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Abstract. Singular perturbation models involving a penalization of the first order derivatives
have provided a new insight into the role played by surface energies in the study of phase transitions
problems. It is known that if W : Rd → [0,+∞) grows at least linearly at infinity and it has exactly
two potential wells of level zero at a, b ∈ Rd, then the Γ(L1)– limit of the family of functionals

Fε(u) :=


∫
Ω

(
W (u)

ε
+ ε|∇u|2

)
dx if u ∈ W 1,2(Ω;Rd),

+∞ if u ∈ L1(Ω;Rd) \W 1,2(Ω;Rd),

where Ω is a bounded, open set in RN , is given by

F(u) :=

{
m PerΩ({u = a}) if u ∈ BV (Ω; {a, b}),

+∞ otherwise,

for a suitable constant m depending on the energy density W . In this paper, and motivated by the
study of phase transitions for nonlinear elastic materials, the Γ(L1)– limit is obtained in the case
where in Fε(u) the penalization term ε|∇u|2 is replaced by ε3|∇2u|2, for u ∈ W 2,2(Ω;Rd). The
resulting functional is of the same form as F(u) above.
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1. Introduction. In this paper we show that the Γ(L1)– limit of the family of
singular perturbations

Fε(u) :=


∫

Ω

(
W (u)
ε + ε3|∇2u|2

)
dx if u ∈W 2,2(Ω;Rd),

+∞ if u ∈ L1(Ω;Rd) \W 2,2(Ω;Rd)

where W : Rd → [0,+∞) grows at least linearly at infinity and has exactly two
potential wells of zero level at a, b ∈ Rd, is given by

F(u) :=

{
m PerΩ({u = a}) if u ∈ BV (Ω; {a, b}),
+∞ otherwise,

with

m := min

{∫
R

(W (f) + |f ′′|2 dt : f ∈W 2,2
loc (R;Rd), lim

t→+∞
f(t) = b, lim

t→−∞
f(t) = a

}
.

Singular perturbations of nonconvex, multiple-well variational problems may be
found in gradient strain theories in plasticity, ferromagnetics, and other areas of ma-
terials science and engineering. In particular, within the context of phase transitions
of nonlinear elastic materials, let W : Rd×N → [0,+∞) be the stored energy density
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of a material with reference configuration an open, bounded set Ω ⊂ RN , and which
may undergo a phase transformation. This material instability may be due, in part,
to the multiple well profile of W . For simplicity, assume that

W (ξ) = 0 if and only if ξ ∈ {A,B},

where rank(A−B) = 1. Let us assume further that equilibria for fixed phase volume
fraction is determined by minimum energy; physically, this model is oversimplified
since it is incompatible with the frame indifference requirement, it does not take into
account material symmetries, evolution is neglected, and there is no heat diffusion.
Then we are led to (see [20, 22])

min

{∫
Ω

W (∇u) dx : u ∈W 1,1(Ω;Rd),
∫

Ω

∇u dx = LN (Ω)(θA+ (1− θ)B)

}
,

where θ ∈ (0, 1) is a fixed volume fraction, and LN stands for the N -dimensional
Lebesgue measure in RN . Due to the rank-one compatibility between A and B, there
are infinitely many laminates with strain gradients alternating between A and B which
will minimize the total bulk energy. As in the Cahn-Hilliard model for liquid-liquid
phase transformations with underlying variational formulation

min

{∫
Ω

W (u) dx : u ∈ L1(Ω;Rd),
∫

Ω

u dx = LN (Ω)(θa+ (1− θ)b)
}
,

where {W = 0} = {a, b}, and with corresponding family of singular perturbations
(see [10, 12, 13, 22, 25, 28, 29, 30, 32, 33])∫

Ω

(W (u) + ε2|∇u|2) dx,

we attempt to resolve the lack of uniqueness by considering higher gradient penaliza-
tions. This is conform to the higher strain gradient theories in plasticity. To this end,
for any open set A ⊂ Ω we introduce the family

Jε(u;A) :=

∫
A

(W (∇u) + ε2|∇2u|) dx.

The characterization of the Γ(L1)– limit of these functionals, and, in particular, of the
asymptotic behavior of minimizers as ε→ 0+, is work under progress by Fonseca and
Tartar [21]. Here the main difficulties are, essentially, the need to use intrinsically
vectorial techniques, and the proof of the locality of the Γ(L1)– limit. The use of
vectorial techniques was successfully exploited in the variational study of the eikonal
equation, seen as a partial differential constraint on finite limiting energy fields when
in Jε the density W is allowed to vanish on the sphere (see [5, 8, 9, 18, 26, 27, 24]).
In the attempts to ascertain locality, the problems encountered seem to stem from
the higher order derivative in the model. Precisely, if we knew that the subadditivity
property

Γ(L1)− lim
ε→0+

Jε(u;A) ≤ Γ(L1)− lim
ε→0+

Jε(u;B) + Γ(L1)− lim
ε→0+

Jε(u;A \ C)

holds whenever A,B,C are open subsets of Ω with C ⊂⊂ B ⊂⊂ A, then we would
be able to ensure that Γ(L1)− limε→0+ Jε(u; ·) is a measure, and so Radon-Nikodym
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Theorem and a blow-up argument around points on the laminate surfaces would easily
yield

Γ(L1)− lim
ε→0+

Jε(u; Ω) :=

{
m̂ PerΩ({∇u = A}) if ∇u ∈ BV (Ω; {A,B}),
+∞ otherwise,

for an appropriate surface energy density m̂. This program may be carried out suc-
cessfully in the Cahn-Hilliard model where the penalization is of first-order. For this
reason, and motivated in part by the need to isolate the understanding of the role
played by higher order penalizations and the obstacles that they may introduce, we
take a step further in the simplification of the original model for Jε, and we consider
the family Fε as defined above.

We note that higher order perturbations of nonconvex problems have been studied
recently within the framework of free discontinuity problems. In particular, elliptic
regularizations with second order terms were proposed for the approximation of free
discontinuity problems related to the Mumford-Shah model for image segmentation
in computer vision (see, e.g., [3, 4, 15, 14]).

The one-dimensional problem encapsules the main features of the model. Indeed
the relevant contributions of this paper may be found in the next section where,
using apriori bounds provided by Gagliardo and Nirenberg inequalities, we are able to
show that the limiting energy minimizers are two-phase fields with minimal interfacial
perimeter. Further, the resulting interfacial energy per unit area, m, may be computed
explicitly as the solution of an auxiliary minimization problem, corresponding to the
one-dimensional energetically efficient profiles which connect a at −∞ to b at +∞.
The extension of these results to the N -dimensional case follows a standard slicing
argument that enables us to reduce it to the one-dimensional setting.

2. The One-Dimensional Problem. Let W : Rd → R be a continuous func-
tion satisfying the hypotheses:
(H1) W (u) = 0 if and only if u ∈ {a, b};
(H2) there exist constants C > 0, R > max{|a|, |b|}, such that if |u| > R then
W (u) ≥ C|u| − 1/C.

Let I := (α, β) be a fixed open interval in R. Consider the family of functionals
indexed by the parameter ε > 0, and defined as

Fε(u) :=

{∫
I

(
W (u)
ε + ε3|u′′|2

)
dt if u ∈W 2,2(I;Rd),

+∞ if u ∈ L1(I;Rd) \W 2,2(I;Rd).

We seek to identify the limiting states corresponding to sequences of minimizers for
Fε(·), and to this purpose we will use the notion of Γ(L1)– convergence. We recall
some basic notions on Γ(L1)– convergence (for a detailed, comprehensive study we
refer the reader to [17]). Let Ω be an open, bounded subset of RN .

Definition 2.1. Let Fn : L1(Ω;Rd)→ [−∞,+∞] and u ∈ L1(Ω;Rd). We define

Γ(L1)− lim inf Fn(u) := inf
{

lim inf
n→∞

Fn(un) : un → u in L1(Ω;Rd)
}
,

and

Γ(L1)− lim supFn(u) := inf

{
lim sup
n→∞

Fn(un) : un → u in L1(Ω;Rd)
}
.
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If Γ(L1)− lim inf Fn(u) = Γ(L1)− lim supFn(u), then the common value is called the
Γ(L1)– limit of Fn at u, and is denoted by Γ(L1)− limFn(u).

Moreover, given a family Fε : L1(Ω;Rd) → [−∞,+∞], ε > 0, if u ∈ L1(Ω;Rd)
then we say that Γ(L1) − limFε(u) = F (u) if F (u) = Γ(L1) − limFεn(u) for every
sequence εn → 0+.

It can be shown that F (u) = Γ(L1)– limit of Fε at u if and only if
(i) for every sequences {un} and {εn} such that un → u in L1(Ω;Rd) and εn → 0+

F (u) ≤ lim inf
n→∞

Fεn(un);

(ii) for every sequence {εn} converging to 0+ there exists a sequence {un} such that
un → u in L1(Ω;Rd) and

F (u) = lim
n→∞

Fεn(un).

In what follows C denotes a generic positive constant which may vary from one
formula to the next, and from line to line. Also, LN stands for the Lebesgue measure
in RN , and B(x, δ) is the ball centered at the point x and with radius δ > 0.

Define

A :=
{
f ∈W 2,2

loc (R;Rd) : f(t) = b if t > C, f(t) = a if t < −C, for some C > 0
}

and

m := inf

{∫
R

(W (f) + |f ′′|2) dt : f ∈ A
}
. (2.1)

The main theorem of this section is
Theorem 2.2. For every u ∈ L1(I;Rd)

Γ(L1)− lim
ε→0+

Fε(u) =

{
m PerI({u = a}) if u ∈ BV (I; {a, b}),
+∞ otherwise.

Compactness for energy bounded sequences will rely heavily on the following
interpolation inequality due to Gagliardo [23] and Nirenberg [31].

Proposition 2.3. Let Ω be a bounded, open, Lipschitz subset of RN . If u ∈
L1(Ω;Rd) and ∇2u ∈ L2(Ω;Rd) then u ∈W 2,2(Ω;Rd) and

‖∇u‖L4/3 ≤ C
(
‖u‖1/2L1 ‖∇2u‖1/2L2 + ‖u‖L1

)
(2.2)

where C = C(Ω, N, d).
In sequel we will also use the following interpolation inequality.
Lemma 2.4. Let ϕ : (0,+∞)→ R be a convex, nondecreasing function in R+, and

let J be R or a half-line. Then for every function u ∈ L1
loc(J ;Rd) with u′′ ∈ L1

loc(J ;Rd)
we have ∫

J

ϕ

(
|u′|
4d

)
dt ≤ 3

4

∫
J

[ϕ(|u|) + ϕ(|u′′|)] dt . (2.3)
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Proof. The case where ϕ(t) = |t|p may be found in Adams [1] (Lemma 4.10).
First consider the real valued case where d = 1. Given u ∈W 2,1(0, 1), fix θ ∈ (0, 1/3)
and η ∈ (2/3, 1), and by virtue of the Mean Value Theorem, find ξ ∈ (0, 1) such that

u′(ξ) =
u(θ)− u(η)

θ − η
;

hence,

|u′(x)| ≤ |u(θ)− u(η)|
|θ − η|

+

∫ x

ξ

|u′′| dt ≤ |u(θ)− u(η)|
|θ − η|

+

∫ 1

0

|u′′| dt

for all x ∈ (0, 1), which, by the choice of θ and η, implies that

|u′(x)| ≤ 3|u(θ)|+ 3|u(η)|+
∫ 1

0

|u′′| dt for all x ∈ (0, 1).

Integrating in θ and η and multiplying both sides by 9 we get

|u′(x)| ≤ 3

∫ 1/3

0

|u| dt+ 3

∫ 1

2/3

|u| dt+

∫ 1

0

|u′′| dt

≤ 3

∫ 1

0

|u| dt+

∫ 1

0

|u′′| dt

for all x ∈ (0, 1). Now, dividing both sides by 4, and using the convexity and mono-
tonicity properties of ϕ, together with Jensen’s Inequality, we obtain

ϕ

(
|u′(x)|

4

)
≤ϕ

(
3

4

∫ 1

0

|u| dt+
1

4

∫ 1

0

|u′′| dt
)

≤ 3

4
ϕ

(∫ 1

0

|u| dt
)

+
1

4
ϕ

(∫ 1

0

|u′′| dt
)

≤ 3

4

∫ 1

0

[ϕ(|u|) + ϕ(|u′′|)] dt

for all x ∈ (0, 1).

Finally, integrating in x we have

∫ 1

0

ϕ

(
|u′|
4

)
dt ≤ 3

4

∫ 1

0

[ϕ(|u|) + ϕ(|u′′|)] dt .

Dividing J in disjoint intervals of length 1 and applying this argument to each one of
them we conclude that∫

J

ϕ

(
|u′|
4

)
dt ≤ 3

4

∫
J

[ϕ(|u|) + ϕ(|u′′|)] dt .
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If u takes values in Rd, d ≥ 2, then∫
J

ϕ

(
|u′|
4d

)
dt ≤

∫
J

ϕ

(
d∑
i=1

|u′i|
4d

)
dt

≤ 1

d

d∑
i=1

∫
J

ϕ

(
|u′i|
4

)
dt

≤ 3

4d

d∑
i=1

∫
J

[ϕ(|ui|) + ϕ(|u′′i |)] dt

≤ 3

4d

d∑
i=1

∫
J

[ϕ(|u|) + ϕ(|u′′|)] dt

=
3

4

∫
J

[ϕ(|u|) + ϕ(|u′′|)] dt

which proves the lemma.
In the sequel we will exploit the auxiliary functions G,H : R2d → R, which take

into account the energy stored on an interfacial layer:

G(w, z) := inf

{∫ 1

0

(W (g) + |g′′|2) dt : g ∈ C2([0, 1];Rd), g(0) = w, g(1) = b,

g′(0) = z, g′(1) = 0

}
,

H(w, z) = inf

{∫ 1

0

(W (h) + |h′′|2) dt : h ∈ C2([0, 1];Rd), h(0) = a, h(1) = w,

h′(0) = 0, h′(1) = z

}
.

Testing G and H with third degree polynomials g and h, respectively, satisfying the
boundary conditions, it can be shown that

lim
(w,z)→(b,0)

G(w, z) = 0 , lim
(w,z)→(a,0)

H(w, z) = 0 . (2.4)

Lemma 2.5. The constant m is positive and

m = min

{∫
R

(W (f) + |f ′′|2) dt : f ∈W 2,2
loc (R;Rd), lim

t→+∞
f(t) = b, lim

t→−∞
f(t) = a

}
.

Proof. Step 1. We start by proving that m > 0. Suppose that m = 0 and let
{fn} be a minimizing sequence of admissible functions in A. Let

S :=

{
x ∈ Rd : |x− a| = |b− a|

2

}
.

By Sobolev Embedding Theorem each function fn belongs to C1(R;Rd), and since
fn(t) = b for t > Mn and fn(t) = a if t < −Mn for a suitable Mn > 0, there must
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exists a point tn ∈ R such that fn(tn) ∈ S. By performing a simple translation in
the variable, with no loss of generality we may assume that fn(0) ∈ S. As m = 0, we
have that ‖f ′′n‖L2 → 0; moreover, by (H2), fixed a bounded interval J ⊂ R containing
the origin, {fn} is equibounded in L1(J ;Rd), and Proposition 2.3 implies that {f ′n}
is equibounded in L4/3(J ;Rd). Therefore, by Sobolev Embedding Theorem it follows
that {fn} is bounded in W 2,2(J ;Rd), and we may extract a subsequence fni |J of
restricted functions converging in W 1,∞ to an affine function f : J → Rd such that
f(0) =: c ∈ S. Setting f(t) := c+ tv for some v ∈ Rd, we have

m = lim
n→∞

∫
R
(W (fni) + |f ′′ni |

2
) dt

≥ lim
n→∞

∫
J

(W (fni) + |f ′′ni |
2

) dt

≥
∫
J

W (c+ tv) dt > 0 ,

because if
∫
J
W (c+ tv) dt = 0 then c+ tv should belong to {a, b} for all t ∈ J , and so

v = 0 and c ∈ {a, b} which is not possible since c ∈ S. We arrived at a contradiction,
and thus m > 0.

Step 2. Next we prove that m = m̃, where

m̃ := inf

{∫
R

(W (f) + |f ′′|2) dt : f ∈W 2,2
loc (R;Rd), lim

t→+∞
f(t) = b, lim

t→−∞
f(t) = a

}
.

(2.5)
It is clear that m ≥ m̃.

Conversely, fix δ > 0 and let f be a function admissible for m̃ and such that

m̃ + δ ≥
∫
R

(W (f) + |f ′′|2) dt.

We claim that we may find two sequences {xi} and {yi} converging to +∞ and −∞,
respectively, such that

|f ′(xi)|+ |f ′(yi)|+ |f(xi)− b|+ |f(yi)− a| → 0 (2.6)

as i → ∞. Indeed, fix τ < |b − a|/2 and consider a convex, nondecreasing function
ϕ : R → [0,+∞) such that ϕ(t) ≤ t2 for every t ∈ R, ϕ(|y|) ≤ W (y + b) for every
y ∈ B(0, τ) ⊂ Rd, and ϕ(t) = 0 if and only if t = 0. To prove the existence of ϕ it
suffices to set

ϕ(t) := sup{g : R→ [0,+∞) : g is convex, nondecreasing,

g(t) ≤ t2 for all t ∈ R, g(|y|) ≤W (y + b) for all y ∈ B(0, τ)}

and use hypothesis (H1). Let R > 0 be such that |f(t) − b| < τ whenever t > R.
Applying Lemma 2.4 to the function f − b, and using the properties of the function
ϕ, we obtain∫ +∞

R

ϕ

(
|f ′|
4d

)
dt ≤ 3

4

∫ +∞

R

[ϕ(|f − b|) + ϕ(|f ′′|)] dt

≤ 3

4

∫ +∞

R

(W (f) + |f ′′|2) dt ≤ 3 (m̃ + δ)

4
.
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Thus ϕ
(
|f ′|
4d

)
is integrable on [R,+∞), and so there exists a sequence of points

xn → +∞ such that limn→∞ ϕ
(
|f ′(xn)|

4d

)
= 0, and since ϕ is monotone nondecreasing

on [0,+∞), with ϕ(t) = 0 if and only if t = 0, we conclude that limn→∞ f ′(xn) = 0.
Repeating this argument with the point a in place of b, we are now in a position to
assert the existence of two sequences satisfying (2.6).

Set

gi(t) := g(t− xi), hi(t) := h(t− yi + 1)

where g and h are admissible for G and H, respectively, and∫ 1

0

(W (g) + |g′′|2) dt ≤ G(f(xi), f
′(xi)) + δ,

∫ 1

0

(W (h) + |h′′|2) dt ≤ H(f(yi), f
′(yi)) + δ.

We define

f̃i(t) :=



b if t ≥ xi + 1,

gi(t) if t ∈ [xi, xi + 1],

f(t) if t ∈ [yi, xi],

hi(t) if t ∈ [yi − 1, yi],

a if t ≤ yi − 1.

Clearly f̃i is admissible for m, and we have

m̃ + δ ≥
∫
R

(W (f) + |f ′′|2) dt ≥
∫ xi

yi

(W (f) + |f ′′|2) dt

=

∫
R

(W (f̃i) + |f̃ ′′i |
2
) dt−

∫ xi+1

xi

(W (gi) + |g′′i |
2
) dt

−
∫ yi

yi−1

(W (hi) + |h′′i |
2
) dt

≥m−G(f(xi), f
′(xi))−H(f(yi), f

′(yi))− 2δ.

The inequality m̃ ≥m now follows by letting δ → 0+, i→∞, and using (2.4).
Step 3. Finally, we prove that m is attained, or, equivalently, that m̃ admits a

minimizer. Let {fn} be a minimizing sequence for m̃. Possibly passing to a subse-
quence, and making a translation change of variables, we may assume as before that
fn(0) ∈ S, where S was defined in Step 1, and that the sequence of C1 functions {fn}
converges in W 1,∞

loc to a C1 function f : R→ Rd. If the function f is admissible, then
it realizes the infimum, since∫

R
(W (f) + |f ′′|2) dt ≤ lim

n→∞

∫
R

(W (fn) + |f ′′n |
2
) dt,

where we have used Fatou’s Lemma and the lower semicontinuity of the L2 norm of
the second derivative. In order to prove that f approaches a and b at infinity, set

L :=
{
l ∈ Rd | l is a limit point of f(t) when t→ +∞

}
.
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The integrability of W (f) and (H1) imply that a or b must belong to L. Suppose
that b ∈ L, and that there is another limiting value l ∈ L. Note that, without loss of
generality, we may assume that l 6= a, for if l = a then, by the continuity of f , there
would exist a sequence yi → +∞ such that f(yi) ∈ S; hence, for a subsequence (not
relabelled) f(yi)→ l′ ∈ S. Consider two monotone sequences of points {xi} and {zi}
such that xi+1 − xi ≥ 3, zi ∈ [xi + 1, xi+1 − 1], f(xi) → b and f(zi) → l, and for
0 < δ < min{|l − a|, |l − b|} we introduce still another constant m̂ defined as follows:

m̂ := inf
{∫ y

x

(W (g) + |g′′|2) dt : y − x ≥ 3, z ∈ [x+ 1, y − 1],

g ∈W 2,2((x, y);Rd), |g(z)− l| ≤ δ
}
.

We claim that m̂ = 0. Indeed, if m̂ > 0 then there would exist n0 such that, for
n ≥ n0, |f(zn)− l| ≤ δ, and it would follow that∫

R
(W (f) + |f ′′|2) dt =

∫ xn0

−∞
(W (f) + |f ′′|2) dt+

∞∑
i=n0

∫ xi+1

xi

(W (f) + |f ′′|2) dt

≥
∫ xn0

−∞
(W (f) + |f ′′|2) dt+

∞∑
i=n0

m̂ = +∞.

On the other hand, we can show that the assertion m̂ = 0 leads to a contradiction.
The reasoning is similar to the one used in Step 1 for the constant m. Let gn ∈
W 2,2((xn, yn);Rd) minimize m̂. Translating the intervals, without loss of generality
we can suppose that zn = 0, thus xn ≤ −1 and yn ≥ 1, and possibly passing to
a subsequence (not relabelled), we may assume that the functions gn converge in
W 1,∞([−1, 1];Rd) to an affine function g(t) = d+ tv. Therefore

m̂ ≥ lim
n→∞

∫ yn

xn

(W (gn) + |g′′n|
2
) dt

≥ lim
n→∞

∫ 1

−1

(W (gn) + |g′′n|
2
) dt

≥
∫ 1

−1

W (d+ tv) dt > 0 ,

because if
∫ 1

−1
W (d+ tv) dt = 0 then d+ tv should belong to {a, b} for all t ∈ (−1, 1),

i.e. v = 0 and d ∈ {a, b}. This is not possible since gn(0) → d, gn(0) ∈ B(l, δ), and
a, b /∈ B(l, δ). We conclude that f(t)→ b as t→ +∞.

Similarly, if a ∈ L then f(t) converges to a as t→ −∞.

If the limits of f at +∞ and −∞ are, respectively, a and b, then f(−t) is still a
minimizer and it converges to b and a at, respectively, +∞ and −∞.

It remains to exclude the possibility that the two limits coincide. Suppose that
limt→±∞ f(t) = a. As in Step 2, by virtue of Lemma 2.4 we can find a sequence of
points xn → +∞ such that

|f ′(xn)|+ |f(xn)− a| → 0

and, due to the convergence of fn to f in W 1,∞
loc (R;Rd), there exists a subsequence
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{fkn} such that fkn(xn)→ a and f ′kn(xn)→ 0. Hence, we have∫
R

(W (fkn) + |f ′′kn |
2
) dt =

∫ xn

−∞
(W (fkn) + |f ′′kn |

2
) dt+

∫ +∞

xn

(W (fkn) + |f ′′kn |
2
) dt

≥
∫ xn

−∞
(W (fkn) + |f ′′kn |

2
) dt+ m̃−H(fkn(xn), f ′kn(xn)) ,

and letting n→∞ we deduce that

m̃ ≥ lim sup
n→∞

∫ xn

−∞
(W (fkn) + |f ′′kn |

2
) dt+ m̃

≥ lim sup
n→∞

∫ xn

−∞
W (fkn) dt+ m̃

=

∫
R
W (f) dt+ m̃ .

This would imply that f is constantly equal to a, but since fn(0) ∈ S for every n we
have also f(0) = limn→∞ fn(0) ∈ S which is in contradiction with a /∈ S. The case
where limt→±∞ f(t) = b is treated in an analogous way.

Remark 2.6. A simple rescaling argument provides equi-partition of energy.
Precisely, if f realizes the minimum m then∫

R
W (f) dt = 3

∫
R
|f ′′|2 dt .

It suffices to use the fact that∫
R
(W (f) + |f ′′|2) dt ≤

∫
R

(W (fλ) + |f ′′λ |
2
) dt

for all λ > 0, where fλ(x) := f(λx).
We now state and prove the compactness result for sequences with finite energy.
Proposition 2.7. If uε ∈ W 2,2(I;Rd) satisfy lim infε→0+ Fε(uε) < +∞ then

there exists a subsequence {uεn} ⊂ {uε} and u ∈ BV (I; {a, b}) such that uεn → u in
L1(I;Rd). Moreover,

lim inf
ε→0+

Fε(uε) ≥m PerI({u = a}).

Proof. Suppose that lim infε→0+ Fε(uε) =: K < +∞. We claim that there exists
a function u ∈ BV (I; {a, b}) such that, up to a subsequence, uε → u. Extract a
subsequence from the start (not relabelled) realizing lim infε→0+ Fε(uε). We have

W (uε)→ 0 in L1, ||u′′||L2 ≤ Cε−3/2.

By (H2)

||uε||L1 ≤ R L1(I) +

∫
{|uε|>R}

(
1

C2
+

1

C
W (uε)

)
dt ≤ C̃,

therefore, by the Gagliardo and Nirenberg inequality (2.2) we conclude that

||u′ε||L4/3 ≤ C(||uε||1/2L1 ||u′′ε ||
1/2
L2 + ||uε||L1) ≤ C̃ε−3/4. (2.7)
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Also

L1({|uε| > R})→ 0 as ε→ 0+. (2.8)

Indeed, if τ := inf{W (ξ) : |ξ| > R} then by (H1) we have τ > 0, and so (2.8) follows
from the fact that

0 = lim
ε→0+

∫
I

W (uε) dt ≥ lim sup
ε→0+

∫
{|uε|>R}

W (uε) dt ≥ τ lim sup
ε→0+

L1({|uε| > R}).

Since {uε} is bounded in L1, we may extract a further subsequence (not relabelled)
generating a Young measure {νt}t∈I . In particular, if f : I × Rd → [0,+∞) is a
Carathéodory function such that {f(·, uε(·))} is equi-integrable, then f(·, uε(·)) ⇀ f̄
in L1 where (see [11, 34])

f̄(t) :=

∫
R
f(t, y)dνt(y), a. e. t ∈ I.

Setting f(y) := min{W (y), 1}, it follows that

0 = lim

∫
I

f(uε) dt =

∫
I

∫
R
f(y)dνt(y) dt;

hence, since f(y) = 0 if and only y ∈ {a, b}, we have

νt = θ(t)δy=a + (1− θ(t))δy=b

for some θ ∈ L∞(I, [0, 1]). We claim that

θ ∈ {0, 1} a. e. in I, i.e. θ = χE for some measurable subset E ⊂ I. (2.9)

Suppose that the claim holds. Define

u(t) := aχE(t) + b(1− χE(t)).

Then uε → u strongly in L1. Indeed, let

ϕ(y) :=

{
R y
|y| if |y| > R

y if |y| ≤ R.

Note that u = ϕ(u), and recall that W (y) ≥ C|y| − 1/C if |y| > R, with R >
max{|a|, |b|}. Then∫

I

|uε − u| dt ≤
∫
I

|ϕ(uε)− u| dt+ 2

∫
|uε|>R

|uε| dt

≤
∫
I

|ϕ(uε)− u| dt+
2

C

∫
I

W (uε) dt+
2

C2
L1({|uε| > R}).

Therefore, by (2.8) and (2.9) we conclude that

lim
ε→0+

∫
I

|uε − u| dt =

∫
I

∫
R
|ϕ(y)− u(t)|dνt(y)dt

=

∫
E

|ϕ(a)− u(t)| dt+

∫
I\E
|ϕ(b)− u(t)| dt

=

∫
E

|a− u(t)| dt+

∫
I\E
|b− u(t)| dt = 0.
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To prove (2.9), define

X :=

{
t ∈ I :

1

|B(t, δ)|

∫
B(t,δ)

θ(s)ds ∈ (0, 1) for all δ > 0

}
.

We show that the cardinality of X (call it L) cannot exceed the integer part of K/m;
hence θ ∈ {0, 1} a. e. and u ∈ BV (I; {a, b}) with m PerI({u = a}) = mL ≤ K which
gives the result.

Indeed, suppose that there were l distinct points of I in X, s1 < s2 < . . . < sl.
Let δ0 := min{|si− si+1| : i = 1, . . . , l−1}. Choose δ1 < δ0/2 such that for all δ ≤ δ1,
and all i ∈ {1, . . . , l},∫

B(si,δ)

θ(s)ds > 0,

∫
B(si,δ)

(1− θ(s))ds > 0.

Fix 0 < η < |b−a|/2, let ϕη be a cut-off function with support on B(a, η), ϕη(a) = 1,
ψη is a cut-off function with support on B(0, η), ψη(0) = 1, and γη is a cut-off function
with support on B(b, η), γη(b) = 1. By (2.7) ψη(εu′ε) converges strongly to ψη(0) in
L1, ϕη(uε) converges in L∞ weak-* to θϕη(a) + (1− θ)ϕη(b), and we have

lim
ε→0+

∫
B(si,δ1)

ψη(εu′ε)ϕη(uε)dt =

∫
B(si,δ1)

ψη(0)[θ(t)ϕη(a) + (1− θ(t))ϕη(b)]dt

=

∫
B(si,δ1)

θ(t) dt > 0,

and, similarly,

lim
ε→0+

∫
B(si,δ1)

ψη(εu′ε)γη(uε) dt =

∫
B(si,δ1)

(1− θ(t)) dt > 0 .

Thus, for each i ∈ {1, . . . , l} and each ε > 0, we may find x+
ε,i, x

−
ε,i ∈ B(si, δ1) such

that

uε(x
+
ε,i) ∈ B(b, η), uε(x

−
ε,i) ∈ B(a, η), |εu′ε(x+

ε,i)| < η, |εu′ε(x−ε,i)| < η . (2.10)

Define

gε,i(t) := ĝε,i

(
t−

x+
ε,i

ε

)
, hε,i(t) := ĥε,i

(
t−

x−ε,i
ε

+ 1

)
,

where the functions ĝε,i and ĥε,i are admissible for G(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) and for

H(uε(x
−
ε,i), εu

′
ε(x
−
ε,i)), respectively, with∫ 1

0

(W (ĝε,i) + |ĝε,i′′|2) dt ≤ G(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) + ε,

and ∫ 1

0

(W (ĥε,i) + |ĥε,i
′′
|2) dt ≤ H(uε(x

−
ε,i), εu

′
ε(x
−
ε,i))) + ε.
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Construct the functions

vε,i(t) :=



b if t ≥ x+
ε,i

ε + 1,

gε,i(t) if t ∈
[
x+
ε,i

ε ,
x+
ε,i

ε + 1

]
,

uε(εt) if t ∈
[
x−ε,i
ε ,

x+
ε,i

ε

]
,

hε,i(t) if t ∈
[
x+
ε,i

ε − 1,
x+
ε,i

ε

]
,

a if t ≤ x+
ε,i

ε − 1.

Then vε,i are admissible for m, and since the intervals [x−ε,i, x
+
ε,i] are disjoint we have

K ≥ lim inf
ε→0+

l∑
i=1

∫ x+
ε,i

x−ε,i

(
1

ε
W (uε) + ε3|u′′ε |2

)
dt

= lim inf
ε→0+

l∑
i=1

∫ x
+
ε,i
ε

x
−
ε,i
ε

(W (vε,i) + |v′′ε,i|2) dt

≥ml − lim sup
ε→0+

l∑
i=1

[H(uε(x
−
ε,i), εu

′
ε(x
−
ε,i)) +G(uε(x

+
ε,i), εu

′
ε(x

+
ε,i))].

Letting η → 0+, we conclude that K ≥ m l, where we have used (2.4) and (2.10).
The result now follows from the arbitrariness of l ≤ L and the fact that m > 0 (see
Lemma 2.5).

As an immediate consequence of the previous result we have,
Corollary 2.8. If u ∈ L1(I;Rd) and Γ(L1)− lim infε→0+ Fε(u) < +∞ then the

function u belongs to BV (I; {a, b}) and

Γ(L1)− lim inf
ε→0+

Fε(u) ≥ m PerI({u = a}).

Now we turn our attention to the Γ(L1)− lim supε→0+ Fε.
Proposition 2.9. If u ∈ BV (I; {a, b}) then

Γ(L1)− lim sup
ε→0+

Fε(u) ≤ m PerI({u = a}).

Proof. Suppose that S(u) = {s1, . . . , sl} ⊂ I = (α, β) is the jump set of the
function u, with α < s1 < · · · < sl < β. Set δ0 := min{sj+1 − sj : j = 0, . . . , l}, with

s0 := α and sl+1 := β, and let Ii :=
[
si−1+si

2 , si+si+1

2

]
for i = 1, . . . l. Fix δ ∈ (0, δ0)

and let f ∈ A be an admissible function for m, with f ∈ W 2,2
loc (R;Rd), f(t) = b if

t > M , f(t) = a if t < −M ,∫
R

(W (f) + |f ′′|2) dt ≤m +
δ

l
. (2.11)
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Consider a sequence εn → 0+, and choose n sufficiently large so that δ
2εn

> M.
Define

un(t) :=



f
(
t−si
εn

)
if t ∈

[
si−1+si

2 , si+1+si
2

]
and if [u](si) = b− a,

f
(
− t−siεn

)
if t ∈

[
si−1+si

2 , si+1+si
2

]
and if [u](si) = a− b,

u(t) otherwise

where [u](si) := u(si) − u(si−1) for i = 1, . . . , l. We note that un ∈ W 2,2(I;Rd).
Indeed, if [u](si) = b− a then u

(
si−1+si

2

)
= a, u

(
si+1+si

2

)
= b, and since

si−1 − si
2εn

< − δ

2εn
< −M,

si+1 − si
2εn

>
δ

2εn
> M,

we have that

f

(
si−1 − si

2εn

)
= a, f

(
si+1 − si

2εn

)
= b, f ′

(
si±1 − si

2εn

)
= 0.

A similar argument applies to the case where [u](si) = a− b.
Since un → u in L1(I;Rd) we conclude that

lim
n→∞

Fεn(un) = lim
n→∞

l∑
i=1

∫
Ii

(
W (un)

εn
+ ε3

n|u′′n|
2
)
dt

= lim
n→∞

 ∑
i=1,...,l, [u](si)=b−a

∫ si+1+si
2εn

si−1+si
2εn

(W (f(t)) + |f ′′(t)|2) dt

+
∑

i=1,...,l, [u](si)=a−b

∫ si+1+si
2εn

si−1+si
2εn

(W (f(−t)) + |f ′′(−t)|2) dx


=

 ∑
i=1,...,l, [u](si)=b−a

∫
R

(W (f(t)) + |f ′′(t)|2) dt

+
∑

i=1,...,l, [u](si)=a−b

∫
R

(W (f(−t)) + |f ′′(−t)|2) dt


= l

∫
R

(W (f) + |f ′′|2) dt

≤m l + δ

= m PerI({u = a}) + δ,

where we have used (H1) and (2.11). It suffices to let δ → 0+.
Remark 2.10. The arguments used in the proof of Theorem 2.2 may be easily

adapted to generalize the model above to the case where

Fε(u) :=


∫

Ω

(
W (u)
ε + ε2p−1|∇2u|p

)
dx if u ∈W 2,p(Ω;Rd),

+∞ if u ∈ L1(Ω;Rd) \W 2,p(Ω;Rd)
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for 1 < p < +∞, with

Γ(L1)− lim
ε→0+

Fε(u) =

{
m PerI({u = a}) if u ∈ BV (I; {a, b}),
+∞ otherwise,

and now

m := inf

{∫
R

(W (f) + |f ′′|p) dt : f ∈ A
}
.

As it is usual, the scaling ε2p−1 in Fε is the natural one obtained by testing the
finiteness of energy with admissible fields u which are a and b in most of the domain,
except on a transition layer of width ε. Note that here Proposition 2.3 still applies
provided (2.2) is modified to read

‖∇u‖Lq ≤ C
(
‖u‖1/2L1 ‖∇2u‖1/2Lp + ‖u‖L1

)
with 2/q = 1 + 1/p.

Naturally, the next step is to try to understand higher than two perturbations,
i.e., how to treat

Fkε (u) :=


∫

Ω

(
W (u)
ε + ε2k−1|∇ku|2

)
dx if u ∈W k,2(Ω;Rd),

+∞ if u ∈ L1(Ω;Rd) \W k,2(Ω;Rd)

where k ∈ N. Although the methods involved may stay close the the ones introduced
in this paper, this generalization does not seem to follow as immediately as the one
above : last, but not least, the corresponding G and H will now require matching of
all derivatives up to order (k − 1), and a new version of Lemma 2.4 will be in order.
This analysis will be carried on in a forthcoming paper.

3. The N-Dimensional Case. Let Ω be an open, bounded, Lipschitz domain
in RN , and consider the functionals

Fε(u) :=


∫

Ω

(
W (u)
ε + ε3|∇2u|2

)
dx if u ∈W 2,2

loc (Ω;Rd)

+∞ if u ∈ L1(Ω;Rd) \W 2,2
loc (Ω;Rd)

for ε > 0, where W satisfies hypotheses (H1) and (H2). We recall that the constant
m was defined in (2.1).

We start by proving L1 compactness for energy bounded sequences.
Proposition 3.1. If uε ∈ W 2,2(Ω;Rd) satisfy lim infε→0+ Fε(uε) < +∞ then

there exists a subsequence {uεn} ⊂ {uε} and u ∈ BV (Ω; {a, b}) such that uεn → u in
L1(Ω;Rd).

The proof of this result uses the L1-slicing compactness criterion introduced by
Alberti, Bouchitté and Seppecher in [2], Theorem 6.6 (see Proposition 3.2 below).
Here two sequences {uε} and {vε} are said to be δ-close if ||uε − vε|| < δ, δ > 0.
When Ω is a rectangle of the form I × J , with I, J open intervals, we write x ∈ Ω as
x = (y, z) with y ∈ I, z ∈ J . For every function u defined on Ω and every y ∈ I we
denote by uy the function on J defined by uy(z) := u(y, z), and for every z ∈ J we
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set uz(y) := u(y, z) for y ∈ I. The functions uy and uz are called one-dimensional
slices of u.

Proposition 3.2. Assume that the sequence {uε} is equi-integrable, and suppose
that for every δ > 0 there exist sequences {vε} and {wε} δ-close to {uε}, and such
that, {vyε} is precompact in L1(J ;Rd) for a. e. y ∈ I, and {wzε} is precompact in
L1(I;Rd) for a. e. z ∈ J . Then {uε} is precompact in L1(Ω;Rd).

Remark 3.3. We note that the original statement of Theorem 6.6 in [2] assumes
that {uε} is bounded in L∞. However, it is easy to verify that the main tool involved
is the use of Fréchet-Kolmogorov Theorem for pre-compactness in L1, which clearly
holds as well when {uε} is equi-integrable.

Proof of Proposition 3.1. For simplicity we suppose N = 2; the higher dimensional
case is treated in an analogous way.

Assume first that Ω is a rectangle of the form I × J , with I, J open intervals.
We denote by F1

ε (u,A) the one-dimensional functional

F1
ε (u,A) :=

{∫
A

(
W (u)
ε + ε3|u′′|2

)
dt if u ∈W 2,2(A;Rd),

+∞ if u ∈ L1(A;Rd) \W 2,2(A;Rd),

for every open interval A and every u ∈ L1(A;Rd). We recall that if u ∈W 2,2(Ω;Rd)
then uy ∈W 2,2(J ;Rd) for a. e. y ∈ I and uz ∈W 2,2(I;Rd) for a. e. z ∈ J , and

∂2u

∂z2
(x) =

d2uy

dz2
(z) ,

∂2u

∂y2
(x) =

d2uz

dy2
(y) for a. e. x ∈ Ω

(see [19], Section 4.9.2). Since |∇2u|2 ≥ max
{∣∣∂2u

∂z2

∣∣2, ∣∣∂2u
∂y2

∣∣2}, we immediately obtain

the following slicing inequalities :

Fε(u) ≥
∫
I

F1
ε (uy, J) dy, Fε(u) ≥

∫
J

F1
ε (uz, I) dz . (3.1)

Now consider a family of functions {uε} such that Fε(uε) ≤ C < +∞. Since∫
Ω
W (uε) dx ≤ Cε, we have that W (uε) → 0 in L1, and so equi-integrability of {uε}

follows from (H2). Therefore, fix δ > 0 and let δ′ ∈ (0, δ) be such that

L2(S) ≤ δ′|J | =⇒ sup
ε>0

∫
S

(|uε(x)|+ |b|) dx ≤ δ .

For ε > 0 we define vε : Ω→ Rd by

vyε (z) :=

{
uyε(z) = uε(y, z) if F1

ε (uyε , J) ≤ C/δ′,
b otherwise.

We claim that vyε = uyε for all y ∈ I except at most on a set Zε ⊂ I of measure smaller
than δ′. Indeed, by (3.1) we have

C ≥ sup
ε>0

∫
I

F1
ε (uyε , J) dy, (3.2)

and so

|Zε| ≤ |{F1
ε (uyε , J) > C/δ′}| ≤ δ′

C

∫
I

F1
ε (uyε , J) dy ≤ δ′,
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and we have

‖uε − vε‖1 ≤
∫
Zε×J

|uε(x)− b| dx ≤
∫
Zε×J

(|uε(x)|+ |b|) dx ≤ δ

for every ε > 0, since L2(Zε × J) ≤ δ′|J |. Hence the sequence {vε} is δ-close to {uε}.
Moreover, for every y ∈ I there holds F1

ε (vyε , J) ≤ C/δ′, where we have used the fact
that that F1

ε (b, J) = 0, and so Proposition 2.7 yields L1(J ;Rd) precompactness of
{vyε}. Similarly, we way can construct a sequence {wε} δ-close to {uε} so that {wzε}
is precompact in L1(I;Rd) for every z ∈ J , and it suffices to now use Proposition 3.2
to conclude that the sequence {uε} is pre-compact in L1(Ω;Rd).

The case where Ω is a general open subset of RN is obtained by decomposing Ω
into a countable union of closed rectangles with disjoint interiors.

The fact that the limit function u belongs to BV (Ω; {a, b}) is showed in the proof
of Proposition 3.5.

Theorem 3.4. If u ∈ L1(Ω;Rd) then

Γ(L1)− lim
ε→0+

Fε(u) =

{
m PerΩ({u = a}) if u ∈ BV (Ω; {a, b}),
+∞ otherwise.

We divide the proof of this theorem into two propositions concerning, respectively,
the Γ(L1)− lim inf and the Γ(L1)− lim sup. Although nowadays these arguments may
be considered to be quite standard, and we refer the reader to [7, 16], and to [4] for
the treatment of second derivatives in the study of the Γ(L1) − lim sup, we included
here the proofs of Proposition 3.5 and Proposition 3.6 for completeness and for the
convenience of the reader.

Proposition 3.5. Let u ∈ L1(Ω;Rd). If Γ(L1)− lim infε→0+ Fε(u) < +∞ then
u belongs to BV (Ω; {a, b}) and

Γ(L1)− lim inf
ε→0+

Fε(u) ≥m PerΩ({u = a}).

Proof. Suppose that εn → 0+, un → u in L1(Ω;Rd) and Fεn(un) converges to
Γ(L1) − lim infε→0+ Fε(u) < +∞. Fixing an unit vector ν ∈ SN−1, possibly passing
to a subsequence (not relabelled), we may assume that un|Ly,ν∩Ω → u|Ly,ν∩Ω in
L1(Ly,ν ,H1) for almost every line Ly,ν parallel to ν, where Ly,ν := {y + sν : s ∈ R},
y ∈ RN . By Proposition 2.8, and setting

uy,νn (t) := un(y + tν) for HN−1a. e. y ∈ ν⊥,

we have

m
|Duy,ν |(Ly,ν ∩ Ω)

|b− a|
≤ lim inf

n→∞

∫
Ly,ν∩Ω

(
W (uy,νn )

εn
+ ε3

n

∣∣∣∣ d2uy,νn
dt2

∣∣∣∣2
)
dt.

Thus, by Fatou’s Lemma and the slicing properties of BV functions (see [19], Sec-
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tion 5.10.2),

m PerΩ({u = a})= m
|Du|(Ω)

|b− a|

=
m

|b− a|

∫
{y∈ν⊥}

|Duy,ν |(Ly,ν ∩ Ω) dHN−1(y)

≤
∫
{y∈ν⊥}

lim inf
n→∞

∫
Ly,ν∩Ω

(
W (uy,νn )

εn
+ ε3

n

∣∣∣∣ d2uy,νn
dt2

∣∣∣∣2
)
dt dHN−1

≤ lim inf
n→∞

∫
{y∈ν⊥}

∫
Ly,ν∩Ω

(
W (un)

εn
+ ε3

n|∇2un|2
)
dt dHN−1

= lim inf
n→∞

∫
Ω

(
W (un)

εn
+ ε3

n|∇2un|2
)
dx

= Γ(L1)− lim inf
ε→0+

Fε(u).

Proposition 3.6. For every function u ∈ BV (Ω; {a, b}) we have

Γ(L1)− lim sup
ε→0+

Fε(u) ≤m PerΩ({u = a}).

Proof. Let u ∈ BV (Ω; {a, b}), with u = aχE + b(1− χE), and where E is a set of
finite perimeter, i.e. PerΩ(E) = |DχE |(Ω) < +∞. Since E can be approximated by

a sequence of smooth sets Ei = Ẽi ∩ Ω such that Ẽi is a smooth bounded set in RN ,
χEi → χE in L1(Ω) and |DχEi |(Ω) → |DχE |(Ω) (see Lemma 4.3 in [6]), in order to
study the Γ(L1)− lim sup it suffices to consider a function u : Ω→ R such that

u(x) =

{
a if x ∈ E,

b if x ∈ Ω \ E,

where E = Ẽ ∩ Ω and Ẽ is a compact subset of RN with a C2 boundary. We claim
that

Γ(L1)− lim sup
ε→0+

Fε(u) ≤m PerΩ({u = a}).

Since M := ∂Ẽ is a C2 manifold in RN , there exists δ0 > 0 such that for all
δ < δ0 the points in the tubular neighborhood Uδ of the manifold M admit a unique
smooth projection onto M , where Uδ :=

{
x ∈ RN : dist(x,M) < δ

}
.

Let εn → 0+, and consider a sequence of functions vn ∈W 2,2
loc (R;Rd) such that

vn(t) =

{
a if t ≤ − 1√

εn
,

b if t ≥ 1√
εn
,

and

lim
n→∞

∫
R

(W (vn) + |v′′n|
2
) dt = m .

We define the sequence of functions un : Ω→ R

un(x) :=


vn( d̃M (x)

εn
) if x ∈ Un ∩ Ω,

a if x ∈ E \ Un,

b if x ∈ Ω \ (E ∪ Un),
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where d̃M : RN → R is the signed distance function from the boundary of Ẽ, negative
inside Ẽ, and Un := U√εn . We have

lim sup
n→∞

Fεn(un) = lim sup
n→∞

∫
Ω

(
W (un)

εn
+ ε3

n|∇2un|
2
)
dx

= lim sup
n→∞

{∫
Un

W (vn(d̃M (x)/εn))

εn
dx+

∫
Un

e3
n

∣∣∣v′′n∇d̃M ×∇d̃M/ε2
n + v′nH/εn

∣∣∣2 dx},
where H is the Hessian matrix of d̃M . Change variables via the diffeomorphism x :=
F (y, t), where F : M × (−δ0/2, δ0/2) → Uδ0/2, F (y, t) := y + tν(y), with ν(y) the

normal vector to M at y pointing outside Ẽ. We indicate by J(y, t) the Jacobian of
this transformation. Then

lim sup
n→∞

Fεn(un) ≤ lim inf
n→∞

{∫
M

∫ √εn
−√εn

(
W (vn(t/εn))

εn

+ε3
n

|v′′n(t/εn)|2

ε4
n

∣∣∣∇d̃M (F (y, t))
∣∣∣2) J(y, t) dt dHN−1(y)

+

∫
M

∫ √εn
−√εn

ε3
n

|v′n(t/εn)|2

ε2
n

|H(F (y, t))|2 J(y, t) dt dHN−1(y)

+ 2

∫
M

∫ √εn
−√εn

ε3
n

|v′′n(t/εn)||v′n(t/εn)|
ε3
n

∣∣∣∇d̃M (F (y, t))
∣∣∣|H(F (y, t))|J(y, t)dtdHN−1(y)

}
,

which reduces to

lim sup
n→∞

Fεn(un)

≤ lim sup
n→∞

{∫
M

∫ √εn
−√εn

(
W (vn(t/εn))

εn
+
|v′′n(t/εn)|2

εn

)
J(y, t) dt dHN−1(y)

+A

∫
M

∫ √εn
−√εn

εn|v′n(t/εn)|2 dt dHN−1(y)

+B

∫
M

∫ √εn
−√εn

|v′′n(t/εn)| |v′n(t/εn)| dt dHN−1(y)

}
=: lim sup

n→∞

{
I

(n)
1 (u) + I

(n)
2 (u) + I

(n)
3 (u)

}
,

where we took into account the facts that the gradient of the distance is always equal
to one, and that the Jacobian J and the Hessian H of the distance are uniformly
bounded. We have

I
(n)
1 (u) =

∫
M

∫ √εn
−√εn

(
W (vn(t/εn))

εn
+
|v′′n(t/εn)|2

εn

)
J(y, t) dt dHN−1(y)

=

∫
M

∫ 1/
√
εn

−1/
√
εn

(
W (vn(s)) + |v′′n(s)|2

)
J(y, sεn) ds dHN−1(y)

≤

(
sup

y∈M, t∈(−√εn,
√
εn)

J(y, t)

)∫
M

∫
R

(
W (vn(s)) + |v′′n(s)|2

)
ds dHN−1(y) ,
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and passing to the limit in n as n→∞, we get

lim sup
n→∞

I
(n)
1 ≤

(
sup

y∈M, t∈(−√εn,
√
εn)

J(y, t)

)
mHN−1(M)

=

(
sup

y∈M, t∈(−√εn,
√
en)

J(y, t)

)
m PerΩ({u = a}).

If we show that the other two integrals I
(n)
2 (u) and I

(n)
3 (u) go to zero as n→∞, then

we obtain that

Γ(L1)− lim sup
ε→0+

Fε(u)≤ lim sup
n→∞

(
sup

y∈M, t∈(−√εn,
√
εn)

J(y, t)

)
m PerΩ({u = a})

= m PerΩ({u = a}),

where we used the fact that {εn} is an arbitrary sequence converging to zero, and
that since M is compact, J(y, t) goes uniformly to one as t→ 0.

Finally,

I
(n)
2 + I

(n)
3 ≤ C

∫ √εn
−√εn

(
εn|v′n(t/εn)|2 + |v′′n(t/εn)| |v′n(t/εn)|

)
dt

= C

∫
R

(
ε2
n|v′n(s)|2 + εn|v′′n(s)| |v′n(s)|

)
ds

≤ C
(
ε2
n‖v′n‖

2
2 + εn‖v′′n‖2 ‖v

′
n‖2
)

≤ C
(
ε2
n‖v′n‖

2
2 + εn ‖v′n‖2

)
(3.3)

where we changed variables, used Hölder inequality and the fact that

‖v′′n‖2L2 ≤
∫
R
(W (vn) + |v′′n|2) dt→m .

Set wn(t) := vn (t/εn) . Then

lim sup
n→∞

∫ 1

−1

(
1

εn
W (wn) + ε3

n|w′′n|2
)
dt

= lim sup
n→∞

∫ √εn
−√εn

(
1

εn
W (wn) + ε3

n|w′′n|2
)
dt

= lim
n→∞

∫
R

(W (vn) + |v′′n|2) dt,

and so by Proposition 2.7 and (2.7)

||w′n||L4/3(−1,1) ≤ Cε−3/4
n ,

where the constant C is independent of n. Also, Hölder inequality yields

||w′′n||L4/3(−1,1)= ||w′′n||L4/3(−√εn,
√
εn)

≤ C||w′′n||L2(−1,1) ε
1/6
n

≤ C ε−3/2
n ε1/6

n .
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Therefore, by Sobolev Embedding Theorem

||w′n||L2(−1,1) ≤ C||w′n||W 1,4/3(−1,1) ≤ C(ε−3/4
n + ε−3/2

n ε1/6
n ),

and in view of (3.3), we conclude that

ε2
n

∫
R

|v′n|2 dt= ε3
n

∫ √εn
√
εn

|w′n|2 dt

≤ C ε3
n (ε−3/4

n + ε−3/2
n ε1/6

n )2

≤ C (ε3/2
n + ε1/3

n ),

and it suffices to let n→∞.

4. Final Remarks. As in the singular perturbation model for phase transitions
(see [25]), the interfacial energy appears due to the need to go across an energy barrier
in order to remain on the zero set of W . Indeed, if the zero set of W is a smooth,
connected set, then the Γ(L1)– limit may simply reduce to zero. As an example,
consider the case where {W = 0} = Sd−1. Then

Γ(L1)− lim
ε→0+

Fε(u) =

{
0 if u ∈ L1(Ω; Sd−1),

+∞ otherwise.

To prove this assertion, fix u ∈ L1(Ω; Sd−1) and let {un} be a sequence of smooth
functions with compact support, converging to u in L1(Ω; Sd−1). The existence of such
approximating sequence can be obtained as follows: there exists a point y ∈ Sd−1 such
that u−1(y) has zero Lebesgue measure, so we may assume with no loss of generality
that u does not take such value y. The manifold Sd−1 \ {y} is diffeomorphic to the
open unit ball B of Rd−1 via some smooth map Φ; hence it is sufficient to approximate
the function Φ(u) in L1(Ω;B) with a sequence of smooth functions {vn} with compact
support and then to consider the sequence un := Φ−1(vn).
If now we choose a positive sequence εn → 0+ such that∫

Ω

ε3
n|∇2un|2 dx ≤

1

n
for every n ∈ N,

we get

Γ(L1)− lim
ε→0+

Fε(u) ≤ lim inf
n→∞

∫
Ω

(
W (un)

εn
+ ε3

n|∇2un|2
)
dx ≤ lim

n→∞

1

n
= 0

and this proves the claim.
Finally, we remark that if we could prove that for energy bounded sequences {uε},

with

sup
ε>0

∫
Ω

(
W (uε)

ε
+ ε3|∇2uε|2

)
dx < +∞,

it follows that

sup
ε>0

∫
Ω

ε|∇u|2 dx < +∞,
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then most proofs would be greatly simplified, and, in particular, the compactness in
L1 (see Propositions 2.7, 3.1) would follow immediately from the compactness for the
singular perturbations model studied in [10, 12, 13, 22, 25, 28, 29, 32, 33].
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