (4.54)

The conclusion follows by averaging, since

‖∇wε‖L1(K×[t0,t0+1]) ≤ C(M0)σ
2
0r

2 and ‖∇wε‖L1(K×[te−1,te]) ≤ C(M0)σ
2
0r

2.

Step 2: upper bounds on A(t1). We claim that

A(t1) ≤
C

σ2
0

M0 + o(1), where o(1) → 0 as ε→ 0,

and where C does not depend on σ0.
Proof. By Lemma 3.5 we have

|uε| ≥
1

2
on

(

R2 \ ∪l
i=1B(xε

i , 2r)
)

× [t0 +
1

4
, t0 + 1].

Applying Proposition 4.2 we infer that

eε(wε) ≤
C

r2
on

(

R2 \ ∪l
i=1B(xε

i , 3r)
)

× [t0 +
1

2
, t0 + 1].

In particular,
∫

R2\∪l
i=1B(xε

i ,3r)
χdνt1

ε ≤ Cσ2
0

|log ε| . (4.55)

On the other hand |χ| ≤ C

σ2
0

on ∪l
i=1B(xε

i , 3r), and therefore we derive

∫

∪l
i=1B(xε

i ,3r)
χdνt1

ε ≤ Cσ−2
0

|log ε|M0. (4.56)

The conclusion follows combining (4.55) with (4.56).

19Notice in particular that t2 − t1 ≥ 1.
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Step 3: lower bounds on A(t2). We claim that A(t2) ≥
η0

18
− C(M0)(σ0r + σ2

0r
2).

Proof. Let xe be given by Step 1. We have, by definition of Ω(t2),

∫

B(xe, r
4
)×{t2}

eε(uε)dx ≥ η0

2
|log ε|.

On the other hand, by (4.52), χ(x) ≥ 1
9 on B(xe,

r
4), so that

∫

B(xe, r
4
)×{t2}

χeε(uε)dx ≥ η0

18
|log ε|.

It remains to compare eε(uε) and eε(wε). In view of (2.19) and estimate (ii) of Proposition
4.1, we have

∫

B(xe, r
4
)×{t2}

|χeε(uε) − χeε(wε)| ≤ C(M0)(σ0r + σ2
0r

2)|log ε|,

and the conclusion follows.

Step 4: We claim that

|
∫ t2

t1
FS(t, χ,wε) dt| ≤ C(M0)(1 + σ2

0r
2)|t2 − t1|.

Proof. Since χ has compact support in U = ∪l
i=1B(xε

i , σ0r/2), we may divide the integration
into two disjoint contributions: the contribution on U1 = ∪l

i=1B(xε
i , σ0r/4), and that on

U2 = U \ U1, which is a union of annuli. On U1, χ(x) =
∑l

i=1 8|x− xε
i |2, and this specific

form implies a remarkable sign condition in the integration, namely

D2χ∇wε · ∇wε − ∆χeε(wε) = −∆χVε(uε) ≤ 0 on U1. (4.57)

The previous fact (and more generally, related identities for the squared distance function
to a manifold) was remarked by De Giorgi [13], Rubinstein and Sternberg [25] and used
extensively since then (see for example [29]).

Turning to U2 we have, in view of the definition of te and our choice t2 ≤ te,

Ωε
r
4
(t) ⊂ ∪l

i=1B(xε
i ,
σ0r

8
) ∀t1 −

1

2
≤ t ≤ t2.

Invoking Lemma 3.5 we deduce |uε| ≥
1

2
on
(

U \∪l
i=1B(xε

i ,
σ0r

6
)
)

× [t1−
1

4
, t2], and therefore,

by Proposition 4.2 we obtain

eε(wε) ≤ C(M0)(1 +
1

σ2
0r

2
) on U2 × [t1, t2], (4.58)

so that combining (4.57) and (4.58) we derive

|
∫ t2

t1
FS(t, χ,wε) dt| ≤ C(M0)(σ

2
0r

2 + 1)|t2 − t1|,

which is the desired inequality.
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Step 5: bounds for Rε. By Step 1 we have

Rε(t1, t2, wε) ≤ C(1 + σ2
0r

2 + (
√
t2 −

√
t1))

√

|log ε| + (t2 − t1).

Step 6: proof of Proposition 4.3 completed. Combining Step 2 and Step 3 we have

A(t2) −A(t1) ≥
η0

18
− C

σ2
0

M0 − C(M0)(σ0r + σ2
0r

2) + o(1).

We choose first σ1 such that

C

σ2
1

M0 =
η0

36
, i.e. σ1 = 6

√

CM0

η0
, (4.59)

and then finally set σ0 = max{100, σ1}. For this choice of σ0, we choose first r0 in such a
way that σ0r0 ≤ 1 and

C(M0)(σ0r0 + σ2
0r

2
0) ≤

η0

72
,

so that, if r ≤ r0,

A(t2) −A(t1) ≥
η0

72
+ o(1). (4.60)

On the other hand, by formula (4.45),

A(t2) −A(t1) ≤
1

|log ε| |
∫ t2

t1
FS(t, χ,wε) dt| +

C(M0)

|log ε|
Rε(t1, t2, wε)

σ2
0r

2

≤ C(M0)

(

|t2 − t1|
|log ε| +

√
t2 −

√
t1 + 1

√

|log ε|

)

.

(4.61)

Combining (4.60) with (4.61) we deduce

η0 ≤ C(M0)

σ2
0r

2

(

|t2 − t1|
|log ε| +

√
t2 −

√
t1 + 1

√

|log ε|

)

.

Therefore, we obtain t2 ≥ t0 + C(M0, η0)r
2|log ε|, and the proof is complete.

It may occur that, as ε tends to zero, some part of the set Ωε escapes to infinity. This
however does not affect the asymptotics, since we have the following variant of Proposition
4.3 for which we omit the details.

Proposition 4.4. Let 0 ≤ r ≤ r0, and R > 10σ0r be given, assume the points (xε
i )1≤i≤l

verify (4.49), and that
Ωε(t0) ∩B(0, R) ⊂ ∪l

i=1B(xε
i , r).

Then

Ωε(t) ∩B(0,
9R

10
) ⊂ ∪l

i=1B(xε
i ,
σ0r

8
)

for t0 ≤ t ≤ γ0r
2|log ε|.
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4.5 Consequences of the Cylinders Lemma

We assume in this subsection that (4.48) and (4.49) hold for t0 ≥ 1 and 0 < r < r0, σ ≥ σ0.
In order to describe the energy evolution along concentration sets, we use the following

Lemma 4.7. Let χ a smooth nonnegative function, and assume that supp∇χ ⊂ R2 \
∪l

i=1B(xε
i , σr). Then we have

d

dt

∫

R2
χ(x)dµt

ε ≤ C(M0)|supp∇χ| · ‖D2χ‖L∞

(

(σr)−2

|log ε| +
1

t

)

, (4.62)

for every t0 + 1
2 ≤ t ≤ t0 + γ0r

2|log ε|.

Proof. By Lemma 2.3,
d

dt

∫

RN
χ(x) dµt

ε ≤ 1

|log ε|FS(t, χ, uε). Since

FS(t, χ, uε) =

∫

R2×{t}
D2χ∇uε · ∇uε − ∆χeε(uε) ≤ C‖D2χ‖L∞

∫

supp ∇χ
eε(uε),

the conclusion follows by Proposition 4.3, Lemma 3.5 and Corollary 4.1.

Concerning wε, we deduce from the Cylinders Lemma the pointwise estimate

Lemma 4.8. We have, for some constant K depending on M0,

|eε(wε)(x, t)| ≤ K(σr)−2 and |eε(uε)(x, t)| ≤ K

(

(σr)−2 +
|log ε|
t

)

(4.63)

for every x ∈ R2 \ ∪l
i=1B(xε

i , σr) and every t0 + 1 ≤ t ≤ t0 + γ0r
2|log ε|.

Proof. A direct consequence of Proposition 4.3, Lemma 3.5 and Proposition 4.2.

5 Limiting measures in the log time scale

Our purpose is to study the asymptotics for the measures vs
ε. This will lead us to the proofs

of Theorem 2, 4 and Theorem 5. From now on, we will work directly with the rescaled time
s = t

|log ε| . A first step in the argument is to consider limits for fixed s. In a second step,
we prove some continuity property in time so that an abstract compactness argument leads
finally to the existence of a limiting measure for all s. Both Σv and vt

∗ are constructed at the
same time.

5.1 Concentration points for fixed s

Lemma 5.1. Let s > 0 be given. There exists a sequence εn → 0 and ls points (ai(s))1≤i≤ls

(depending only on s) with ls ≤ CM0
η0

, such that for every r > 0 and R > 2 sup1≤i≤ls |ai| there
exists n0 ∈ N (depending only on s, r and R) such that

Ωεn

r/16(| log εn|s) ∩B(0, R) ⊂ ∪ls
i=1B(ai(s), r) ∀n ≥ n0. (5.1)

Moreover, for any i = 1, ..., ls, and for any n ≥ n0,

B(ai(s), r) ∩ Ωεn

r/16(| log εn|s) 6= ∅. (5.2)
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Proof. Let 0 < δ ≤ 1. We consider a covering of Ωε
δ(| log ε|s) as in (4.48), i.e. such that

Ωε
δ(| log ε|s) ⊂ ∪lε,δ

i=1B(xε,δ
i , 2δ) (5.3)

with lε,δ ≤ CM0
η0

and

xε,δ
i ∈ Ωε

δ(| log ε|s). (5.4)

By a compactness argument, there exists a set {aδ
i }1≤i≤lδ}, with

lδ ≤ CM0

η0
,

such that for a subsequence εn ≡ εδn → 0, lεn,δ = lδ is independent of n, and such that,
relabeling if necessary, we have

xεn,δ
i → aδ

i for i = 1, ..., lδ ,

|xεn,δ
i | → +∞ for i = lδ + 1, ..., lδ .

We choose δm = 2−m for m ∈ N, and set am
i = a

δm
i , lδm = lm and lδm = lm. Since

Ωε
δm+1

(| log ε|s) ⊂ Ωε
δm

(| log ε|s), we notice that

∪lm+1

i=1 {am+1
i } ⊂ ∪lm

i=1B(am
i , 2δm).

We deduce that, without need to pass to a subsequence, ∪lm
i=1{am

i } converges to ∪ls
i=1{ai(s)}

as m→ +∞, and

dist
(

∪l1
i=1{am

i },∪l1
i=1{ai(s)}

)

≤ 2−m+2.

The subsequence εn in the statement of the Lemma is easily constructed by a diagonal
argument.

Let 0 < r < 1 and R > 2 sup1≤i≤ls |ai| be given and let m ∈ N be such that 2−m−1 <
r
16 ≤ 2−m. There exists n0 ∈ N such that, for n ≥ n0,

|xεn,δm
i − am

i | ≤ 2−m for i = 1, . . . , lm, and |xεn,δm
i | > 2R for i = lm + 1, . . . , lm.

Therefore, for n ≥ n0,

Ωεn

r/16(| log εn|s) ∩B(0, R) ⊂ Ωεn
δm

(| log εn|s) ∩B(0, R)

⊂
(

∪lm

i=1B(xεn,δm
i , 2δm)

)

∩B(0, R) = ∪lm
i=1B(xεn,δm

i , 2δm)

⊂ ∪lm
i=1B(am

i , 3δm) ⊂ ∪ls
i=1B(ai(s), 3δm + 2−m+2)

⊂ ∪ls
i=1B(ai(s), r).

(5.5)

The proof is complete.

Remark 5.1. At a later stage, we will consider limiting measures vs
∗ for vs

εn
. A direct

consequence of (5.2) is that

vs
∗ ({ai}) ≥

η0

2
. (5.6)

From Lemma 5.1 and a further diagonal argument we obtain
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Corollary 5.1. Let Z ⊂ R+ be a countable set. There exists a sequence εn → 0 (depending
only on Z) and, for each s ∈ Z, ls points a1(s), ..., als (s) (with ls ≤ CM0

η0
), such that for

every r > 0 and R(s) ≥ sup1≤i≤ls |ai(s)|, there exists n0 ∈ N (depending only only on s, r
and R(s)) for which

Ωεn

r/16(| log εn|s) ∩B(0, R(s)) ⊂ ∪ls
i=1B(ai(s), r) ∀n ≥ n0. (5.7)

Remark 5.2. In the sequel, we take as sequence (εn)n∈N the one related to Z = γ0Q
+, where

γ0 is the constant in Proposition 4.3.

An important part of our analysis will be devoted to prove that there exists a subsequence
εσ(n) for which (5.1) holds for any s > 0. The key ingredient is the Cylinders Lemma. In
order to implement this technique we first need the following elementary covering argument.

Lemma 5.2. Consider l distinct points a1, ..., al in R2. Let r0 > 0 and σ ≥ 2 be given. Then,
there exists r > 0 such that

r0 ≤ r ≤ (2σ)lr0 (5.8)

and a subset {aj}j∈J of {ai}1≤i≤l such that

∪l
i=1B(ai, r0) ⊂ ∪j∈JB(aj, r)

and
|aj − ak| ≥ σr ∀ j 6= k in J. (5.9)

Proof. The proof is by iteration, in at most l steps. First, consider the collection {ai}1≤i≤l.
If (5.9) is verified with r = r0 there is nothing else to do. Otherwise, take two points, say
a1, a2 such that |a1 − a2| ≤ σr0, consider the collection a2, a3, ..., al, and set r = 2σr0. If
(5.9) is verified, we stop. Otherwise we go on in the same way. If the process does not stop
in l − 1 steps, at the lth step we are left with one single ball of radius r = (2σ)lr0, and (5.9)
is void.

5.2 Continuity in time

Proposition 5.1. Let s0 > 0 and 0 < r0 ≤ 1 and R ≥ 2 sup1≤i≤l(s0) |ai(s0)| be given. There
exists n0 = n0(s0, r0, R) such that for n ≥ n0

Ωεn

r0/16(| log εn|s) ∩B(0, R) ⊂ ∪l(s0)
i=1 B(ai(s0), σ1r0) ∀ s ∈ [s0, s0 + γ0r

2
0], (5.10)

where γ0 is the constant in Proposition 4.3 and σ1 is some constant depending only on M0.
Here the points {ai(s0)}1≤i≤l(s0), the sequence (εn)n∈N and n0 are given in Lemma 5.1. More-
over,

eεn(uεn) ≤ C(r−2
0 +δ−1

0 ) on
[

B(0, R) \ ∪l
i=1B(ai(s0), σ1r0)

]

× [s0+
1

|log ε| , s0+γ0r
2
0]. (5.11)

Proof. We apply Lemma 5.1 with s = s0 and r = r0. Combining with Lemma 5.2, for the
choice σ = σ0, where σ0 is the constant in Proposition 4.3, we are led to

Ωεn

r0/16(| log εn|s) ∩B(0, R) ⊂ ∪j∈JB(ai, r)

for some r0 ≤ r ≤ (2σ0)
lr0, and |aj − ak| ≥ σ0r for j 6= k ∈ J. Conclusion (5.10) then follows

from the Cylinders Lemma (Proposition 4.3). For (5.11) we invoke once more Lemma 4.8.

32



5.3 Construction of Σv and proof of Theorem 2

Given a length r0 > 0 we consider the set

Σε
r0

= ∪s>0Ω
ε
r0/16(|log ε|s)

and cover it by “chains” of cylinders of radius of order r0 and height of order r20. We then
define the set Σv as the intersection, as r0 → 0 and ε → 0 of these chains. To implement
this idea, we discretize time by slices of thickness γ0r

2
0. More precisely, we fix r0 ∈ Q+ and

consider the time slices sj = jγ0r
2
0, for j ∈ N, j ≥ 1. For S > 0 and R > 0 we set

Σεn
r0

(S,R) = Σεn
r0

∩B(0, R) × [0, S],

where (εn)n∈N is the sequence considered in Remark 5.2. In view of Proposition 5.1, for given
S > 0,

R(S) = 2 sup
s∈Z∩(0,S)

|ai(s)| < +∞.

As an immediate consequence of Proposition 5.1 we have

Lemma 5.3. Consider the sequence (εn)n∈N given in Remark 5.2. Assume r0 ∈ Q+ and
S > 0, R ≥ R(S) be given. Then there exists n0 = n0(S,R, r0) depending only on S, R and
r0 such that, for any n ≥ n0,

Σεn
r0

(S,R) ⊂
⋃

j≥1
sj≤S





l(sj)
⋃

i=1

B(ai(sj), σ1r0) × [sj , sj+1]



 .

We next specify the choice for r0, taking namely r0 =
1

2m
, m ∈ N, and set

Σv =
⋂

m∈N

⋃

j≥1
1≤i≤l

B(ai(
jγ0

22m
),
σ1

2m
) × [

jγ0

22m
,
(j + 1)γ0

22m
]. (5.12)

By definition, Σv is an intersection of closed sets, hence it is closed. Moreover, by definition
of parabolic20 Hausdorff measure Hk

P , we have

H2
P (Σv ∩ R2 × [0, S]) ≤ C(M0)S . (5.13)

This yields the first assertion of Theorem 2. Next, we first observe that for some l depending
only on M0

21

♯Σs
v ≤ l for any s > 0, (5.14)

and the second assertion follows directly from the construction (5.12) of Σν , taking α = γ0

σ2
1
.

At this stage we have established Theorem 2.22

20The parabolic ball BP (z, r) ⊂ RN × R of radius r centered at z = (x, t) ∈ RN × R is given by BP (z, r) =
B(x, r) × [t− r2, t+ r2].

21Indeed, in view of the definition of Σv, Σs
v is included the union of at most l intervals of arbitrarily small

size.
22Actually we have constructed a set Σv satisfying the properties stated in Theorem 2. The important point

of course is that the set Σv satisfies also the properties stated in Theorem 1, in particular the convergence
stated in (3). This will be established at a later stage of the analysis.
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Notice that the above construction of Σν also yields some properties stated in Theorem
1. Indeed, let K ⊂ R2 × R+ \ Σv be a compact set. By definition of Σv, there exists some
m ∈ N such that

K ∩
⋃

j≥1
1≤i≤l

B(ai(
jγ0

22m
),
σ1

2m
) × [

jγ0

22m
,
(j + 1)γ0

22m
] = ∅.

Therefore, by Proposition 5.1 we deduce that

eεn(uεn) ≤ 22mC on K, (5.15)

and hence
||uεn | − 1| ≤ 2mCε on K, (5.16)

so that |uεn | → 1 uniformly on K and moreover the energy is uniformly bounded on K.

Remark 5.3. Since, for any s > 0, Σs
v is finite, we may write

Σs
v = ∪l(s)

i=1{ai(s)}. (5.17)

It follows from the very construction of Σv that for each s ∈ Z we have the inclusion

{ai(s)}1≤i≤ls ⊂ {ai(s)}1≤i≤l(s). (5.18)

The two sets may not coincide for every s, in particular when collisions occur. However, in
view of the above construction, we have

Σµ =
¯∪s∈Z ∪ls

i=1 {ai(s)},

and more precisely, for s > 0,

∪l(s)
i=1{ai(s)} = lim

s′→s, s′∈Z, s′<s
∪ls′

i=1{ai(s
′)}.

In particular, for any neighborhood Oi of ai(s),

lim inf
s′→s, s′<s

νs′
∗ (O〉) ≥

η0

2
. (5.19)

Notice also that a consequence of Theorem 5 iii) will be that equality in (5.18) holds for all
but finitely many times s.

5.4 The abstract compactness argument

The following is an easy variant of Helly’s selection principle.

Lemma 5.4. Let I be an at most countable set, and let (f i
n)n∈N, i∈I be a collection of real-

valued functions defined on some interval (a, b). Assume that for each i ∈ I the family
(f i

n)n∈N is equibounded and satisfies the following semi-decreasing property23

∀ δ > 0 there exists τ > 0 and ni ∈ N such that, if s1, s2 ∈ (a, b)

and s2 − τ ≤ s1 ≤ s2, then f i
n(s2) ≤ f i

n(s1) + δ, ∀n ≥ ni.
(5.20)

23Such a condition appears in the literature under various forms, the one we adopt here does not require
differentiability.
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Then there exists a subsequence σ(n) and a family (f i)i∈I of real-valued functions on (a, b)
such that

f i
σ(n)(s) → f i(s) ∀ s ∈ (a, b), ∀ i ∈ I.

We apply the previous lemma to the following situation. Let (χi)i∈I be a countable family
of compactly supported nonnegative smooth functions on RN , and assume that span (χi)i∈I

is dense in C0
c (RN ). For s ∈ (a, b) and n ∈ N, let {vs

n} be a family of measures on RN and set

f i
n(s) =

∫

RN
χidv

s
n, for s ∈ (a, b), n ∈ N, i ∈ I. (5.21)

Assume that, for some constant C > 0

‖vs
n‖ ≤ C ∀ s ∈ (a, b), ∀n ∈ N. (5.22)

Lemma 5.5. Assume that the family (f i
n)n∈N defined by (5.21) satisfies (5.20). Then there

exists a subsequence (σ(n))n∈N and a family of measures {vs
∗}s∈(a,b) such that

vs
σ(n) ⇀ vs

∗ weakly as measures, as n→ +∞, for all s ∈ (a, b).

Proof. In view of Lemma 5.4, there exists a subsequence (σ(n))n∈N such that

vs
σ(n)(χi) converges, as n→ +∞, for every s ∈ (a, b). (5.23)

Next let s0 ∈ (a, b) be arbitrary but fixed. Since (5.22) holds and in view of (5.23), since
span {χi} is dense, for s = s0 the family {vs0

σ(n)(χ)}n∈N is a Cauchy sequence in R, hence it
converges. This determines the measure vs0∗ and establishes the convergence for s = s0. Since
s0 was arbitrary, the conclusion follows.

5.5 Pseudo-decreasing property

Recall that at this stage the convergence of vs
εn

to a limiting measure vs
∗ has already been

established for s ∈ Z = γ0Q+ (see Corollary 5.1 and Remark 5.2). In this section we
show that, extracting possibly a subsequence, convergence holds for all s ∈ R+. The main
ingredient is a pseudo-decreasing property.

For s ∈ Z consider the class

Y (s) = {χ ∈ C1
c (R2,R+) , supp∇χ ⊂ R2 \

l(s)
⋃

i=1

{ai(s)} }.

We have

Lemma 5.6. Let s0 ∈ Z and χ ∈ Y (s0) be given. Set

r = σ−1
1 · dist (supp∇χ,∪l(s0)

i=1 {ai(s0)}).

Then
d

ds

∫

R2
χdvs

εn
≤ C on [s0 +

1

| log εn|
, s0 + γ0r

2], (5.24)

where the constant C depends only on χ.
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Proof. It is an immediate consequence of inequality (2.7) of Lemma 2.3 combined with in-

equality (5.11) of Proposition 5.1, and the fact that ∇χ vanishes on ∪l(s0)
i=1 B(ai(s0), σ1r).

Remark 5.4. Notice that (5.24) is only valid on an interval depending on χ.

We introduce next the class, for s ∈ Z,

Yr(s) = {χ ∈ Y (s) , dist (supp∇χ, {ai(s)}1≤i≤l(s)) ≥ σ1r}.

The main step in the proof of Theorem 4 is the following

Proposition 5.2. There exists a fixed subsequence of (εn)n∈N (still denoted (εn)n∈N) such
that for any s0 ∈ Z, any r > 0, any χ ∈ Yr(s0) and every s ∈ [s0, s0 + γ0r

2],

vs
εn

(χ) converges as n→ +∞.

Proof. Let s0 ∈ Z = γ0Q+ and r ∈ Q+ be given. Thanks to Lemma 5.6 we can apply Lemma
5.4 with [a, b] ⊂ (s0, s0 +γ0r

2] and f i
n(s) = vs

εn
(χi), where {χi}i∈I is a countable dense subset

of Yr(s0). It follows that, for a subsequence (σ̃(n))n∈N ≡ (σs0,r(n))n∈N depending on s0 and
r,

f i
σ̃(n)(s) converges on [a, b] .

Using a diagonal argument for s0 ∈ Z and r ∈ Q+ we get rid of the dependence on s0 and r,
and the conclusion follows by density of the family {χi}i∈I in Y (s0).

5.6 Proof of Theorem 4 completed.

We inverse the role of s and s0, i.e. let s > 0 be given and fixed (whereas s0 will vary). Define

Z(s) = {χ ∈ C0
c (R2,R+) , supp∇χ ⊂ R2 \ Σs

v} .

Recall that for any s > 0, Σs
v is a finite set. Let χ ∈ Z(s) and set r = dist (supp∇χ,Σs

v).

Next, we are going to choose s0 ∈ Z such that s0 < s and 0 < s − s0 <
αr2

16
, so that

in particular, since α = γ0

σ2
1
, s ∈ (s0, s0 + γ0r

2). We claim that χ ∈ Yr/2(s0). Indeed, by

construction Σs
v ⊂ R2 × {s} ∩

l(s0)
⋃

i=1

Pα(ai(s0), s0), that is

Σs
v ⊂

l(s0)
⋃

i=1

B(ai(s0),

√

s− s0
α

) ⊂
l
⋃

i=1

B(ai(s0),
r

4
),

and the claim follows. We apply next Proposition 5.2 to s0 and r
2 to deduce that vs

εn
(χ)

converges as n → +∞. Since χ was arbitrary in Z(s) and since Z(s) is dense in C0
c (R2,R+),

it follows that vs
εn

(χ) converges for every χ ∈ C0
c (R2,R+), and the proof of Theorem 4 is

completed.
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5.7 Proof of Theorem 5 i).

In view of (5.11), we have, for every s > 0 and K ⊂ R2 × R+ \ Σv,

vs
∗(K ∩ R2 × {s}) = 0 (5.25)

It follows from the fact that Σv is closed and (5.25), that for any compact set Ω ⊂ R2 \Σs
v =

R2 \ ∪l(s)
i=1{ai(s)},

vs
∗(Ω) = 0,

so that

νs
∗ =

l(s)
∑

i=1

θi(s)δai(s)

for some positive numbers θi(s), so that the first statement in Theorem 5 i) is established.
Concerning the second statement (i.e. (8)), it requires to define the degrees di, and this will
be done in Section 6. Once the degrees are defined, inequality (8) follows immediately from
standard lower energy bounds (see e.g. [19]).

6 Convergence results for uε in the log time scale

In order to prove Theorem 1, we use the decomposition given by Proposition 4.1, i.e. we
write uε = wε exp iφε so that

uε ×∇uε = wε ×∇wε + ρ2
ε∇φε. (6.1)

We handle each of the terms on the r.h.s. of (6.1) separately.
Recall that from Proposition 4.1 φε solves the heat equation. Moreover, applying iii) and

Remark 4.1 b) with q = 5, we have, for s > 0 and s|log ε| > 1,

|∇φε(·, |log ε|s)| ≤ C(M0)

(

1√
s

+
1

(s|log ε|)1/5

)

, (6.2)

|D2φε(·, |log ε|s)| ≤
C(M0)
√

s|log ε|

(

1√
s

+
1

(s|log ε|)1/5

)

, (6.3)

|∂s∇φε(·, |log ε|s)| ≤
C(M0)

s|log ε|

(

1√
s

+
1

(s|log ε|)1/5

)

. (6.4)

We deduce

Proposition 6.1. Extracting possibly a subsequence, there exists a function c : R+
∗ → R2

such that
∇φε(·, s|log ε|) → c(s)

on every compact subset K of R2 × (0,+∞). Moreover,

|c(s)| ≤ C(M0)√
s

∀ s > 0. (6.5)
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The proof is a straightforward consequence of (6.2),(6.3),(6.4) and Ascoli-Arzelà Theorem.
Next we turn to wε ×∇wε, and recall the decomposition given in (4.35)

wε × δwε = δ∗ψ + δΦ0 + ζ, (6.6)

where ζ = (1 − |uε|2)δφε, the 2-form ψ is defined on R2 × R+ by the elliptic problem

−∆x,tψ = Jx,tuε on RN × R, (6.7)

and where the function Φ0 is defined by the parabolic problem

{

∂tΦ0 − ∆Φ0 = A+B on R2 × R

Φε(x, 0) = 0 for x ∈ R2 ,
(6.8)

where A = d∗(δ∗ψ − Pt(δ
∗ψ)dt) and B = −Pt(δ

∗ψ). We would like to emphasize the fact
that ζ is a perturbation term, whereas the definition of Φ0 involves only ψ, and thus Jx,tuε.
Therefore, the system of equations for ψ and Φ0 has Jx,tuε as source term. On the other
hand, we know by Proposition 3.3 that Jx,t is essentially time-independent (in the original
time scale). We will show that Φ0 tends to zero as ε goes to zero in suitable norms, whereas
ψ is essentially the solution of a static 2-dimensional problem. At this stage, we still work in
the original time variable t and let tε > 0 be given. We start our analysis with ψ.

6.1 Relaxation of ∇ψ to static fields

Let R > 10 be given. We apply Proposition 3.3 to the translated function uε(·, tε − R
2 ),

assuming tε ≥ 2R. This yields l points xε
i in Vε(tε) and integers di ∈ Z such that

‖Jx,tuε −
l
∑

i=1

diδxε
i
dx1 ∧ dx2‖[C0,α(B(0,R)×[tε−R

4
,tε+

R
4

])]∗ ≤ Cα(ε,M0, R).24 (6.9)

We compare ψ with the solution ψ̃ of the problem

−∆x,tψ̃ = π
l
∑

i=1

diδxε
i
dx1 ∧ dx2 on R2 × R,

explicitly given by
ψ̃(x, t) = −

l
∑

i=1

di log |x− xε
i | dx1 ∧ dx2,

which is independent of time t. Notice however that the definition of ψ̃ depends on the choice
of tε. We have

Lemma 6.1. Let 1 ≤ p < 3
2 . There exists constants C1(ε, p,R) depending only on ε, p and

R, and C2(M0), depending only on M0, such that for every compact set Ω ⊂ B(0, R
4 ) × [tε −

R
8 , tε + R

8 ], we have

‖∇x,t(ψ − ψ̃)‖Lp(Ω) ≤ C1(ε, p,R) +
C2(M0)

R9/20
|Ω|1/p.

Moreover, for fixed p and R, C1(ε, p,R) → 0 as ε→ 0.

24Recall that Cα(ε,M0, R) → 0 as ε→ 0.
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To illustrate the way Lemma 6.1 induces relaxation, take for example Ωε = B(0, 1)×(tε−
1, tε + 1) and let ε→ 0, tε → +∞ and R = Rε = tε/4. Then

Proof. In view of estimate (4.5) we have

‖∇x,t(ψ − ψ̃)‖L4/3+L5/2(R2×[tε−R
2

,tε+ R
2

]) ≤ CR3/4,

and therefore, by averaging, there exists some R0 ∈ [78R,R] such that

‖∇x,t(ψ − ψ̃)‖
L4/3+L5/2(∂B(0,R0)×[tε−R0

2
,tε+

R0
2

])
≤ CR3/4−2/5 = CR7/20.

Next, we decompose ψ − ψ̃ as
ψ − ψ̃ = ξ1 + ξ2,

where ξ1 is harmonic on PR0 ≡ B(0, R0) × [tε − R0
2 , tε + R0

2 ] and where ξ2 solves

{

−∆x,tξ2 = Jx,tuε − π
∑l

i=1 δxε
i
dx1 ∧ dx2 in PR0

ξ2 = 0 on ∂PR0

(6.10)

By standard elliptic estimates and a straightforward scaling argument, we have

‖∇x,tξ1‖L∞(B(0, R
4

)×[tε−R
8

,tε+
R
8

]) ≤ CR−9/20.

On the other hand, if p < 3
2 there exists 0 < α < 1 such that [C0,α]∗ →֒ W−1,p, so that, in

view of (6.9) and standard elliptic estimates once more,

‖∇x,tξ2‖Lp(B(0, R
4

)×[tε−R
8

,tε+ R
8

]) ≤ C(ε, p,R),

where C(ε, p,R) → 0 as ε→ 0 by Proposition 3.3, and the proof is complete.

Corollary 6.1. Let 1 ≤ p < 3/2 and let K ⊂ R2 be a fixed compact set. For a given δ > 0
there exists ε(δ,K) > 0 and T (δ,K) > 0 such that, if ε < ε(δ,K) and tε > T (δ,K), then

‖∇x,t(ψ − ψ̃)‖Lp(K×[tε−1,tε+1]) ≤ δ. (6.11)

6.2 Vanishing of ∇Φ0

Lemma 6.2. Let K ⊂ R2 be a fixed compact set. For a given δ > 0 there exists ε(δ,K) > 0
and T (δ,K) > 0 such that, if ε < ε(δ,K) and tε > T (δ,K), then

‖∇Φ0‖L4/3(K×[tε−1,tε+1]) ≤ δ. (6.12)

Proof. We begin with the observation that, since ψ̃ is independent of time, we have, for the
r.h.s. of (6.8),

A = d∗h̃ = d∗(δ∗(ψ − ψ̃) − Pt(δ
∗(ψ − ψ̃)dt)) and B = Pt(δ

∗(ψ − ψ̃)),

so that we may take advantage of the smallness of ψ − ψ̃ derived in the previous paragraph.
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We also recall the estimates obtained so far for Φ0, namely |∇Φ0| = g1 + g2, with25

sup
t∈R+

‖g1‖(L4/3+L5)(R2×[t,t+1]) ≤ CM0, sup
t∈R+

‖g2‖L10/7([t,t+1],L5(R2)) ≤ CM0.

Let R > 100 and 1 ≤ L ≤
√
R/4 to be determined later, and let tε > 2R. By averaging, there

exists some t0 ∈ [tε − (L2 + 1), tε − L2] such that

‖∇Φ0‖(L4/3+L5)(R2×{t0}) ≤ CM0.

On R2 × [t0,+∞) we decompose Φ0 as

Φ0 = Φ1
0 + Φ2

0 + Φ3
0, (6.13)

where Φ1
0 satisfies

{

∂tΦ
1
0 − ∆Φ1

0 = 0 on R2 × [t0,+∞)
Φ1

0(x, t0) = Φ0 for x ∈ R2 ,

and Φ2
0 satisfies

{

∂tΦ
2
0 − ∆Φ2

0 = Ã+ B̃ on R2 × R

Φ2
0(x, t0) = 0 for x ∈ R2 ,

where Ã = d∗(χh̃), B̃ = χB, with 0 ≤ χ ≤ 1 is a cut-off function on R2 such that χ ≡ 1 on
B(0, L), χ ≡ 0 on R2 \ B(0, 2L), and |∇χ| ≤ 2. In view of estimate (A.22) we obtain, for
every t ≥ tε − 1,

‖∇Φ1
0‖L∞(R2×{t}) ≤

C

L2/5
. (6.14)

For Φ2
0 we estimate Ã using Lemma 6.1 with p = 4/3 and Ω = B(0, 2L) × [t0, tε]. This yields

‖∇x,t(ψ − ψ̃)‖L4/3(Ω) ≤ C1(ε,R) + C2(M0)
L3

R9/20
.

It follows from standard parabolic theory that there exists a constant C3(L) such that

‖∇Φ2
0‖(L4/3+L4)(R2×[tε−1,tε+1]) ≤ C3(L)‖∇x,t(ψ − ψ̃)‖L4/3(Ω)

≤ C3(L)[C1(ε,R) +C2(M0)
L3

R9/20
].

(6.15)

where we have set C1(ε,R) ≡ C1(ε, 4/3, R) (for C1 given in Lemma 6.1). Finally, we turn to
Φ3

0. Arguing as in the proof of (4.24) and (4.25), we have |∇Φ3
0| = g1,3 + g2,3, with

sup
t∈R+

‖g1,3‖(L4/3+L5)(R2×[t,t+1]) ≤ CM0, and sup
t∈R+

‖g2,3‖L10/7([t,t+1],L5(R2)) ≤ CM0.

On the other hand, Φ3
0 satisfies the homogeneous heat equation on B(0, L)× [t0, tε]. It follows

from standard heat equations, after scaling26 and a few computations, that

‖∇Φ3
0‖L∞(B(0, L

2
)×[tε−L2

4
,tε+1])

≤ C(M0)

L2/5
. (6.16)

25We specify estimates (4.24) with r = 4/3, q = 5 and (4.25) with p∗ = 5, i.e. p = 10/7.
26Introduce the function Φ̃3

0(x, t) = Φ3
0(x ·L, (t− t0) ·L

2), which verifies the heat equation on B(0, 1)× [0, 1].
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We collect the estimates for Φi
0 (i = 1, 2, 3) given in (6.13), (6.14), (6.16) to assert that for

any compact set K ⊂ B(0, L) we have

‖∇Φ0‖L4/3(K×[tε−1,tε+1]) ≤ C(K)[
1

L1/5
+C3(L) · (C1(ε,R) + C2(M0)

L3

R9/20
)]. (6.17)

In order to establish the vanishing of ∇Φ0 we specify the values of L and R. We first choose
L sufficiently large such that K ⊂ B(0, L) and

C(K)

L2/5
≤ δ

3
.

Next, determine R so that
C(K)C2(M0)C3(L)L3

R9/20
≤ δ

3
.

Finally, we invoke the fact (see Lemma 6.1) that C1(ε,R) tends to zero as ε tends to zero, to
derive (6.12).

6.3 Convergence of uε ×∇uε to static fields

We express the results of sections 6.1 and 6.2 and in the log time scale. This straightforwardly
yields

Proposition 6.2. Let δ > 0 and s0 > 0 be given and let K ⊂ R2 be any compact subset. For
every s ≥ s0 there exists l points xε

i (s) in Vε(s|log ε|), l integers dε
i (s) depending only on s

and a constant ε(δ, s0, |K|) > 0 depending only on δ, s0 and |K| such that, if ε < ε(δ, s0, |K|),

‖uε ×∇uε −∇⊥(−
l
∑

i=1

dε
i (s) log |x− xε

i (s)|) − cε(s)‖L4/3(K×[s|log ε|−1,s|log ε|+1]) ≤ δ, (6.18)

where cε : R+ → R2 is a function verifying

|cε(s)| ≤
C(M0)√

s
. (6.19)

Whereas estimate (6.18) provides an estimate in a weak norm but holds for arbitrary
sets K, even those containing the concentration sets, better estimates can be deduced from
(6.18) provided K is far from the concentration sets. In this direction, we have, as a direct
consequence of Lemma 3.5 and Theorem 2.1

Proposition 6.3. Let r > 0, δ > 0 and s0 be given. Let s ≥ s0, ε1 > 0 and let K ⊂ R2 be a
compact set such that, if ε ≤ ε1,

dist(K,Ωε(s|log ε| − 2)) ≥ 4r.

There exists a constant ε0 ≤ ε1 depending only on r, δ, K and s0 such that, for ε < ε0,

‖uε ×∇uε −∇⊥(−
l
∑

i=1

dε
i (s) log |x− xε

i (s)|) − cε(s)‖C1(K×{s|log ε|}) ≤ δ. (6.20)

Moreover, there exists τε ∈ [0, 2π] such that
∥

∥

∥

∥

∥

∥

wε − exp(iτε)
l
∏

i=1

(

x− xε
i (s)

|x− xε
i (s)|

)di(s)
∥

∥

∥

∥

∥

∥

C1(K×{s|log ε|})

≤ δ. (6.21)
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Remark 6.1. In estimates (6.20) and (6.21) one may replace the slice t = s|log ε| by [s|log ε|−
1, s|log ε| + 1].

6.4 Proof of Theorem 1 completed

Formula (6.20) offers already a strong rigidity of possible behavior for uε × ∇uε. Indeed, it
reduces the problem, for fixed time s, to finite dimensional objects, namely the points xε

i (s)
and the degrees dε

i (s).
27 As for the construction in Section 5, the main point is to find a fixed

subsequence for which convergence holds at all positive times. We developed in full details
an argument for µε in Section 5. Our argument here for xε

i and dε
i is somewhat parallel.

Therefore we omit the details and point out the main adaptations.
First, whereas a semi-decreasing property was used in Section 5, here we invoke instead

the fact that the topological degrees dε
i (s) are constant on each of the pieces of the chains of

cylinders. Second, concerning the points xε
i , by construction they are confined in the vorticity

set, and hence in the concentration set Σεn
r of Lemma 5.3, whose limit is precisely Σµ. Once

the fixed subsequence is determined, the conclusion is an immediate consequence of (6.20).

7 Computation of the interaction terms

In this section, we take advantage of the compactness and rigidity results of the previous
section to derive explicit expansions of the various interaction terms, as functions of the
points ai(s) and their degrees di(s). To that aim, we restrict our attention here to test
functions χ ∈ D(R2) verifying the following assumption, for some r > 0,

(Hr(s))
∂χ

∂z̄2
= 0 on ∪l(s)

i=1 B(ai(s), r/8).

7.1 Refined estimates for the self-interaction term FS

In the log-time scale, we write the self-interaction term as

FS(s, χ,wε) = FS(s|log ε|, χ, wε) = AS(s, χ,wε) −
∫

R2×{s|log ε|}
∆χVε(wε)

where we have set, for a complex valued function w

AS(s, χ,w) =

∫

R2×{s|log ε|}
D2χ∇w∇w − ∆χ

|∇w|2
2

.

We have

Proposition 7.1. Let s0 > 0, r > 0 and δ > 0 be given. For some s > s0 assume that
χ ∈ D(R2) verifies Hr(s). There exists ε0 > 0 depending only on δ, s0 and χ such that, for
0 < ε < ε0,
∣

∣

∣

∣

∣

∣

AS(s′, χ, wε) −
π

2

l(s)
∑

i=1

d2
i (s)∆χ(ai(s)) − 4Re

∑

k<l

dk(s)dl(s)
(al(s)−ak(s))

(

∂χ
∂z̄ (ak(s)) − ∂χ

∂z̄ (al(s))
)

∣

∣

∣

∣

∣

∣

≤ δ,

(7.1)

27From subsection 6.1 we already know that the function cε converges on R+ to a function c, extracting
possibly a subsequence.
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for every s′ ∈ (s− 1
|log ε| , s + 1

|log ε|).

The proof of Proposition 7.1 is based on the asymptotics of wε × ∇wε and of some
properties of merely algebraic nature of AS. First we have

Lemma 7.1. With the same assumptions as in Proposition 7.1, there exists ε0 depending
only on s0, δ and χ, such that for 0 < ε < ε0,
∣

∣

∣

∣

∣

∫ s|log ε|+1

s|log ε|−1
AS(

t

|log ε| , χ, wε) dt − 4 Re

(

∫

suppχ\∪l(s)
i=1B(ai(s),r/8))×{s|log ε|}

ω(w∗)
∂2χ

∂z̄2

)∣

∣

∣

∣

∣

≤ δ,

where

w∗(z) =

l(s)
∏

i=1

(

z − ai(s)

|z − ai(s)|

)di(s)

on R2.

Proof. In view of (2.6), we have for X = 2∂χ
∂z̄

AS(s, χ,wε) = 2 Re

(

∫

R2×{s|log ε|}
ω(wε)

∂2χ

∂z̄2

)

.

Note that on B(ai(s), r/8),
∂2χ
∂z̄2 = 0 by assumption Hr(s). On the other hand, from (6.21)

we infer that on
(

suppχ \ ∪l(s)
i=1B(ai(s), r/8)

)

× [s|log ε| − 1, s|log ε| + 1]

ω(wε) → ω(w∗) uniformly.28

The conclusion follows.

Proof of Proposition 7.1 completed. In view of Lemma 7.1 it suffices to establish the
formula

∫

(

suppχ\∪l(s)
i=1B(ai(s),r/8)

)

×{s|log ε|}
ω(wε)

∂2χ

∂z̄2
= π

l(s)
∑

i=1

d2
i (s)∆χ(ai(s))

− 2
∑

k<l

dk(s)dl(s)

(al(s) − ak(s))

(

∂χ

∂z̄
(ak(s)) −

∂χ

∂z̄
(al(s))

)

. (7.2)

Notice that ω(w∗) is not locally integrable, but however it defines a distribution in view of
the formula29

ω(w∗) = −
(

l(s)
∑

i=1

di(s)

z − ai(s)

)2
. (7.3)

On the other hand, by assumption Hr(s),
∂2χ
∂z̄2 = 0 on ∪l(s)

i=1B(ai(s), r/8) and therefore we
obtain30

∫

R2\B(a, r
8
)×{s|log ε|}

ω(w∗)
∂2χ

∂z̄2
=
〈

ω(w∗),
∂2χ

∂z̄2

〉

D′,D
. (7.4)

28The domain here is not fixed, but identified modulo time translation to a fixed domain K × [−1, 1].
Convergence here and in the sequel is meant in this last domain.

29see e.g. [4], chapter VIII.
30this is a standard exercise in distribution theory.
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The expansion of (7.3) yields for (7.4)

〈

ω(w∗),
∂2χ

∂z̄2

〉

= −
l(s)
∑

k=1

〈 d2
k(s)

(z − ak(s)2)
,
∂2χ

∂z̄2

〉

− 2
∑

k<l

dkdl

al − ak

〈 1

z − ak
− 1

z − al
,
∂2χ

∂z̄2

〉

.

For the first terms, we integrate by parts

−
〈 1

(z − ak(s))2
,
∂2χ

∂z̄2

〉

= −
〈 1

z − ak
,
∂3χ

∂z∂z̄2

〉

=
〈 ∂

∂z̄

( 1

z − ak

)

,
∂2χ

∂z∂z̄

〉

= π
〈

δak
,
∂2χ

∂z∂z̄

〉

= π
∂2χ

∂z∂z̄
(ak) =

π

4
∆χ(ak).

For the second terms, we obtain similarly

−
〈 1

z − ak
,
∂2χ

∂z̄2

〉

=
〈 ∂

∂z̄

(

1

z − ak

)

,
∂χ

∂z̄

〉

= π
∂χ

∂z̄
(ak).

The conclusion (7.2) follows by summation.

7.2 Refined estimates for FI

Recall that FI = FJ +RI , where FJ is given by (2.18) and RI by (2.15). Concerning FI we
have, setting FJ(s, χ,∇φε, wε) = FJ(s|log ε|, χ,∇φε, wε).

Proposition 7.2. Let s0 > 0, r > 0 and δ > 0. For some s > s0 assume that χ ∈ D(R2)
verifies Hr(s). There exists ε0 > 0 depending only on δ, s0 and χ such that, for 0 < ε < ε0,

∣

∣

∣

∣

∣

∣

FJ(s, χ,∇φε, wε) − π

l(s)
∑

i=1

di(s)c(s) ×∇χ(ai(s))

∣

∣

∣

∣

∣

∣

≤ δ. (7.5)

Proof. Recall that

FJ(s, χ,∇φε, wε) =

∫

R2×{s|log ε|}
(∇φε ×∇χ)Jwε.

The conclusion then follows from the convergence of Jwε to π
∑l(s)

i=1 diδai in (C1(suppχ))∗ and
the convergence of ∇φε to c in C1(suppχ).

We next show that RI is of lower order.

Proposition 7.3. Let s0 > 0, r > 0, δ > 0 and let χ ∈ D(R2). There exists ε0 > 0 depending
only on δ, s0 and χ such that, for 0 < ε < ε0,

∣

∣

∣

∣

∣

∫ s|log ε|+1

s|log ε|
RI(t, χ,∇φε, wε) dt

∣

∣

∣

∣

∣

≤ δ

r
. (7.6)

Proof. Recall that

RI(s, χ,∇φε, wε) =

∫

R2×{s|log ε|}
−∆φε∇χ · (wε ×∇wε) + ∇φε · ∇χdiv(wε ×∇wε). (7.7)
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For the first integrated term on the r.h.s. of (7.7) we invoke Proposition 4.1 iii) (for k = N =
2) and iv) to assert that

∣

∣

∣

∣

∣

∫

R2×{s|log ε|}
∆φε∇χ · (wε ×∇wε)

∣

∣

∣

∣

∣

≤ C

s
√

|log ε|r . (7.8)

For the second term, we invoke the convergence (6.18) (see also remark 6.1)

wε ×∇wε → ∇⊥





l(s)
∑

i=1

di(s) log |x− ai(s)|


 in L
4/3
loc (R2 × [s|log ε|, s|log ε| + 1])

so that
div(wε ×∇wε) → 0 in W

−1,4/3
loc (R2 × [s|log ε|, s|log ε| + 1])

and the conclusion follows by Proposition 4.1 iii) once more.

Remark 7.1. If we assume moreover that the test function χ satisfies

dist(supp∇χ,∪l
i=1(s){ai(s)}) ≥ r > 0,

then the integrated estimate (7.6) may be replaced by

|RI(s|log ε|, χ,∇φε, wε)| ≤
δ

r
. (7.9)

In the next two sections, we deduce consequences of the previous estimates with suitable
choices of test functions χ.

8 Proof of Theorem 5 ii)

Let s0 > 0. Throughout this section, we choose the non-negative test function χ such that

dist(supp∇χ,∪l(s0)
i=1 {ai(s0)}) ≡ 8r > 0. (8.1)

In particular χ is constant on a neighborhood of the points ai(s0), and assumption Hr(s0) is
therefore satisfied.

The main point in the proof of Theorem 5 ii) is

Proposition 8.1. Let s0 > 0 be given, and assume that χ ∈ D(R2) satisfies (8.1). There
exists µ0 depending only on s0, M0, χ such that for δ > 0 there exists ε0 such that for
0 < ε < ε0,

d

ds

∫

R2
χdvs

ε ≤ δ

for every s ∈ (s0, s0 + µ0r
2).

Proof. Invoking formula (2.21)

d

ds

∫

R2
χdvs

ε ≤ FS(s, χ,wε) + FS(s, χ, φε) + FI(s, χ,∇φε, wε) + L0(s, |uε|, χ, φε).
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For the first term on the right hand side, we invoke Proposition 7.1. For the third term, we
invoke likewise Proposition 7.2 and Remark 7.1. L0 = A5 is clearly a perturbation term and
can be shown to be arbitrarily small as in Step 3 of Lemma 4.4.

Finally, we turn to

FS(s, χ, φε) =

∫

R2×{s|log ε|}
D2χ∇φε∇φε − ∆χ

|∇φε|2
2

.

Since ∇φε(s|log ε|) converges in C1 to the function c(s) which is constant in x, it follows that
FS(s, χ, φε) converges to

(∫

R2
D2χ

)

c(s)c(s) −
(∫

R2
∆χ

) |c(s)|2
2

= 0.

It follows from Proposition 8.1, passing to the limit εn → 0, that

d

ds

∫

R2
χdvs

∗ ≤ 0

(in the sense of distribution), and the proof of Theorem 5 ii) is completed.

9 Degree zero and collisions

The main focus of this section is to provide the proof of Theorem 3, Theorem 5 and Propo-
sition 1. The starting point is once more the evolution equation for the energy : however
here it will be used to derive estimates for the potential Vε(uε). In particular, its integral
will be shown to be small on a vortex patch of total degree zero. Therefore, we use again
the remarkable properties of the function |x|2 = zz̄ and specify throughout the choice of test
function χ as follows. Let a ∈ R2, and r > 0 be given. We set

χa,r(x) = Λ(
x− a

r
) (9.1)

where Λ is defined by (4.51) and modeled on |x|2. Let s > 0. We say that Ha,r(s) is satisfied
if and only if, for every i ∈ {1, · · · , l(s)}

(Ha,r(s)) either dist(ai(s), a) ≤
r

8
or dist(ai(s), a) ≥ r.

If a and r satisfy Ha,r(s), we set

I = {i ∈ {1, · · · , l(s)}, s.t. ai(s) ∈ B(a, r/8)} J = {1, · · · , l(s)} \ I.

We also define
d(a, s, r) =

∑

i∈I

di(s).

Notice that if Ha,r(s) is met, then χa,r satisfies Hr(s). In particular, Proposition 7.1 and
7.2 may be specified as follows :
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Lemma 9.1. Let s0 > 0, r > 0 and δ > 0 be given. There exists ε0 depending only on δ, s0
and r such that if ε ≤ ε0, s > s0 and Ha,r(s) is satisfied, then

∣

∣

∣

∣

∣

∣

AS(s, χa,r, wε) −
16π

r2



d2(a, s, r) + 2
∑

i∈I, j∈J

di(s)dj(s)Re
ai(s) − a

ai(s) − aj(s)





∣

∣

∣

∣

∣

∣

≤ δ.

and
∣

∣

∣

∣

∣

FJ(s, χa,r,∇φε, wε) −
16π

r2

∑

i∈I

di(s)(ai(s) − a) × c(s)

∣

∣

∣

∣

∣

≤ δ.

Proof. Notice that if k ∈ I, ∆χ(ak(s)) = 32
r2 , whereas if k ∈ J ,

∂2χa,r

∂z∂z̄ (ak(s)) = 0. Notice also

that if k ∈ I,
∂χa,r

∂z̄ (ak(s)) = 8
r2 (ak(s)− a), whereas if k ∈ J ,

∂χa,r

∂z̄ (ak(s)) = 0. It suffices then
to substitute these expressions in (7.1) and (7.5).

9.1 Estimates for the potential Vε(uε)

Combining the evolution of localized energies with the refined estimates of the previous
subsection, we are led to

Proposition 9.1. Let s0 > 0, a ∈ R2, r > 0 be such that Ha,r(s0) holds. Let δ > 0 and
κ ≤ 1/16 be given, and assume the stronger confinement assumption

|a− ai(s0)| ≤ κr, for every i ∈ I. (9.2)

Then, there exists a constant ε0 > 0 depending only on δ, r, κ and s0, and constants C1, C2 > 0
depending only on M0 such that for every 2κ ≤ µ ≤ 1

8 and 0 < ε < ε0 we have

∣

∣

∣

∣

∣

r2

32∆t

[

∫

Λ(µ)
χa,r(x)|∂twε|2 +

∫

∂+Λ(µ)
χa,reε(wε)

]

+
1

∆t

∫

Λ(µ)
Vε(uε) −

π

2
d2(a, s, r)

∣

∣

∣

∣

∣

≤ C1

(

(
κ

µ
)2 + µ+ δr2

)

, (9.3)

where Λ(µ) = B(a, r/8) × [s0|log ε|, s0|log ε| + ∆t], ∂+Λ(µ) = B(a, r/8) × {s0|log ε| + ∆t},
and ∆t = C2µ

2r2|log ε|.

Proof. The starting point is Lemma 2.6 specified with the choice χ = χa,r given in (9.1).
This yields, setting t1 = s0|log ε|, t2 = (s0 + Cµ2r2)|log ε|, and after integration,

∫

R2×{t2}

χeε(wε) +

∫

R2×[t1,t2]

χ|∂twε|2 + ∆χVε(uε) =

∫

R2×{t1}

χeε(wε)

+

∫ t2

t1
AS(

t

|log ε| , χ, wε) + (FJ + RI + R)(t, χ,∇φε, wε) dt. (9.4)

We next bound each of the terms on the r.h.s. of (9.4). For the first term, which involves
only the initial time t1 = s0|log ε|, we invoke hypothesis Ha,r(s0), together with the stronger
confinement assumption (9.2), to obtain, if ε is sufficiently small,

∣

∣

∣

∣

∣

∫

R2×{t1}
χeε(wε)

∣

∣

∣

∣

∣

≤ Cκ2|log ε|. (9.5)
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For RI we invoke Proposition 7.3 (which does not rely on assumption Ha,r(s0)) to assert
that, if ε is sufficiently small, then

∣

∣

∣

∣

∫ t2

t1
RI(t, χ,∇φε, wε) dt

∣

∣

∣

∣

≤ Cδµ2r|log ε|. (9.6)

For R we use (4.43) together with the observation that, since |∇φε| is bounded,

‖∇wε‖L1(B(a,r)×{t1}) ≤
√
πr‖∇wε‖L2(B(a,r)×{t1}) ≤ Cr

√

|log ε|.

This yields
∣

∣

∣

∣

∫ t2

t1
R(t, χ,∇φε, wε) dt

∣

∣

∣

∣

≤ C

r2
|log ε|3/5. (9.7)

For the last terms AS and FJ we rely on the Cylinders Lemma, which has the following
consequence: if the constant C2 > 0 is chosen sufficiently small (depending only on M0),
then assumption Ha,µr(s) is satisfied for every s ∈ [s0, s0 + C2µ

2r2] (for 2σ0 ≤ µ ≤ 1/8).
Therefore we may apply Propositions 7.1 and 7.2 with r replaced by µr. We have, for
s ∈ [s0, s0 + C2µ

2r2] and every i ∈ I, j ∈ J ,

∣

∣

∣

∣

∣

ai − a

ai − aj

∣

∣

∣

∣

∣

≤ Cµ ,

so that
∣

∣

∣

∣

∣

∑

i∈I

di(s)(ai(s) − a) × c(s)

∣

∣

∣

∣

∣

≤ Cµr. (9.8)

Hence, it follows from (7.1) and (7.5) that

∣

∣

∣

∣

∫ t2

t1
AS(

t

|log ε| , χ, wε) dt

∣

∣

∣

∣

≤ C(
µ

r2
+ δ)C2µ

2r2|log ε|

and
∣

∣

∣

∣

∫ t2

t1
FJ (t, χ,∇φε, wε) dt

∣

∣

∣

∣

≤ C(
µ

r
+ δ)C2µ

2r2|log ε|. (9.9)

Combining (9.4) to (9.9), we are led to

∫

Λ(µ)
∆χ · Vε(uε) ≤ C1(κ

2 + µ2(δr2 + µ))|log ε| . (9.10)

Notice that on B(a, r/8), ∆χ = 32/r2. On the other hand, by the Cylinders Lemma and
Theorem 2.1, (2.23), we know that

|Vε(uε)(x, t)| ≤
C

r2
ε2|log ε|2

for (x, t) in B(a, r) \B(a, r/8) × [t1, t2]. The conclusion (9.3) follows.
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9.2 Clearing-Out via potential estimates

The philosophy of the Clearing-Out theorem presented in Section 2 was that smallness of
integral energy bounds imply pointwise bounds. In this section we derive results in the same
spirit, but based only on potential estimates. Our proofs rely heavily on the fact that N = 2.
We begin with the following lemma, where time derivatives are treated as perturbation terms
for the corresponding elliptic equations on time slices.

Lemma 9.2. Let uε be a solution of (PGL)ε on R2 × R+ and let t ≥ 1. Then, we have, for
every r >

√
2ε,

∫

B(0,r)×{t}

eε(uε) ≤ C
[

1 + |log ε|(
∫

B(0,4r)×{t}

Vε(uε) )2 +

∫

B(0,4r)×{t}

(r2|∂tuε|2 + r−2(

∫

B(0,4r)×{t}

|∇uε|2)
]

,

(9.11)
where C depends only on M0.

Proof. We follow some arguments developed in Section 3.6 of [6]. We assume r = 1, the
general case follows then by scaling. Let χ ∈ C∞

c (R2) be such that 0 ≤ χ ≤ 1, χ ≡ 1 on
B(0, 2) and χ ≡ 0 on R2 \B(0, 4). We assume moreover ‖∇χ‖∞ ≤ 1. We consider the 2-form
ψt defined on R2 × {t} by

ψt = − 1

2π
log |x| ∗ [d(uε × duε)χ],

so that in particular

−∆ψt = dd∗ψt = d(uε × duε)χ on R2 × {t} (9.12)

Since χ ≡ 1 on B(0, 2) it follows that d(uε × duε − d∗ψt) = 0 on B(0, 2) × {t}. Invoking
Poincaré Lemma, there exists some real-valued function φt defined on B(0, 2)×{t} such that

uε × duε = dφt + d∗ψt on B(0, 2) × {t}. (9.13)

Applying the d∗ operator to (9.13) we obtain d∗(uε × duε) = −∆φt, so that by (4.17) we are
led to the equation

−∆φt = uε ×
∂uε

∂t
, on B(0, 2) × {t}. (9.14)

Step 1. Estimate for ψt. We will prove that
∫

B(0,2r)×{t}

|∇ψt|2 ≤ C
[

1 + |log ε|(
∫

B(0,4r)×{t}

Vε(uε) )2
]

. (9.15)

To this aim, we first define a re-projection of uε in the following way. Let τ be the real-valued
function defined on R2 × (0,+∞) by τ(x, t) = p(|uε(x, t)|), where p : [0, 3] → [1/3, 2] is a
function verifying the properties

p(s) = 1
s if s ≥ 1

2 , p(s) = 1 if 0 ≤ s ≤ 1
4 , |p′(s)| ≤ 4 ∀ s. (9.16)

By construction, |1 − τ2(x)| ≤ K(1 − |uε(x)|2). Set ũε = τ uε, so that

ũε = uε if |uε| ≤ 1
4 , |ũε| = 1 if |uε| ≥ 1

2 . (9.17)
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Notice that, since |ũε| = 1 if |uε| ≥ 1
2 , we have

d(ũε × dũε) = 0 if |uε| ≥ 1
2 . (9.18)

On the other hand, since |∇uε| ≤ C
ε , it follows31

|d(ũε × dũε)| ≤ CVε(uε). (9.19)

We decompose ψt = ψ1,t + ψ2,t on R2 × {t}, where

{

−∆ψ1,t = d(ũε × dũε)χ on R2 × {t}
−∆ψ2,t = d((1 − τ2)uε × duε)χ on R2 × {t}. (9.20)

By our previous estimates we have the pointwise inequality ((1 − τ2)uε × duε)
2 ≤ CVε(uε),

and hence
||(1 − τ2)uε × duε||L2(B(0,4))×{t} ≤ C‖Vε(uε)‖L1(B(0,4))×{t} .

It follows therefore by standard elliptic theory that

∫

B(0,4)×{t}
|∇ψ2,t|2 ≤ C

∫

B(0,4)×{t}
Vε(uε). (9.21)

In view of (9.19), we have

‖∆ψ1,t‖L1(R2×{t}) ≤ K

∫

B(0,4)×{t}
Vε(uε),

and therefore we obtain the L2 estimate
∫

B(0,4)×{t}
|∇ψ1,t| ≤ C

∫

B(0,4)×{t}
Vε(uε). (9.22)

To obtain an L2 estimate for ∇ψ1, recall that by the Brezis-Gallouët inequality [9], for any
u ∈ H2(R2),

‖u‖L∞(R2) ≤ K‖u‖H1(R2)

[

1 + log
1
2 (1 + ‖u‖H2(R2))

]

.

We apply the previous inequality to ψ1,tχ. Since ‖ψ1,tχ‖H2(R2) ≤ K
ε2 , we obtain

‖ψ1,tχ‖L∞(R2) ≤ K‖ψ1,t‖H1(R2) |log ε|
1
2 . (9.23)

On the other hand, we have

∆(ψ1,tχ) = (∆ψ1,t)χ+ 2∇ψ1,t∇χ+ ψ1,t∆χ

so that by (9.22)

‖∆(ψ1,tχ)‖L1(R2) ≤ K

∫

B(0,4)×{t}
Vε(uε). (9.24)

31it suffices, in view of (9.18), to establish (9.19) for |uε| ≤
1
2
. In that case Vε(uε) ≥

9
64ε2 .
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Using standard estimates, we finally write

‖ψ1,tχ‖2
H1(R2) ≤ K‖∆(ψ1,tχ)‖L1(R2) ‖ψ1,tχ‖L∞(R2)

≤ K‖∆(ψ1,tχ)‖L1(R2) ‖ψ1,tχ‖H1(R2)|log ε|
1
2 , (9.25)

which combined with (9.24) yields

∫

B(0,2)×{t}
|∇ψ1,t|2 ≤ C|log ε|

[

∫

B(0,4)×{t}
Vε(uε)

]2

. (9.26)

The claim (9.15) is proved.

Step 2. Estimates for φt. We claim that

∫

B(0,2)×{t}
|∇φt|2 ≤ C

[

‖∂tuε‖2
L2(B(0,4)×{t}) + ‖∇uε‖2

L1(B(0,4)×{t}) + ‖Vε(uε)‖2
L1(B(0,4)×{t})

]

.

(9.27)
Indeed, by Caccioppoli estimates we obtain from (9.14)

∫

B(0,2)×{t}
|∇φt|2 ≤ C

[

‖∂tuε‖2
L2(B(0,4)×{t}) + ‖φt − φ̄t‖2

L2(B(0,4)×{t})
]

,

where φ̄t denotes the mean value of φt on B(0, 4) × {t}. By Sobolev embedding,

‖φt − φ̄t‖2
L2(B(0,4)×{t}) ≤ C‖∇φt‖2

L1(B(0,4)×{t}) ,

so that
∫

B(0,2)×{t}
|∇φt|2 ≤ C

[

‖∂tuε‖2
L2(B(0,4)×{t}) + ‖∇φt‖2

L1(B(0,4)×{t})
]

.

On the other hand, on B(0, 4) × {t}, by (9.13), |∇φt| ≤ C(|∇uε| + |∇ψt|), and hence using
(9.26) we obtain (9.27).

Step 3. Estimates for ∇|uε|. We claim that

∫

B(0,2)×{t}
|∇|uε| |2 ≤ C

[

∫

B(0,4)×{t}
Vε(uε)

]1/2 [

(

∫

B(0,4)×{t}
eε(uε))

1/2 + ε|log ε|
]

. (9.28)

Set σε = 1 − |uε|2, so that

∂tσε − ∆σε = 2|∇uε|2 −
2

ε2
σε(1 − σε). (9.29)

We multiply (9.29) by σεχ
2 and integrate by parts. This yields

∫

B(0,2)×{t}
|∇(σεχ)|2 ≤ 2

∫

B(0,4)×{t}
|∇uε|2σε + C

∫

B(0,4)×{t}
|∂tuε|σε

+

∫

B(0,4)×{t}
σ2

εχ
2.

(9.30)
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Hence, in view of the estimate |∇uε| ≤ C
ε we are led to

∫

B(0,2)×{t}
|∇(σε)|2 ≤ C

[

∫

B(0,4)×{t}
Vε(uε)

]1/2 [

(

∫

B(0,4)×{t}
|∇uε|2)1/2 + ε|log ε|

]

+ ε‖∂tuε‖L2(B(0,4)×{t}).

(9.31)

Since |∇σε| = |uε| · |∇|uε| |, we have

∫

B(0,2)×{t}
|∇|uε| |2 ≤ 2

∫

B(0,2)×{t}
|∇(σε)|2 + (1 − |uε|2)|∇uε|2,

and using once more the bound |∇uε| ≤ C
ε we derive (9.28).

Combining (9.26), (9.27), (9.28), the identity

4|uε|2|∇uε|2 = 4|uε ×∇uε|2 + |∇|uε||2

and the estimate

4|(1 − |uε|2)||∇uε|2 ≤ C
(1 − |uε|2)

ε
|∇uε| ≤ 2|∇uε|2 + CVε(uε)

conclusion (9.11) follows.

As a consequence of Lemma 9.2 and the Cylinders Lemma, we have

Proposition 9.2. Let uε be a solution of (PGL)ε, s0 > 0, R > 0 and ∆s > 0 be given. There
exists a universal constant ηv > 0, and constants β0, ε0 and C(M0) depending only on M0

such that, if

|log ε|−1/6 ≤
√

∆s

β0
≤ R ≤ |log ε|1/6, (9.32)

and
1

∆s

∫

Λ
Vε(uε) ≤ ηv|log ε|, (9.33)

where Λ = B(0, R) × [s0|log ε|, (s0 + ∆s)|log ε|], then, for ε ≤ ε0,

eε(uε) ≤
C(M0)

∆s
on B(0, R

2 ) × [(s0 + 3∆s
4 )|log ε|, (s0 + ∆s)|log ε|].

Proof. By averaging, there exists some s1 ∈ [s0, s0 + ∆s] such that

∫

B(0,R)×{s1|log ε|}
Vε(uε) ≤ Cηv,

∫

B(0,R)×{s1|log ε|}
|∂tuε|2 ≤ C,

∫

B(0,R)×{s1|log ε|}
|∇uε| ≤ C(R2 + 1),

where C depends possibly on M0. Invoking (9.11) and scaling, we deduce32

∫

B(0,
3R
4 )×{s1|log ε|}

eε(uε) ≤ C

(

η2
v |log ε| +

R−2

∆s
+ C

R3

∆s
+

1

∆s

)

.

32Actually, in (9.11) 4r can be replaced by αr, for any arbitrary α > 1, at a price of a larger constant Cα.
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Choosing ηv and ε0 sufficiently small, we obtain, for ε ≤ ε0,
∫

B(0,
3R
4 )×{s1|log ε|}

eε(uε) ≤
η0

4
|log ε|. (9.34)

In particular, for r = R
100σ

−1
0 ,

Ωε
r/4(s1|log ε|) ∩B(0, 5R

8 ) = ∅. (9.35)

It follows from Proposition 4.4 that Ωε
r/4(s|log ε|) ∩ B(0, 45R

80 ) = ∅ for every s ∈ [s1, s1 +

Cσ−2
0 γ0R

2]. In particular, if β0 is chosen sufficiently small, Cσ−2
0 γ0R

2 ≥ ∆s. The proof is
then completed as the one of Lemma 4.8.

9.3 Proof of Theorem 3

The proof of Theorem 3 is completed combining Proposition 9.1 and Proposition 9.2. We
choose the parameters µ, κ, δ so that the r.h.s. of inequality (9.3) is less than ηv. First

let r = 8R, and choose δ so that C1δr
2 ≤ ηv

3 . Set µ0(κ) =
√

3C1
ηv
κ and µ1 = ηv

3C1
. For

κ ≤ κ1 = ( ηv

3C1
)3/2, we have µ0(κ) ≤ µ1, and by construction

C1((
κ
µ )2 + µ+ δr2) ≤ ηv for µ0(κ) ≤ µ ≤ µ1. (9.36)

In particular, it follows from Proposition 9.1 that if ε is sufficiently small, then for every
µ0(κ) ≤ µ ≤ µ1, we have, since d(a, s, r) = 0,

1

∆s(µ)

∫

Λ(µ)
Vε(uε) ≤ ηv|log ε|,

where Λ(µ) = B(a,R) × [s0|log ε|, (s0 + ∆s)|log ε|], and ∆s(µ) = 64C2µ
2R2. On the other

hand, if µ ≤ µ2 = β0

8
√

C2
, we have

√
∆s ≤ β0R. Set κ0 =

√

ηv

3C1
· min{µ1, µ2}. For κ ≤ κ0,

µ0(κ) ≤ µ3 = min{µ1, µ2}, so that for µ0(κ) ≤ µ ≤ µ3 we may apply Proposition 9.2 which
yields

|eε(uε)| ≤ C(µ) on B(a, R
2 ) × [s0 + 3∆s(µ)

4 |log ε|, s0 + ∆s(µ)|log ε|].

This completes the proof, setting K1 = 144C1C2
ηv

and K2 = min{β0,
64C2η2

v

9C2
1

}.

9.4 Proof of Theorem 5 iii) and Proposition 1

Let s0 > 0 and i ∈ {1, · · · , l(s0)} be such that di(s0) = 0, and let R > 0 be such that
B(ai(s0), R) ∩ Σs

v = {ai(s0)}.
Step 1. We have

lim sup
s→s0, s>s0

νs
∗(B(ai(s0),

R

2
) = 0.

Indeed, assumption (6) of Theorem 3 is verified for every 0 < κ < 1. In particular it follows
from Theorem 3 that

Σs
v ∩B(ai(s0),

R

2
) = ∅

for every s ∈ (s0, s0 +K2R
2].
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Step 2. We have

lim inf
s→s0, s<s0

νs
∗(B(ai(s0),

R

4
)) ≥ η0

2
.

This was already proved in (5.19).

Step 3. It follows from Step 1, Step 2 and Theorem 5 ii) that equation (9) is satisfied.

Step 4. It follows from Theorem 5 iii) that di(s) = 0 (for some i ∈ {1, · · · , l(s)}) may happen
for at most 2M0

η0
times s. This yields the conclusion of Proposition 1.

Appendix A : Linear elliptic and parabolic estimates

A.1 Elliptic problems in RN+1

The first part of this Appendix is devoted to the study of elliptic problems on RN+1 = RN
x ×Rt

of the form
−∆ρ = ω on RN

x × Rt, (A.1)

where ∆ ≡ ∆x,t denotes the Laplacian on RN+1. Whereas classical theory deals with sources
ω for which some global bounds on RN+1 are assumed, here we focus on the case where we
only have at our disposal bounds for each time slice RN × [t, t + 1]. Our first result in this
direction is

Lemma A.1. Assume that ω is a measure on RN+1, set

µ(t) = ‖ω‖(RN × [t, t+ 1]), for t ∈ R,

and assume that µ(t) belongs to L∞ ∩ Lp(R) for some 1 ≤ p ≤ +∞. Then there exists a
solution ρ of (A.1) such that |∇x,tρ| = g1 + g2, where

sup
t∈R

‖g1‖Lp1 (RN×{t}) ≤ K(p1, p)‖µ‖Lp(R) for any p1 >
pN

pN − (p − 1)
, (A.2)

sup
t∈R

‖g1‖Lp2 (RN×[t,t+1]) ≤ K(p2)‖µ‖L∞(R) for any 1 ≤ p2 <
N + 1

N
. (A.3)

Proof. Let G be the fundamental solution for the Laplacian on RN+1, so that in particular

|∇x,tG(x, t)| ≤ σ(x, t),

where the function σ is explicitly defined by

σ(x, t) =
1

(x2 + t2)N/2
.

We next show that G ∗ ω is a well-defined function. We write

σ = σin + σout,

where σin = 1BN×[−1,1] · σ, where BN denotes the unit ball in RN , and σout = σ − σin. In

particular σin has compact support and σout is bounded. Let f in = σin∗ω and f out = σout∗ω.
We bound each of the functions f in and f out in appropriate norms.
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Step 1. We have

sup
t∈R

‖f out‖Lp(RN×{t}) ≤ Kp sup
t∈R

‖ω‖(RN × [t, t+ 1]) for each p >
N

N − 1
. (A.4)

Proof. We may assume without loss of generality that ω is smooth. Since the norms in-
volved in inequality (A.4) are invariant under time translations, we merely have to bound
‖f out(·, 0)‖Lp(RN ). The starting point is an estimate for the kernel σout. We obviously have
that

σout(x, t) ≤ 1

|x|2α
max
|x|≥1

|x|2α

(|x|2 + t2)N/2
for |x| ≥ 1.

A simple computation shows that, if α < N
2 ,

max
|x|≥1

|x|2α

(|x|2 + t2)N/2
≤ C(1 + |t|)2α−N ,

so that

σout(x, t) ≤ C
(1 + |t|)2α−N

(1 + |x|2)α ∀ (x, t) ∈ RN × R.

In particular, we obtain
|f out(y, 0)| ≤ Gα ∗Hα(y), (A.5)

where

Gα(x) =
C

(1 + |x|2)α , Hα(x) =

∫

R

(1 + |t|)2α−Nω(x, t)dt. (A.6)

Notice that

Gα ∈ Lp1(RN ) for every p1 >
N

2α
. (A.7)

On the other hand, we may bound ‖Hα‖L1(RN ) by Fubini theorem:

∫

RN
|Hα(x)dx| =

∫

R

(1 + |t|)2α−N‖ω(·, t)‖L1(RN×{t})dt

≤ C

∫

R

(1 + |t|)2α−N‖ω‖L1(RN×[t,t+1])dt

≤ C

∫

R
(1 + |t|)2α−Nµ(t)dt

≤ C

(∫

R

(1 + |t|)(2α−N)p′
)1/p′

‖µ‖Lp(R).

If (2α − N)p′ < −1, that is 2α < N + 1 − 1
p , then the explicit integral on the r.h.s. of the

last inequality converges. Going back to (A.7), choosing p1 >
N

N+1− 1
p

and invoking Young’s

inequality, (A.4) follows.

Step 2. We have, for every 1≤ q < N+1
N ,

sup
t∈R

‖f in‖Lq(RN×[t,t+1]) ≤ Cq sup
t∈R

‖ω‖(RN × [t, t+ 1]). (A.8)
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Proof. By construction, σin has compact support included in the strip RN×[−1, 1]. Therefore
the restriction of f in to the strip RN × [t0, t0 + 1], for t0 ∈ R is identical to the restriction on
the same strip of the convolution σin ∗ χ · ω, where χ(x, t) verifies χ(x, t) = 1 if |t− t0| ≤ 2,
χ(x, t) = 0 otherwise. We notice that χ · ω ∈ L1(RN+1), more precisely we have

‖χ · ω‖L1(RN+1) ≤ C sup
t∈R

‖ω‖L1(RN×[t,t+1]).

On the other hand,

σin ∈ Lq(RN+1) for any 1 ≤ q <
N + 1

N
,

and the conclusion (A.8) follows once more by Young’s inequality.

Proof of Lemma A.1 completed. It follows from Step 1 and Step 2 that ∇G ∗ ω is
well-defined and may be written as ∇G ∗ω = g1 + g2, where g1 and g2 verify (A.2) and (A.3)
respectively. The existence of ρ follows by integration.

We next turn to the problem

−∆x,tζ = divx,t h on RN × R, (A.9)

where h = (h1, ..., hN , hN+1) and ∆x,t and divx,t represent respectively the Laplacian and
divergence operators on RN+1. We have

Lemma A.2. Let 1 < p < +∞ and assume

sup
t∈R

‖h‖L1∩Lp(RN×[t,t+1]) < +∞ .

Then there exists a solution ζ of (A.9) such that

sup
t∈R

‖∇x,tζ‖Lp(RN×[t,t+1]) ≤ Kp sup
t∈R

‖h‖L1∩Lp(RN×[t,t+1]).

Proof. As in the proof of Lemma A.1, we consider ∇G∗divh and show that this is well-defined.
We will first assume that h is smooth and compactly supported, so that the convolution
∇G ∗ divh makes sense. Moreover, in this case we may integrate by parts, so that we have
to consider the terms

fij =
∂2G

∂xi∂xj
∗ h , for i, j = 1, ...,N + 1.

We write once more, for i, j = 1, ...,N + 1,

fij = f in
ij + f out

ij ,

where f in
ij = σin

ij ∗ h, f out
ij = σout

ij ∗ h, and σin
ij = χ · ∂2G

∂xi∂xj
, σout

ij = (1 − χ) · ∂2G
∂xi∂xj

. Here χ

denotes some radial smooth function compactly supported in B2 = {x ∈ RN+1, |x| ≤ 2} and
identically equal to 1 in the unit ball B1 of RN+1.

By construction, σin
ij has compact support included in the strip RN × [−1, 1]. Therefore

the restriction of f in
ij to any strip RN × [t0, t0 + 1], t0 ∈ R, coincides with the convolution

σin
ij ∗ ρ · h,

56



where ρ(x, t) verifies ρ(x, t) = 1 if |t− t0| ≤ 2, ρ(x, t) = 0 otherwise. We have

‖ρ · h‖Lp(RN+1) ≤ C sup
t∈R

‖h‖Lp(RN×[t,t+1]).

On the other hand, convolution by σin
ij is a bounded operator on Lp(RN+1) for any 1 < p <

+∞ in view of Calderòn-Zygmund theory. Hence

sup
t∈R

‖f in
ij ‖Lp(RN×[t,t+1]) ≤ Cp sup

t∈R

‖h‖Lp(RN×[t,t+1]).

The terms f out
ij are handled as in Lemma A.1.

Remark A.1. One may wonder if the L1 bound on h in Lemma A.2 is necessary, and if
∇x,tζ is bounded in Lp(RN × [t, t + 1]) under the only assumption that h is bounded in Lp.
In the case p = 2, we will show that this is not the case. More precisely, we will exhibit some
function h verifying

sup
t∈R

‖h‖L2(RN×[t,t+1]) < +∞ , (A.10)

and such that
sup
t∈R

‖fij‖L2(RN×[t,t+1]) = +∞ . (A.11)

To this aim we work in Fourier variables and consider the Fourier transform Ĝ(ξ, τ) = 1
|ξ|2+τ2

with respect to space and time variables, and its Fourier transform with respect to the time
variable only

Ĝτ (ξ) =
1

2π

∫

R

exp(itτ)

ξ2 + τ2
dτ =

1

2π2|ξ| exp(−
√

|ξ|t).

Hence,

fij(ξ, 0) = −
∫

R

ξiξjĜτ (ξ)ĥτ (ξ)dt =
1

2π2

∫

R

ξiξj
|ξ| exp(−

√

|ξ|t)ĥτ (ξ)dt. (A.12)

For fixed t, the multiplier
ξiξj

|ξ| exp(−
√

|ξ|t) achieves its maximum for |ξ| ≃ c
t , and the max-

imum value is proportional to 1
t . It is clear from the proof of Lemma A.2 that difficulties

stem from the lack of integrability at infinity in time, and therefore, in view of the previous
relation ξmax ≃ c

t , for small frequencies at large time. In view of this remark, we construct a
function h(·, t) as follows:

ĥτ (ξ) = tN/21{|ξ|≤ 1
τ
} for t ≥ 1, ĥτ (ξ) = 0 otherwise.

Clearly
∫

RN
|h|2(x, t)dx = (2π)N

∫

RN
|ĥτ (ξ)|2dξ = (2π)N |B1| for t ≥ 1,

and ‖h‖L2(RN×{t}) = 0 otherwise, so that (A.10) is satisfied. On the other hand, we claim
that if |ξ| ≤ 1

|f̂(ξ, 0)| ≥ 1

|ξ|N/2
. (A.13)
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Indeed, |ξ| exp(−
√

|ξ|t) ≥ c
t for 1

2|ξ| ≤ t ≤ 1
|ξ| , and ĥτ (ξ) = tN/2 for t ≤ 1

|ξ , and therefore

∫

R
|ξ| exp(−

√

|ξ|t)ĥτ (ξ)dt ≥ c

∫ 1
|ξ|

1
2|ξ|

t
N−2

2 dt ≥ c

|ξ|N/2
.

This establish the claim (A.13), and hence f̂(0) /∈ L2(RN ), f /∈ L2(RN ) and similarly one
establishes (A.11).

Remark A.2. The same type of arguments shows that the high frequency part of f re-
mains bounded in L2(RN ). For this purpose we consider the functions gij defined in Fourier
coordinates by

ĝij(ξ, 0) =

∫

{|t|≥1}

ξiξj
|ξ| 1{|ξ|>0} exp(−

√

|ξ|t)dt.

The functions gij represent the high-frequency terms in f arising from the contribution of h

for |t| ≥ 1.33 Since for |ξ| ≥ 1 and |t| ≥ 1, |ξ| exp(−
√

|ξ|t) ≤ exp(−
√

t
2 ), we have

‖ĝij(·, 0)‖L2(RN ) ≤ C

∫

{|t|≥1}
exp(−

√
t

2
)‖ĥ‖L2(RN )dt,

so that
‖g(·, 0)‖L2(RN ) ≤ C sup

t>0
‖h‖L2(RN×[t,t+1]).

A.2 Parabolic problems

We consider the initial value parabolic problem











∂ϕ

∂t
− ∆ϕ = ω on RN × (0,+∞),

ϕ(x, 0) = 0 for x ∈ RN .

(A.14)

Lemma A.3. Let 1 ≤ p < N and assume that

supt∈R+‖ω‖Lp(RN×[t,t+1]) < +∞.

Then, there exists a unique solution ϕ to (A.14) such that |∇xϕ | ≤ g1+g2 where the functions
g1 and g2 satisfy

supt∈R+ ‖g1‖Lr(RN×{t}) ≤ K(r) supt∈R+ ‖ω‖Lp(RN×[t,t+1]) (A.15)

where r is any number satisfying r > p∗ and

supt∈R+ ‖g2‖Lp([t,t+1],Lp∗) ≤ K(p) supt∈R+ ‖ω‖Lp(RN×[t,t+1]), (A.16)

where p∗ is the Sobolev exponent in dimension N, i.e. p∗ = Np/(N − p).

33The contribution for |t| ≤ 1 is handled by standard estimates.
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Proof. Let G be the fundamental solution of the heat operator on RN × R+, given by

G(x, t) =
1

(4πt)N/2
exp

(

−|x|2
4t

)

, for x ∈ RN , t > 0

so that for some explicit constant C > 0 we have

|∇xG(x, t) | ≤ CAt(x) ≡ C
|x|
t

N+2
2

exp

(

−|x|2
4t

)

.

Consider the function ϕ defined by

ϕ(x, t) = G ∗ ω =

∫ t

0
e(t−s)∆ωs ds.

We split this integral in two terms ϕ1 and ϕ2 by restricting the integration on the intervals
[0, t− 1] and [t− 1, t] respectively. The term ϕ1 is the contribution from the source ωs in the
”remote” past, and the term ϕ2 is the contribution from the “near” past. We handle each of
these terms in a different way.
Step 1: Estimates for ∇ϕ1. We have

|∇ϕ1(x, t)| ≤
∫ t−1

0
At−s ∗ |ωs| ds ≡

∫ t−1

0
fs(x) ds.

By Young’s inequality,
‖fs‖Lr(RN ) ≤ ‖At−s‖Lq(RN )‖ωs‖Lp(RN )

for any numbers 1 ≤ p, q, r ≤ +∞ satisfying the relation

1

p
+

1

q
= 1 +

1

r
. (A.17)

An elementary computation shows that

‖At‖Lq(RN ) = Cqt
−γ , where γ =

(N + 1)q −N

2q
.

In particular, γ > 1 and

∫ +∞

1
‖As‖Lq(RN ) ds < +∞ if and only if q >

N

N − 1
. (A.18)

Therefore, if p < N, for any number r satisfying the relation r > (1/p− 1/N)−1 we may find
some qr satisfying (A.17) and (A.18). In particular,

‖
∫ t−1

0
fs ds‖Lp(RN ) ≤

∫ t−1

0
‖fs‖Lp(RN ) ds

≤ Cq

∫ t−1

0
(t− s)−γ‖ωs‖Lp(RN )

≤ C supt∈R+‖ω‖Lp(RN×[t,t+1]).
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Step 2: Estimates for ∇ϕ2. The function ϕ2 satisfies the heat equation







∂ϕ2

∂t
− ∆ϕ2 = ω 1RN×[t−1,t]

ϕ2(x, t− 1) = 0.

By the classical Lp − Lq theory for the heat operator, we thus obtain

‖∇ϕ2‖Lp(RN×[t−1,t]) ≤ C‖ω‖Lp(RN×[t−1,t])

and relation (A.15) follows by the Sobolev embedding.

We turn now to the problem











∂ϕ

∂t
− ∆ϕ = divx h on RN × (0,+∞),

ϕ(x, 0) = 0 for x ∈ RN ,

(A.19)

where h = (h1, · · · , hN ) and divx represents the divergence operator on RN . We have

Lemma A.4. Let 1 ≤ p < +∞ and assume that

supt∈R+‖h‖Lp(RN×[t,t+1]) < +∞.

Then, there exists a unique solution ϕ to (A.19) such that |∇xϕ | ≤ g1+g2 where the functions
g1 and g2 satisfy

supt∈R+ ‖g1‖Lr(RN×{t}) ≤ K(r) supt∈R+ ‖h‖Lp(RN×[t,t+1]) (A.20)

for every r > p and

supt∈R+ ‖g2‖Lp(RN×[t,t+1]) ≤ K(p) supt∈R+ ‖h‖Lp(RN×[t,t+1]). (A.21)

Proof. As in Lemma A.3, we decompose ϕ = ϕ1 + ϕ2, where

ϕ1(t, .) =

∫ t−1

0
e(t−s)∆ div h(., s) ds, ϕ2(t, .) =

∫ t

t−1
e(t−s)∆ div h(., s) ds,

The function G still denoting the fundamental solution of the heat equation, we have

|D2
xG(x, t) | ≤ CBt(x) ≡ C

(

|x|2

t
N+4

2

+
1

t
N+2

2

)

exp

(

−|x|2
4t

)

.

Step 1: Estimates for ∇ϕ1. We have

|∇ϕ1(x, t)| ≤
∫ t−1

0
Bt−s ∗ |hs| ds ≡

∫ t−1

0
fs(x) ds.

By Young’s inequality,
‖fs‖Lr(RN ) ≤ ‖Bt−s‖Lq(RN )‖hs‖Lp(RN )
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for any numbers 1 ≤ p, q, r ≤ +∞ satisfying 1
p + 1

q = 1 + 1
r . We compute

‖Bt‖Lq(RN ) = Cqt
−γ , where γ =

(N + 2)q −N

2q
.

In particular, for every q > 1 we have γ > 1 so that
∫+∞
1 ‖Bs‖Lq(RN ) ds < +∞. Inequality

(A.20) follows, setting g1 = |∇ϕ1|.
Step 2: Estimates for ∇ϕ2. Estimate (A.21) for g2 = |∇ϕ2 | is derived as in Step 2 of
Lemma A.3, using standard Lp − Lq estimates for the heat operator.

We end this section recalling some classical results concerning the initial value problem
for the heat operator.

Lemma A.5. We have, for every t > 0,

∥

∥

∥et∆
∥

∥

∥

L(L2(RN ),L∞(RN ))
=

CN

tN/4

where the constant CN depends only on N .

Proof. For t = 1, the estimate is a direct consequence of the Cauchy-Schwartz inequality and
the fact that G(., 1) is bounded in L2. The estimate for arbitrary t follows by scaling.

Remark A.3. i) The supremum defining the norm in Lemma A.5 is achieved only by the
Gaussian exp(−|x|2/4t), its multiples and its translates.

ii) More generally, we also have, for 1 ≤ p < +∞, the estimate

∥

∥

∥et∆
∥

∥

∥

L(Lp(RN ),L∞(RN ))
=
C(N, p)

tN/2p
. (A.22)

and
∥

∥

∥∇ket∆
∥

∥

∥

L(Lp(RN ),L∞(RN ))
=
C(N, p, k)

tN/2p+k/2
. (A.23)

A.3 Local parabolic estimates

In this section we provide some pointwise and smoothing estimates for the heat operator on
bounded domains. Let

Λ = B(0, 1) × [0, 1], Λ 1
2

= B(0,
1

2
) × [

3

4
, 1].

We first have

Lemma A.6. Let u and a be respectively a smooth and a continuous real-valued function on
Λ such that ā = infΛ a ≥ 2 and let b > 0, d > 0. Assume that

|u| ≤ d on ∂P Λ ≡ B(0, 1) × {0} ∪ ∂B(0, 1) × [0, 1]

and
|∂tu− ∆u+ au| ≤ b on Λ.

Then, there exists a constant c > 0 depending only on N such that

|u| ≤ C

(

b+ d

ā

)

on Λ 1
2
.
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Proof. By linearity, it suffices to consider the case d = 1. Let χ be a smooth cut-off function
defined on RN such that 0 ≤ χ ≤ 1 and χ ≡ 1 on B(0, 1

2), χ ≡ 0 on RN \ B(0, 3
4 . Consider

the function τ defined on [0, 1] by τ(t) = 1 − exp(−āt), so that 0 ≤ τ(t) ≤ 1 and set
σ0(x, t) = 1 − τ(t)χ(x). We have σ0 ≥ 0 on Λ, and

∂tσ0 + aσ0 ≥ 0, |∆σ0| ≤ |τ(t)| · |∆χ(x)| ≤ C0 on Λ,

so that ∂tσ0 − ∆σ0 + aσ0 ≥ −C0 on Λ. Finally set σ = σ0 + (C0+b
ā ). By construction,

∂tσ − ∆σ + aσ ≥ b ≥ ∂tu− ∆u+ au on Λ.

On the other hand,

σ = 1 +
C0 + b

a
≥ 1 ≥ u on ∂P Λ,

so that, by the maximum principle, u ≤ σ on Λ. Since χ ≡ 1 on B(0, 1/2), we have on Λ 1
2

u ≤ σ ≤ exp(−3

4
ā) +

C0 + b

ā
≤ C

(

b+ 1

ā

)

.

Applying the same argument to −u we complete the proof.

Lemma A.7. Let u be a smooth real-valued function on Λ and assume

|∂tu− ∆u| ≤ b on Λ, (A.24)

|u| ≤ d on Λ. (A.25)

Then, there exists 0 < α < 1, 0 < β < 1 and c > 0 depending only on N such that

‖∇u‖C0,α
P (Λ 1

2
)
≤ C(bβc1−β + d).

Here the norm C0,α
P denotes the parabolic Hölder norm defined by

‖g‖C0,α
P (Λ)

= sup{ |g(x, t) − g(x′, t′)|
(|x − x′| + |t− t′|1/2)α

, (x, t) , (x′, t′) ∈ Λ}.

Proof. Since (A.24) and (A.25) are L∞ bounds, we deduce from standard linear theory that,
for every 1 < q1, q2 < +∞,

‖u‖W 1,q1 (I,Lq2 (B1/2)) ≤ C(b+ d), ‖u‖Lq1 (I,W 1,q2 (B1/2)) ≤ C(b+ d),

where I = [3/4, 1]. Interpolating these inequalities we obtain ‖u‖W 1/3,q1 (I,W 4/3,q2 (B1/2)) ≤
C(b + d). Choosing q1 and q2 sufficiently large (in particular q1 > 3, q2 > 3N), we ob-
tain that for every 0 < γ < 1, ‖u‖C0,1/4(I,C1,γ(B1/2)) ≤ Cγ(b + d). On the other hand,

(A.25) can be rephrased as ‖u‖L∞(I,L∞(B1/2)) ≤ d, and therefore, by interpolation again,

‖u‖C0,1/5(I,C1,α(B1/2)) ≤ C(bβd1−β + d), for some α < 1/5 and 0 < β = β(α) < 1.
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Appendix B : Estimates for Jacobians

The fact that Jacobians have remarkable compensation properties, in particular in the context
of the Ginzburg-Landau functional, has played an expanding role in recent years, after the
pioneering work of Jerrard and Soner [19]. In this appendix we provide some variants, using
the results of [7], adapted to the parabolic situation considered in this paper. Throughout
this appendix, we assume that wε is defined on RN × R and satisfies the following bounds

∫

RN×[t,t+1]
eε(wε) ≤ CM0|log ε|, ∀ t > 0 (B.1)

∫

RN×R

|∂twε|2 ≤ CM0|log ε|, (B.2)

|wε| ≤ 3. (B.3)

The following is a direct consequence of Theorem 2 of [7].

Proposition B.1. Assume wε verifies (B.1), (B.2) and (B.3). Then we may write34

Jx,twε = ωε + δhε ,

where ωε and hε verify
‖ωε‖L1(RN×[t,t+1]) ≤ CM0 , ∀t > 0, (B.4)

‖hε‖Lp(RN×[t,t+1]) ≤ CpM0ε
αp (B.5)

for every 1 < p < 2, where αp > 0 is some number depending only on p.

Proof. We apply Theorem 2 of [7] to wε restricted to the slices Λn = RN × [n− 1
4 , n+ 5

4 ], for
n ∈ N∗.35 This provides a function vn

ε : Λn → C such that

|vn
ε | ≤ 1,

∫

Λn

eε(v
n
ε ) ≤ C

∫

Λn

eε(wε) ≤ CM0|log ε|,
‖Jx,tv

n
ε ‖L1(Λn) ≤ CM0, ‖vn

ε − wε‖L2(Λn) ≤ CM0ε
α,

(B.6)

where 0 < α < 1 is some positive number. We set

ωn
ε = Jx,tv

n
ε , hn

ε =
1

2
(vn

ε − wε) × (δvn
ε + δwε) , on Λn

so that Jwε = ωn
ε + δhn

ε on Λn. Clearly ‖ωn
ε ‖L1(Λn) ≤ CM0. Moreover, by Cauchy-Schwarz

inequality,
‖hn

ε ‖L1(Λn) ≤ CM0ε
α|log ε|1/2.

On the other hand, since |vn
ε | ≤ 1, |wε| ≤ 3, we deduce ‖hn

ε ‖L2(Λn) ≤ CM0|log ε|1/2, so that
by interpolation

‖hn
ε ‖Lp(Λn) ≤ CpM0ε

αp for every 1 ≤ p < 2.

34Here we will denote δ and δ∗ respectively the exterior differentiation operator for differential forms on
RN × R and its formal adjoint, while we will use the standard notations d and d∗ when restricting to time
slices RN × {t}.

35Although the domain Ω in [7] was assumed to be bounded, a careful reading of the proof shows that the
arguments carry over to the situation considered here.
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To complete the proof, we merely have to reconnect the functions hn
ε , defined on the sets Λn,

in the overlapping regions. For this purpose we use a partition of unity on the time axis. We
write

1 =
∑

i∈Z

g(t− i), t ∈ R,

where the function g has compact support on Λ0 and is lipschitz. Hence

Jx,twε =
∑

i∈Z

g(t− i)(ωi
ε + δhi

ε) =
∑

i∈Z

g(t− i)ωi
ε + g′(t− i)dt ∧ hi

ε +
∑

i∈Z

δ(g(t − i)hi
ε).

We set ωε =
∑

i∈Z

g(t − i)ωi
ε + g′(t − i)dt ∧ hi

ε, and hε =
∑

i∈Z

g(t − i)hi
ε, and one easily verifies

the desired estimates, since the sums involve a finite number of non-zero terms.

If we restrict the attention to space-time components of the Jacobians, i.e. the quantities

J0i
x,twε =

∂wε

∂t
× ∂wε

∂xi
, for i = 1, ...,N ,

then better estimates can be obtained in view of assumption (B.2). This important observa-
tion was already stressed in [26] (see also [16] and [6], Section 6, for related ideas).

Proposition B.2. Let wε verify conditions (B.1), (B.2) and (B.3). Then we may write

Jx,twε = ωε + divx,tλε,

where ωε is a real-valued two-form and λε is a two-form with coefficients in RN satisfying36

‖wε‖L1(RN×[t,t+1] ≤ CM0, (B.7)

‖λε‖Lq(RN×[t,t+1]) ≤ CqM0ε
αq (B.8)

for every 1 < q < 2, where αq > 0 is some number depending only on p. Moreover, writing

ωε =
N
∑

i=1

ω0i
ε dt ∧ dxi +

∑

1≤i<j≤N

ωij
ε dxi ∧ dxj ,

the space-time components ω0i
ε verify, for p > 2,

(∫

R
‖ω0i

ε ‖p
L1(RN×[t,t+1])

dt

)
1
p ≤ CM0. (B.9)

Proof. We consider again the slices Λn = RN × [n− 1
4 , n+ 5

4 ] and set

An =

∫

Λn

∣

∣

∣

∣

∂wε

∂t

∣

∣

∣

∣

2

dxdt, Bn =

∫

Λn

eε(wε(x, t))dxdt.

Let be given p > 2. We distinguish two cases:

36Writing λε =
∑N

i,j=0
λij

ε dxi ∧ dxj , we define divx,tλε =
∑N

i,j=0
divx,tλ

ij
ε dxi ∧ dxj.
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Case 2. An ≥ (M0|log ε|)−
p+2
p−2 . In this case, we rescale (as in [16, 6, 26]) the function wε

with respect to the time variable, and set

w̃n
ε (x, s) = wε(x,

√

Bn

An
s+ n− 1

4
), for (x, s) ∈ Λ̃n ≡ RN × [0,

3

2

√

An

Bn
].

Notice that the width of the strip Λ̃n is larger than |log ε|−τ for some τ > 0. We compute

∫

Λ̃n

∣

∣

∣

∣

∂w̃n
ε

∂s

∣

∣

∣

∣

2

dxds =

√

Bn

An

∫

Λn

∣

∣

∣

∣

∂wε

∂t

∣

∣

∣

∣

2

=
√

AnBn.

and
∫

Λ̃n

eε(w̃
n
ε (x, s))dxds =

√

An

Bn

∫

Λn

eε(wε(x, t))dxdt =
√

AnBn.

We argue as in Proposition B.1 and apply37 Theorem 2 of [7] to w̃n
ε on Λ̃n. This yields a

complex-valued function ṽn
ε on Λ̃n such that |ṽn

ε | ≤ 1, and

∫

Λ̃n

1

2

∣

∣

∣

∣

∂ṽn
ε

∂s

∣

∣

∣

∣

2

+ eε(ṽ
n
ε (x, s)dxds ≤ C

∫

Λ̃n

1

2

∣

∣

∣

∣

∂w̃n
ε

∂s

∣

∣

∣

∣

2

+ eε(w̃
n
ε (x, s)dxds ≤ C

√

AnBn,

‖Jx,sṽ
n
ε ‖L1(Λ̃n) ≤

C

|log ε|

∫

Λ̃n

1

2

∣

∣

∣

∣

∂w̃n
ε

∂s

∣

∣

∣

∣

2

+ eε(w̃
n
ε (x, s)dxds ≤ C

√
AnBn

|log ε| ,

‖ṽn
ε − w̃n

ε ‖L2(Λ̃n) ≤ C(AnBn)1/4εα.

We inverse next the scaling and go back to the original strip Λn, where we define the functions
vn
ε as follows

vn
ε (x, t) = ṽn

ε (x,

√

An

Bn
t− n+

1

4
), (x, t) ∈ Λn.

The integral of space-time components of Jx,sṽ
n
ε are invariant under this transformation, that

is

‖J0i
x,tv

n
ε ‖L1(Λn) = ‖J0i

x,sṽ
n
ε ‖L1(Λ̃n) ≤ C

√
AnBn

|log ε| , (B.10)

whereas, for 1 ≤ i ≤ j ≤ N ,

||J ij
x,tv

n
ε ‖L1(Λn) =

√

Bn

An
‖J ij

x,sṽ
n
ε ‖L1(Λ̃n) ≤ CM0. (B.11)

On the other hand, we have ‖vn
ε − wε‖L2(Λn) ≤ C

√
Bnε

α. We set

ωn
ε = Jx,tv

n
ε , hn

ε = (vn
ε − wε) × (δvn

ε + δwε),

and
λn,ij

ε = (0, · · · , (vn
ε − wε) × ∂xj(v

n
ε + wε), · · · ,−(vn

ε − wε) × ∂xi(v
n
ε +wε)).

37This is possible because the width of the strip is not too small.

65



In view of (B.10), we have

‖ωn,0i
ε ‖L1(Λn) ≤ CM

1/2
0

√

An

|log ε| . (B.12)

Case 1. An < (M0|log ε|)−
p+2
p−2 . In this case, the previous method may not apply, since

the width of the scaled strip Λ̃n might be too small. Therefore we argue differently, and
distinguish spatial and space-time components. For i = 1, · · · ,N, we set

ωn,0i
ε = J0i

x,twε , λn,0i
ε = 0 on Λn.

By Cauchy-Schwarz inequality, we have in particular

‖ωn,0i
ε ‖L1(Λn) ≤ A1/2

n B1/2
n ≤ CM

1/2
0 |log ε|1/2A1/2

n . (B.13)

For the spatial components ωn,ij
ε we use the construction of Proposition B.1, and set as above

ωn,ij
ε = J ij

x,tv
n
ε , λn,ij

ε = (0, · · · , (vn
ε −wε)× ∂xj(v

n
ε +wε), · · · ,−(vn

ε −wε)× ∂xi(v
n
ε +wε)),

where vn
ε is defined by Theorem 2 of [7] restricted to Λn and verifying (B.6).

We need now to recombine the different strips. To that aim, set I1 = {n ∈ Z, An ≤
(M0|log ε|)−

p+2
p−2}, i.e. the set of indices n where Case 2 holds, and I2 = Z \ I1. In view of

(B.12) and (B.2), we have

∑

n∈I2

‖ωn,0i
ε ‖2

L1(Λn) ≤ C
M0

|log ε|
∑

n∈I2

An ≤ CM2
0 . (B.14)

On the other hand, by (B.13), we have

∑

n∈I1

‖ωn,0i
ε ‖p

L1(Λn) ≤ CM
p/2
0 |log ε|p/2

∑

n∈I1

Ap/2
n .

We write
∑

n∈I1

Ap/2
n ≤ sup

n∈I1

A
p−2
2

n

∑

n∈Z

An ≤ CM0|log ε| · |log ε|−
p+2
2 ,

so that finally
∑

n∈I1

‖ωn,0i
ε ‖p

L1(Λn) ≤ CMp
0 . (B.15)

Combining (B.14) and (B.15), we are led to

∑

n∈Z

‖ωn,0i
ε ‖p

L1(Λn) ≤ CMp
0 . (B.16)

The proof of Proposition B.2 is then completed as in Proposition B.1, reconnecting the ωn
ε

and λn
ε using a partition of unity. Estimates (B.7) and (B.8) are derived as in Proposition

B.1, whereas estimate (B.9) is a direct consequence of (B.16).
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Appendix C : Higher order regularity for (PGL)ε

The aim of this section is to provide the proof of Theorem 2.1. The starting point of the
analysis is the following Harnack-Moser-Struwe type inequality

Proposition C.1. Assume (2.22) holds. There exists a constant 0 < σ0 <
1
2 such that, if

σ ≤ σ0, then

eε(uε)(x, t) ≤ C(Λ)

∫

Λ
eε(uε) , (C.1)

for any (x, t) ∈ Λ 3
4
.

The proof of Proposition C.1 is given in [6], Theorem 2. The case
∫

Λ eε(uε) is small was
treated before by Struwe [31], whereas in [6] we allow a |log ε| divergence.

Proof of Theorem 2.1. By scaling, it suffices to consider the case Λ = B(0, 1) × [0, 1].

Step 1: proof of i). It is an immediate consequence of (C.1). For the proof of ii) and iii)

we heavily rely on the system of equations for θε ≡ 1 − ρε and ϕε

∂tθε − ∆θε + aθε = (1 − θε)|∇ϕε|2, (C.2)

ρ2
ε∂tϕε − div (ρ2

ε∇ϕε) = 0, (C.3)

where

a ≡ 1 + (1 − θε)
2

ε2
.

In particular, ā = infΛ a ≥ ε−2.

Step 2: proof of (2.24). We apply Lemma A.6 to equation (C.2) on Λ 3
4

with u = θε,

b = 2‖∇ϕε‖L∞(Λ3/4), d = 1. We therefore obtain

‖1 − ρε‖L∞(Λ5/8) ≤ C(Λ)ε2(‖∇ϕε‖2
L∞(Λ3/4)), (C.4)

so that (2.24) follows.

Step 3: estimates on |∇ρε|. It follows from (C.4) that ‖aθε‖L∞(Λ5/8) ≤ C|log ε|, and
therefore

|∂tθε − ∆θε| ≤ C|log ε|.
We apply Lemma A.7 on Λ5/8 to θε with b = C|log ε| and d = Cε2|log ε|. This yields

‖∇ρε‖C0,α(Λ9/16) = ‖∇θε‖C0,α(Λ9/16) ≤ Cεβ1 (C.5)

for some 0 < α, β1 < 1, which gives the desired estimate for the right-hand side of (2.25). We
turn next to ∂tθε. For that purpose, we will differentiate (C.2) according to time: however,
this requires higher order estimates on ϕε.

Step 4: estimates on D2

x
ϕε. We turn to (C.3); expanding the r.h.s. and dividing by ρε

we are led to

∂tϕε − ∆ϕε = 2
∇ρε

ρε
· ∇ϕε. (C.6)
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Since ∇ρε ∈ C0,α(Λ9/16) and ρε ≥ 1
2 we obtain, invoking standard Schauder theory (see e.g.

[15]) that

‖D2
xϕε‖C0,α(Λ17/36) ≤ C|log ε|1/2. (C.7)

Step 5: estimates on D2

x
ρε. We differentiate (C.2) with respect to x. Setting u = ∇θε we

obtain

∂tu− ∆u+
2

ε2
u = −∇ρε|∇ϕε|2 + 2(1 − θε)D

2
xϕε∇ϕε + (4 − 3θε)

θε

ε2
∇θε.

In view of estimates (C.4), (C.5) and (C.7), the r.h.s. of the previous equation is uniformly
bounded on Λ 17

36
by C|log ε|. On the other hand, we already know that u is bounded by Cεβ.

Invoking Lemma A.6 once more, we deduce

‖∇u‖L∞(Λ33/64) = ‖D2
xρε‖L∞(Λ33/64) ≤ Cεβ2, (C.8)

for some 0 < β2 < 1.

Step 6: estimates on ∂t∇ϕε. Differentiating (C.6) with respect to x and by Step 5 we
obtain

‖∂t∇ϕε‖L∞(Λ65/128) ≤ C|log ε|1/2. (C.9)

Step 7: proof of (2.25) completed. In view of Step 6, we may now differentiate equation
(C.2) with respect to t. Setting u = ∂tθε we obtain

∂tu− ∆u+ au = 2(1 − θε)∇ϕε∂t∇ϕε, (C.10)

where

a =
2

ε2
− |∇ϕε|2 −

4 − 3θε

ε2
θε.

We notice that a ≥ 1
ε2 (if ε is sufficiently small). In view of (C.9) we obtain

|∂tu− ∆u+ au| ≤ C|log ε| on Λ 65
128
.

On the other hand,

|u| = |∂tθε| = |∆θε −
1 + (1 − θε)

2

ε2
θε + (1 − θε)|∇ϕε|2| ≤ C|log ε|.

Invoking Lemma A.6 we obtain |u| ≤ Cε2|log ε| on Λ 129
256
. Applying Lemma A.7 we are

led to
‖u‖C0,α(Λ1/2) = ‖∂t∇ρε‖C0,α(Λ1/2) ≤ Cεβ1.

In particular, this completes the proof of (2.25), and hence ii).

Proof of iii). We introduce the solution Φε of the boundary value problem on Λ 1
2

{

∂tΦε − ∆Φε = 0 on Λ 1
2
,

Φε(x, t) = ϕε(x, t) on ∂P Λ 1
2
.

(C.11)

{

∂tΦ1 − ∆Φ1 = 2∇ρε

ρε
· ∇ϕε on Λ 1

2
,

Φ1(x, 0) = 0 on ∂P Λ 1
2
.

(C.12)

The r.h.s. of (C.12) is estimated by Cεβ3 for some 0 < β3 < 1 in C0,α(Λ 1
2
). Estimate iii)

follows immediately.
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