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Abstract

Given a compact Riemannian manifold, we study the regularity of the optimal trans-
port map between two probability measures with cost given by the squared Riemannian
distance. Our strategy is to define a new form of the so-called Ma-Trudinger-Wang con-
dition and to show that this condition, together with the strict convexity on the nonfocal
domains, implies the continuity of the optimal transport map. Moreover our new condi-
tion, again combined with the strict convexity of the nonfocal domains, allows to prove
that all injectivity domains are strictly convex too. These results apply for instance on
any small C4-deformation of the two-sphere.

1 Introduction

Let µ, ν be two probability measures on a smooth compact connected Riemannian manifold
(M, g) equipped with its geodesic distance d. Given a cost function c : M × M → R, the
Monge-Kantorovich problem consists in finding a transport map T : M → M which sends µ
onto ν (i.e. T#µ = ν) and which minimizes the functional

min
S#µ=ν

∫

M

c(x, S(x)) dx.

In [22] McCann (generalizing [2] from the Euclidean case) proved that, if µ gives zero mass to
countably (n − 1)-rectifiable sets, then there is a unique transport map T solving the Monge-
Kantorovich problem with initial measure µ, final measure ν, and cost function c = d2/2.
The purpose of this paper is to study the regularity of T . This problem has been extensively
investigated in the Euclidean space [3, 4, 5, 9, 25, 26], in the case of the flat torus or nearly flat
metrics [8, 10], on the standard sphere and its perturbations [11, 17, 19], and on manifolds with
nonfocal cut locus [20] (see [27, Chapter 12] for an introduction to the problem of the regularity
of the optimal tranport map for a general cost function).

Definition 1.1. Let (M, g) be a smooth compact connected Riemannian manifold. We say
that (M, g) satisfies the transport continuity property (abbreviated T CP) if, whenever µ and ν
satisfy

(i) limr→0
µ(Br(x))

rn−1 = 0 for any x ∈ M ,

(ii) infx∈M

(
lim infr→0

ν(Br(x))
rn

)
> 0,
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then the unique optimal transport map T between µ and ν is continuous.

Note that the above definition makes sense: by a standard covering argument one can prove
that assumption (i) implies that µ gives zero mass to countably (n− 1)-rectifiable sets. Thus,
by McCann’s Theorem, the optimal transport map T from µ to ν exists and is unique.

If (M, g) is a given Riemannian manifold, we call C4-deformation of (M, g) any Riemannian
manifold of the form (M, gε) with gε close to g in C4-topology. Loeper [19] proved that the
round sphere (Sn, gcan) satisfies T CP. Then, Loeper and Villani [20] showed that any C4-
deformation of quotients of the sphere (like RPn) satisfies T CP. Furthermore, Delanoe and
Ge [11] proved a regularity result under restriction on the measures on C4-deformation of the
round spheres (see also [28]). The main aim of this paper is to prove the following result:

Theorem 1.2. Any C4-deformation of the round sphere (S2, gcan) satisfies T CP.

We notice that the above theorem is the first regularity result for optimal transport maps
allowing for perturbations of the standard metric on the sphere without any additional assump-
tion on the measures. In particular this shows that, if we sligthly perturbs the sphere into an
ellipsoid, then T CP holds true.

Furthermore, quite surprisingly the method of our proof allows to easily deduce as a byprod-
uct the strict convexity of all injectivity domains on perturbations of the two sphere. This geo-
metric result is to our knowledge completely new (see [20] where the authors deal with nonfocal
manifolds):

Theorem 1.3. On a C4-deformation of the round sphere (S2, gcan), all injectivity domains are
strictly convex.

It is known [18, 27] that a necessary condition to prove the continuity of optimal transport
maps is the so-called Ma-Trudinger-Wang condition (in short MTW condition). This condition
is expressed in terms of the fourth derivatives of the cost function. Hence it makes sense only
on the domain of smoothness of the distance function, that is on the complement of the cut
locus. Another important condition to prove regularity results is the so-called c-convexity of the
target domain (see [21, 18]), which in the case of the squared Riemannian distance corresponds
to the convexity of all injectivity domains (see (2.4)). So, to obtain regularity results on
small deformations of the sphere, on the one hand one has to prove the stability of the MTW
condition, and on the other hand one needs to show that the convexity of the injectivity domain
is stable under small perturbations. Up to now it was not known whether the convexity of the
injectivity domains is stable under small perturbations of the metric, except in the nonfocal
case (see [7, 15, 20]). Indeed the boundaries of the injectivity domains depend on the global
geometry of the manifold, and this makes the convexity issue very difficult. Theorem 1.3 above
is the first general result in this direction.

Our strategy to deal with these problems is to introduce a variant of the MTW condition,
which coincides with the usual one up to the cut locus, but that can be extended up to the first
conjugate point (see Paragraph 2.2). In this way, since our extended MTW condition is defined
up to the first conjugate time, all we really need is the convexity of the nonfocal domains (see
(2.1)), which can be shown to be stable under small C4-perturbation of the metric (see Section
5). Thus, in Theorems 3.2 and 3.6 we prove that the strict convexity of nonfocal domains,
together with our extended MTW condition, allows to adapt the argument in [20] (changing
in a careful way the function to which one has to apply the MTW condition) to conclude the
validity of T CP. Moreover, as shown in Theorem 3.4 and Remark 3.5, the strategy of our proof
of Theorem 3.2 allows to easily deduce the (strict) convexity of the injectivity domains. Since
the assumptions of Theorem 3.2 are satisfied by C4-deformation of (S2, gcan), Theorems 1.2 and
1.3 follow.
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The paper is organized as follows: in Section 2 we recall some basic facts in Riemannian
and symplectic geometry, and we introduce what we call the extended Ma-Trudinger-Wang
condition MTW(K, C). In Section 3 we show how MTW(K, C), together with the strict con-
vexity of the cotangent nonfocal domains, allows to prove the strict convexity of the injectivity
domains and T CP on a general Riemannian manifold. In Section 4 we prove the stability of
MTW(K, C) under C4-deformation of (S2, gcan). Then, in Section 5 we collect several remarks
showing other cases when our results apply, and explaining why our continuity result cannot
be easily improved to higher regularity. Finally, in the appendix we show that the standard
sphere (Sn, gcan) satisfies MTW(K0,K0) for some K0 > 0.

Acknowledgements: we warmly thank Cédric Villani for stimulating our interest on the
problem. We also acknowledge the anonimous referee for useful comments and for spotting a
mistake in a preliminary version of the paper.

2 The extended MTW condition

2.1 Preliminaries in Riemannian and symplectic geometry

In the sequel, (M, g) always denotes a smooth compact connected Riemannian manifold of
dimension n, and we denote by d its Riemannian distance. We denote by TM the tangent
bundle and by π : TM → M the canonical projection. A point in TM is denoted by (x, v),
with x ∈ M and v ∈ TxM = π−1(x). For v ∈ TxM , the norm ‖v‖x is gx(v, v)1/2. For every
x ∈ M , expx : TxM → M stands for the exponential mapping from x, and cut(x) for the cut
locus from x (i.e. the closure of the set of points y 6= x where the distance function from x
d(x, ·) is not differentiable). We denote by T ∗M the cotangent bundle and by π∗ : T ∗M → M
the canonical projection. A point in T ∗M will be denoted by (x, p), with x ∈ M and p ∈ T ∗x M
a linear form on the vector space TxM . For every p ∈ T ∗x M and v ∈ TxM , we denote by 〈p, v〉
the action of p on v. The dual metric and norm on T ∗M are respectively denoted by gx(·, ·)
and ‖ · ‖x. The cotangent bundle is endowed with its standard symplectic structure ω. A local
chart

ϕ : U ⊂ M → ϕ(U) ⊂ Rn

for M induces on T ∗M a natural chart

T ∗ϕ : T ∗U → T ∗(ϕ(U)) = ϕ(U)× (Rn)∗.

This gives coordinates (x1, . . . , xn) on U , and so coordinates (x1, . . . , xn, p1, · · · , pn) on T ∗U
such that the symplectic form is given by ω = dx ∧ dp on T ∗U . Such a set of local coordinates
on T ∗M is called symplectic. Fix θ = (x, p) ∈ T ∗M . We recall that a subspace E ⊂ Tθ(T ∗M)
is called Lagrangian if it is a n-dimensional vector subspace where the symplectic bilinear form
ωθ : Tθ(T ∗M) × Tθ(T ∗M) → R vanishes. The tangent space Tθ(T ∗M) splits as a direct sum
of two Lagrangian subspaces: the vertical subspace Vθ = ker(dθπ

∗) and the horizontal subspace
Hθ given by the kernel of the connection map Cθ : Tθ(T ∗M) → T ∗x M defined as

Cθ(χ) := DtΓ(0) ∀χ ∈ Tθ(T ∗M),

where t ∈ (−ε, ε) 7→ (γ(t),Γ(t)) ∈ T ∗M is a smooth curve satisfying (γ(0), Γ(0)) = (x, p) and
(γ̇(0), Γ̇(0)) = χ, and where DtΓ denotes the covariant derivative of Γ along the curve γ. Using
the isomorphism

Kθ : Tθ(T ∗M) −→ TxM × T ∗x M
χ 7−→ (dθπ

∗(χ), Cθ(χ)) ,

we can identify any tangent vector χ ∈ Tθ(T ∗M) with its coordinates (χh, χv) := Kθ(χ) in the
splitting (Hθ, Vθ). Therefore we have

Hθ ' TxM × {0} ' Rn × {0}
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and
Vθ ' {0} × T ∗x M ' {0} × Rn,

so that
Tθ(T ∗M) ' Hθ ⊕ Vθ ' Rn ⊕ Rn.

If a given n-dimensional vector subspace E ⊂ Tθ(T ∗M) is transversal to Vθ (i.e. E ∩Vθ = {0}),
then E is the graph of some linear map S : Hθ → Vθ. It can be checked that E is Lagrangian
if and only if S is symmetric in a symplectic set of local coordinates. The Hamiltonian vector
field XH of a smooth function H : T ∗M → R is the vector field on T ∗M uniquely defined
by ωθ

(
XH(θ), ·) = −dθH for any θ ∈ T ∗M . In a symplectic set of local coordinates, the

Hamiltonian equations (i.e. the equations satisfied by any solution of (ẋ, ṗ) = XH

(
(x, p)

)
) are

given by ẋ = ∂H
∂p , ṗ = −∂H

∂x . Finally, we recall that the Hamiltonian flow φH
t of XH preserves

the symplectic form ω. We refer the reader to [1, 6] for more details about the notions of
symplectic geometry introduced above.

2.2 The MTW tensor

Let H : T ∗M → R be the Hamiltonian canonically associated with the metric g, i.e.

H(x, p) =
1
2
‖p‖2x ∀ (x, p) ∈ T ∗M.

We denote by φH
t the Hamiltonian flow on T ∗M , that is the flow of the vector field written in

a symplectic set of local coordinates as
{

ẋ = ∂H
∂p (x, p),

ṗ = −∂H
∂x (x, p).

For every (x, p) ∈ T ∗M , we define the Lagrangian subspace J(x,p) ⊂ T(x,p)(T ∗M) ' TxM×T ∗x M
as the pullback of the vertical distribution at φH

1 ((x, p)) by φH
1 , that is

J(x,p) :=
(
φH

1

)∗ (
VφH

1 ((x,p))

)
=

(
φH
−1

)
∗
(
VφH

1 ((x,p))

) ∀ (x, p) ∈ T ∗M.

Let x ∈ M be fixed. We call cotangent nonfocal domain of x the open subset of T ∗x M defined
as

NF∗(x) :=
{
p ∈ T ∗x M | J(x,tp) ∩ V(x,tp) = {0} ∀ t ∈ (0, 1]

}
. (2.1)

It is the set of covectors p ∈ T ∗x M \ {0} such that the corresponding geodesic γ : [0, 1] → M
defined as γ(t) := π∗ ◦ φH

t (x, p) has no conjugate points on the interval (0, 1]. By construction,
for every p ∈ NF∗(x), the Lagrangian subspace J(x,p) is transversal to the vertical subspace
V(x,p) in T(x,p)(T ∗M). Hence, there is a linear operator K(x, p) : TxM → T ∗x M such that

J(x,p) =
{(

h,K(x, p)h
) ∈ TxM × T ∗x M | h ∈ TxM

}
.

We are now ready to define our extended Ma-Trudinger-Wang tensor.

Definition 2.1. We call extended Ma-Trudinger-Wang tensor (abbreviated MTW tensor), the
mixed tensor field given by

Ŝ(x, p) · (ξ, η) :=
3
2

d2

ds2
〈K(x, p + sη)ξ, ξ〉|s=0 ∀ ξ ∈ TxM, ∀ η ∈ T ∗x M,

for every (x, p) ∈ NF∗(x).
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The above definition extends the definition of the Ma-Trudinger-Wang tensor, which was
first introduced in [21] and extensively studied in [11, 12, 13, 17, 18, 19, 20, 23, 24, 28]. Indeed,
let x 6= y ∈ M be such that y /∈ cut(x), and take ξ ∈ TxM, η ∈ T ∗x M . There is a unique
p ∈ T ∗x M \ {0} such that the curve γ : [0, 1] → M defined by

γ(t) := π∗ ◦ φH
t (x, p) ∀ t ∈ [0, 1]

is a minimizing geodesic between x and y. Since such a curve contains no conjugate points, the
covector p necessarily belongs to NF∗(x). Let v ∈ TxM (resp. η̃ ∈ TxM) be the unique vector
such that 〈p, w〉 = gx(v, w) (resp. 〈η, w〉 = gx(η̃, w)) for any w ∈ TxM . By the definition of
K(·, ·), if we define c(x, y) = d2(x, y)/2, then for s small one has1

〈K(x, p + sη)ξ, ξ〉 = − d2

dt2
c
(
expx(tξ), expx(v + sη̃)

)
|t=0

. (2.2)

Thus, differentiating both sides yields

Ŝ(x, p) · (ξ, η) = −3
2

d2

ds2

d2

dt2
c
(
expx(tξ), expx(v + sη̃)

)
|s=t=0

= S(x, y) · (ξ, η̃), (2.3)

where S denotes the classical Ma-Trudinger-Wang tensor (see for instance [27, Chapter 12]).
Observe that, although the MTW tensor is not defined at (x, 0), the above formula shows that
Ŝ(x, 0) is well-defined by continuity, and it is a smooth function near (x, 0). Denote by I∗(x)
the cotangent injectivity domain of x defined as

I∗(x) :=
{
p ∈ T ∗x M | π∗ ◦ φH

t (x, p) /∈ cut(x) ∀ t ∈ [0, 1]
}

, (2.4)

and observe that I∗(x) ⊂ NF∗(x) ∪ {0}. The discussion above shows that, if we identify
p, η ∈ T ∗x M with v, η̃ ∈ TxM by setting p = gx(v, ·) and η = gx(η̃, ·), then the MTW tensor
Ŝ and the classical MTW tensor S coincide on the injectivity domains. For this reason, our
tensor can be seen as an extension of the MTW tensor beyond the injectivity domain up to the
boundary of the nonfocal domain.

It is worth mentioning that in Definition 2.1 it is not necessary to work with the horizontal
spaces which are given by the Riemannian connection associated with the metric g. Let ϕ :
U ⊂ M → ϕ(U) ⊂ Rn be a local chart in M and (x1, . . . , xn, p1, · · · , pn) be a symplectic
set of local coordinates on T ∗U . As we already said before, for every θ = (x, p) ∈ T ∗U =
Rn × (Rn)∗, the horizontal space Hθ canonically associated with g is defined as the set of pairs
χ = (h, v) ∈ Rn × (Rn)∗ such that v = Γ̇(0), where t ∈ (−ε, ε) 7→ (γ(t),Γ(t)) is the smooth
curve satisfying (γ(0), Γ(0)) = (x, p), γ̇(0) = h, and Γ(t) is obtained by parallel transport of
the covector Γ(0) = p along the curve γ. Writing the ordinary differential equations of parallel
transport in local coordinates yields that there exists a bilinear mapping

Lx : Rn × (Rn)∗ −→ (Rn)∗

1The equality is a simple consequence of the following fact: for each xt := expx(tξ), denote by pt, qt the
covectors in T ∗xt

M and T ∗y M satisfying φH
−1(y, qt) = (xt, pt) (with y := expx(v + sη̃)), p0 = p + sη, and

‖pt‖2xt
= ‖qt‖2y = d(xt, y)2. Then

d

dτ
c(xt+τ , y)|τ=0 = 〈dxc(xt, y), ẋt〉 = −〈pt, ẋt〉,

so that differentiating again at t = 0 we obtain

d2

dt2
c(xt, y)|t=0 = −〈ṗ0, ξ〉,

where ṗ0 denotes the covariant derivative of pt along the curve xt, and we used that the covariant derivative
of ẋt along xt is zero. Hence, since φH

1 (xt, pt) = (y, qt), by the definition of K(x, p + sη) we easily get ṗ0 =
K(x, p + sη)ξ.
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such that the horizontal space Hθ in local coordinates is given by

Hθ =
{(

h,Lx(h, p)
) | h ∈ Rn

}
.

Denote by H̃θ the horizontal space given by the base space in the symplectic set of local
coordinates, that is

H̃θ := Rn × {0}.
Since H̃θ is a Lagrangian subspace of Tθ(T ∗M) = Rn × (Rn)∗, there is a linear operator
K̃(x, p) : Rn → (Rn)∗ such that

J(x,p) =
{(

h, K̃(x, p)h
) ∈ Rn × (Rn)∗ | h ∈ Rn

}
.

Then, for every h ∈ Rn we have

K̃(x, p)h = Lx(h, p) + K(x, p)h.

Since Lx is linear in the p variable, this shows that for every (x, p) ∈ NF∗(x)

Ŝ(x, p) · (ξ, η) =
3
2

d2

ds2
〈K̃(x, p + sη)ξ, ξ〉|s=0 ∀ ξ ∈ Rn, ∀ η ∈ (Rn)∗

(this argument is the symplectic analogous of [27, Remark 12.31]).
It has also to be noticed that theMTW tensor may be (locally) associated with an extended

cost function through formulas like (2.2)-(2.3). More precisely, fix θ = (x, p) ∈ T ∗M with
p ∈ NF∗(x). Since the point y := π∗ ◦ φH

1 (x, p) is not conjugated with x, thanks to the
Inverse Function Theorem there exist an open neighborhood V of (x, p) in T ∗M , and an open
neighborhood W of (x, y) in M ×M , such that the function

Ψθ : V ⊂ T ∗M −→ W ⊂ M ×M
(x′, p′) 7−→ (

x′, π∗ ◦ φH
1 (x′, p′)

)
,

is a smooth diffeomorphism from V to W. The extended cost function ĉθ : W → R which can
be (locally) associated with the MTW tensor at θ = (x, p) is (uniquely) defined by

ĉθ(x′, y′) :=
1
2

∥∥Ψ−1
θ (x′, y′)

∥∥2

x′ ∀(x′, y′) ∈ W. (2.5)

For the same reasons as before, we have for any ξ ∈ TxM and η ∈ T ∗x M ,

〈K(x, p + sη)ξ, ξ〉 = − d2

dt2
ĉθ

(
expx(tξ), π∗ ◦ φH

1 (x, p + sη)
)
|t=0

(2.6)

which yields

Ŝ(x, p) · (ξ, η) = −3
2

d2

ds2

d2

dt2
ĉθ

(
expx(tξ), π∗ ◦ φH

1 (x, p + sη)
)
|s=t=0

. (2.7)

Moreover, if instead we work in a symplectic set of local coordinates (x1, . . . , xn, p1, · · · , pn) on
T ∗U , then for any θ = (x, p) ∈ T ∗U with p ∈ NF∗(x), and any ξ ∈ Rn, η ∈ (Rn)∗, there holds2

〈K̃(x, p + sη)ξ, ξ〉 = − ∂2

∂x2
ξ

ĉθ

(
x, π∗ ◦ φH

1 (x, p + sη)
)

(2.8)

2Set, for t small, xt := x + tξ, and denote by pt, qt the covectors in T ∗xt
M = (Rn)∗ and T ∗y M satisfying

φH
−1(y, qt) = (xt, pt) (with y := φH

1 (x, p + sη)), p0 = p + sη, and ‖pt‖2xt
= ‖qt‖2y = 2ĉθ(xt, y). Then

d

dτ
ĉθ(xt+τ , y)|τ=0 = 〈dxĉθ(xt, y), ẋt〉 = −〈pt, ẋt〉 = −〈pt, ξ〉,

so that differentiating again at t = 0 we obtain

∂2

∂x2
ξ

ĉθ

(
x, φH

1 (x, p + sη)
)

=
d2

dt2
ĉθ(xt, y)|t=0 = −〈ṗ0, ξ〉,

where ṗ0 denotes the classical derivative of pt in the direction η (in local coordinates). Since φH
1 (xt, pt) = (y, qt),

by the definition of K̃(x, p + sη) we obtain ṗ0 = K̃(x, p + sη)ξ.
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and

Ŝ(x, p) · (ξ, η) = −3
2

∂2

∂p2
η

∂2

∂x2
ξ

ĉθ

(
x, π∗ ◦ φH

1 (x, p)
)
, (2.9)

where ∂2

∂x2
ξ

(resp. ∂2

∂p2
η
) denotes the classical second derivative (in coordinates) in the x variable

in the direction ξ (resp. in the p variable in the direction η).

The following definition extends the definition of MTW(K, C) introduced in [20]:

Definition 2.2. Let K, C ≥ 0. We say that (M, g) satisfies MTW(K, C) if, for any (x, p) ∈
T ∗M with p ∈ NF∗(x),

Ŝ(x, p) · (ξ, η) ≥ K‖ξ‖2x‖η‖2x − C
∣∣〈η, ξ〉∣∣‖ξ‖x‖η‖x ∀ ξ ∈ TxM, ∀ η ∈ T ∗x M.

In [18] it was observed that, if ξ and η̃ are orthogonal unit vectors in TxM and η := gx(η̃, ·) ∈
T ∗x M , then Ŝ(x, 0) · (ξ, η) = S(x, x) · (ξ, η̃) coincides with the sectional curvature at x along
the plane generated by ξ and η̃. More precisely one can prove that, for all ξ ∈ TxM , η ∈ T ∗x M ,

Ŝ(x, 0) · (ξ, η) = σx(P )
(‖ξ‖2x‖η‖2x − |〈η, ξ〉|2),

where σx(P ) denotes the sectional curvature at x along the plane generated by ξ and η̃. In
particular, if (M, g) satisfies MTW(K, C), then its sectional curvature is bounded from below
by K. Therefore, if (M, g) satisfies MTW(K, C) with K > 0, by Bonnet-Myers Theorem its
diameter is bounded, so that M is compact, and in addition the set ∪x∈M

(
x,NF∗(x)

) ⊂ T ∗M
is compact. Furthermore, by the above formula we also see that Ŝ(x, 0) · (ξ, η) = 0 whenever
gx(ξ, ·) is parallel to η (since in this case |〈η, ξ〉| = ‖ξ‖x‖η‖x). Therefore, if (M, g) satisfies
MTW(K, C), then C ≥ K.

The round sphere (Sn, gcan) and its quotients satisfy MTW(K0,K0) for some K0 > 0 (see
Appendix). Moreover, since the MTW tensor depends only on the Hamiltonian geodesic flow,
if a given Riemannian manifold (M, g) satisfies MTW(K,C), then its quotients as well as
its coverings satisfy MTW(K,C). The aim of this paper is to show that the MTW(K, C)
condition, together with the strict convexity of the cotangent nonfocal domains, allows to prove
the strict convexity of all cotangent injectivity domains and T CP. As a corollary, we will obtain
Theorems 1.2 and 1.3.

3 Extended regularity, convexity of injectivity domains,
and T CP

3.1 MTW implies regularity

Our strategy is to show that an extended version of the uniform regularity property introduced
by Loeper and Villani in [20] is sufficient to obtain T CP. Our definition of extended regularity
is in some sense stronger than the one given by Loeper and Villani, as it takes into account
what happens up to the boundary of the cotangent nonfocal domain, and besides requires
its convexity. On the other hand we do not require the uniform convexity of the injectivity
domains, which is an assumption much more complicated to check than the convexity of the
nonfocal domains (see [7]). Moreover our definition has the advantage that it allows to deduce
the convexity of all injectivity domains as an immediate corollary (see Theorem 3.4). We notice
that, since our definition of extended regularity involves the geodesic Hamiltonian flow (as we
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want to be able to cross the cut locus), it cannot be expressed only in term of the cost func-
tion c = d2/2. For this reason we will say what it means for a Riemannian manifold (M, g) to
be (stricly) regular, while in [20] the authors defined what it means d2/2 being uniformly regular.

Definition 3.1 (Extended regularity). We say that (M, g) is regular (resp. strictly regular) if
there are ρ > 0 and a function f ∈ C∞c ([0, 1]), with f ≥ 0 and {f > 0} = (1/4, 3/4), such that

(a) for every x ∈ M , NF∗(x) is convex (resp. strictly convex),

(b) for every x̄ ∈ M , let (pt)0≤t≤1 be a C2 curve drawn in NF∗(x̄)∪{0} with p0 6= p1 ∈ I∗(x̄),
and let yt := π∗ ◦ φH

1 (x̄, pt). Then there exists λ > 0 such that the following holds: let
x ∈ M . If

‖p̈t‖x̄ ≤ ρ d(x̄, x) ‖ẏt‖2yt
∀ t ∈ (0, 1), (3.1)

then, for any t ∈ [0, 1],

d(x, yt)2−‖pt‖2x̄ ≥ min
(
d(x, y0)2−d(x̄, y0)2, d(x, y1)2−d(x̄, y1)2

)
+λf(t) d(x̄, x)2. (3.2)

Moreover, given a family of curves (pt)0≤t≤1 as above such that (pt)0≤t≤1 vary inside a
compact subset of NF∗(x̄) ∪ {0} and ‖p1 − p0‖x̄ is uniformly bounded away from 0, the
constant λ > 0 can be chosen to be the same for all curves.

One of the motivations of the above definition is that, roughly speaking, the extended
regularity is an “integral” manifestation of the extended MTW condition:

Theorem 3.2. Assume that there exist K, C > 0 such that

(i) for every x ∈ M , NF∗(x) is convex,

(ii) (M, g) satisfies MTW(K,C).

Then (M, g) is regular.

The above theorem is indeed a simple consequence of the following lemma, combined with
an approximation argument:

Lemma 3.3. Let (M, g) be a Riemannian manifold satisfying MTW(K, C) for some K,C >

0, and assume that NF∗(x) is convex for all x ∈ M . Let x̄ ∈ M , and let (pt)0≤t≤1 be a
C2 curve drawn in NF∗(x̄) ∪ {0} ⊂ T ∗x M , with p0 6= p1 ∈ I∗(x̄). For any t ∈ (0, 1), set
yt := π∗ ◦ φH

1 (x̄, pt), and suppose that

‖p̈t‖x̄ ≤ K

6
d(x̄, x)‖ẏt‖2yt

∀ t ∈ (0, 1). (3.3)

Assume further that x ∈ cut(yt) only for a finite set of times 0 < t1 < . . . < tN−1 < 1. Finally,
let f ∈ C∞c ([0, 1]) be as in Definition 3.1. Then, for any t ∈ [0, 1],

d(x, yt)2 − ‖pt‖2x̄ ≥ min
(
d(x, y0)2 − d(x̄, y0)2, d(x, y1)2 − d(x̄, y1)2

)
+ λf(t)d(x̄, x)2, (3.4)

where

λ := min
{

K

2C diam(M)‖ḟ‖∞
inf

1/4≤t≤3/4

(‖ẏt‖yt

)
,

K

12‖f̈‖∞
inf

1/4≤t≤3/4

(‖ẏt‖2yt

)}
.

Note that, since M has sectional curvature bounded from below by K > 0 (thanks to
MTW(K, C)), then diam(M) is finite.
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Proof of Theorem 3.2. Let x̄, x, (pt)0≤t≤1 and (yt)0≤t≤1 be as in Definition 3.1. Up to choosing
ρ > 0 slightly smaller, by density and the approximation lemma proved in [14, Section 2] we may
assume that y0, y1 /∈ cut(x) and that yt meets cut(x) only at finitely many times t1, . . . , tN−1,
all the other conditions in Definition 3.1 being unchanged.

Since pt ∈ NF∗(x̄) ∪ {0} for all t ∈ [0, 1], we have

dist
(
pt, ∂

(NF∗(x̄) ∪ {0})) > 0 ∀ t ∈ [0, 1]. (3.5)

Moreover, as ‖ẏt‖yt
≤ C0‖ṗt‖x̄ for some constant C0 > 0 depending only on M3, thanks to

(3.3) we deduce that ṗt 6= 0 for all t ∈ (0, 1). Indeed, if not, by (3.1) we would get
∣∣∣∣
d

dt
‖ṗt‖x̄

∣∣∣∣ ≤ ρ d(x̄, x)C2
0‖ṗt‖2x̄,

and Gronwall Lemma would imply ṗt ≡ 0, which contradicts p0 6= p1. Hence, combining (3.5)
with the fact that ṗt 6= 0 for t ∈ (0, 1), we obtain

‖ẏt‖yt > 0 ∀ t ∈ (0, 1), (3.6)

which by continuity implies inf1/4≤t≤3/4

(‖ẏt‖yt

)
> 0. Moreover, if we take a family of curves

(pt)0≤t≤1 inside a compact subset of NF∗(x̄) ∪ {0}, with ‖p1 − p0‖x̄ is uniformly bounded
away from 0, it is easy to see by compactness that there exists a constant δ0 > 0 such that
inf1/4≤t≤3/4

(‖ẏt‖yt

) ≥ δ0 for all curves (pt)0≤t≤1. Then the theorem follows easily from Lemma
3.3.

The proof of Lemma 3.3 is strongly inspired by the proof of [20, Theorem 3.1], which uses a
variant of the tecniques introduced in [17, Section 4]. However the main difference with respect
to the preceding proofs is in the fact that, since our curve t 7→ pt can exit from I∗(x̄), we
have to change carefully the function to which one applies the MTW(K,C) condition. The
advantage of our choice of such a function is that it allows to deduce a stronger result, where
we bound from below d(x, yt)2 − ‖pt‖2x̄ instead of d(x, yt)2 − d(x̄, yt)2. This fact is crucial to
deduce the (strict) convexity of all cotangent injectivity domains.

Proof of Lemma 3.3. First of all, without loss of generality we can assume that x 6= x̄. Indeed,
if x = x̄ we simply write (3.4) for a sequence (xk)k∈N, with xk 6= x̄, and then let xk → x̄. Thus,
we suppose d(x̄, x) > 0.

Since pt ∈ NF∗(x̄) ∪ {0} for all t ∈ [0, 1], as in the proof of Theorem 3.2 we have

dist
(
pt, ∂

(NF∗(x̄) ∪ {0})) > 0 and ‖ẏt‖yt > 0 ∀ t ∈ [0, 1]. (3.7)

Set t0 = 0, tN = 1, and define h : [0, 1] → R by

h(t) := −c(x, yt) +
‖pt‖2x̄

2
+ δf(t) ∀t ∈ [0, 1],

where c(x, y) = d2(x, y)/2 and δ := λd(x̄, x)2. Let us first show that h cannot have a maximum
point on an interval of the form (tj , tj+1). For every t ∈ (tj , tj+1), since yt /∈ cut(x), h is a
smooth function of t. We fix t ∈ (tj , tj+1), and we compute ḣ(t) and ḧ(t).

As in Paragraph 2.2, define the extended cost function ĉ := ĉ(x̄,pt) in an open set W of
M ×M containing (x̄, yt) as

ĉ(z, y) :=
1
2
‖ exp−1

z (y)‖2z =
1
2
‖ exp−1

y (z)‖2y ∀(z, y) ∈ W,

3Actually, since MTW(K, C) implies that the sectional curvature of M is bounded from below by K > 0
(see the discussion after Definition 2.2), C0 = 1 would work.
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where exp−1
z (resp. exp−1

y ) denotes a local inverse for expz (resp. expy) near x̄ (resp. yt).
Hence, for s close to t, we can write

h(s) = −c(x, ys) + ĉ(x̄, ys) + δf(s).

Moreover the identity ps = −dxĉ(x̄, ys) holds. Take a local chart in an open set U ⊂ M conti-
aining yt and consider the associated symplectic set of local coordinates (y1, · · · , yn, q1, · · · , qn)
in T ∗U . Then, as in [20, Proof of Theorem 3.1] we can easily compute ẏt and ÿt at time t:
using Einstein convention of summation over repeated indices, we get

ẏi = −ĉxiyj ṗj , ÿi = −ĉxiyk ĉxky`yj
ẏ`ẏj − ĉxiyj p̈j ,

everything being evaluated at (x̄, yt) and at time t. Here we used the notation ĉxiyj for the
inverse of ĉxiyj

= (dxy ĉ)ij , which denotes the second partial derivatives of ĉ in the xi and yj

variables. Let us define qt := −dyc(x, yt), q̄t := −dy ĉ(x̄, yt). Then we easily get

ḣ(t) = 〈q̂t, ẏt〉+ δḟ(t),

ḧ(t) = −
([

cyiyj (x, yt)− ĉyiyj (x̄, yt)
]
+ ĉxkyiyj (x̄, yt)ĉx`yk(x̄, yt)

(
q̂t

)
`

)
ẏiẏj

− ĉxiyj (x̄, yt)
(
q̂t

)
i

(
p̈t

)
j
+ δf̈(t),

where q̂t := qt − q̄t. Now, using (2.8), we obtain

ḧ(t) = 〈K̃(yt, qt)ẏt, ẏt〉 − 〈K̃(yt, q̄t)ẏt, ẏt〉 − d

ds
〈K̃(yt, q̄t + sq̂t)ẏt, ẏt〉|s=0

+〈vt, p̈t〉+ δf̈(t), (3.8)

where vt := −(
dxy ĉ(x̄, yt)

)−1
q̂t. Recalling that by (2.9)

d2

ds2
〈K̃(yt, q̄t + sq̂t)ẏt, ẏt〉 =

d2

ds2
〈K(yt, q̄t + sq̂t)ẏt, ẏt〉,

(3.8) can be written as

ḧ(t) =
∫ 1

0

(1− s)
(

d2

ds2
〈K(yt, q̄t + sq̂t)ẏt, ẏt〉

)
ds + 〈vt, p̈t〉+ δf̈(t)

=
2
3

∫ 1

0

(1− s) Ŝ(yt, q̄t + sq̂t) ·
(
ẏt, q̂t

)
ds + 〈vt, p̈t〉+ δf̈(t).

By MTW(K, C) and
∫ 1

0
(1− s)ds = 1/2, we get

ḧ(t) ≥ 1
3

(
K‖q̂t‖yt‖ẏt‖yt − C|〈q̂t, ẏt〉|

)
‖q̂t‖yt‖ẏt‖yt + 〈vt, p̈t〉+ δf̈(t).

We now claim that the function h cannot have any maximum on (tj , tj+1). Indeed, if ḣ(t) = 0
for some t ∈ (tj , tj+1), we have

0 = ḣ(t) = 〈q̂t, ẏt〉+ δḟ(t),

which implies |〈q̂t, ẏt〉| ≤ δ|ḟ(t)|. Thus

ḧ(t) ≥ 1
3

(
K‖q̂t‖yt‖ẏt‖yt − Cδ|ḟ(t)|

)
‖q̂t‖yt‖ẏt‖yt − |〈vt, p̈t〉| − δ|f̈(t)|,
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and so by (3.3)

ḧ(t) ≥ 1
3

(
K‖q̂t‖yt‖ẏt‖yt − Cδ|ḟ(t)|

)
‖q̂t‖yt‖ẏt‖yt −

K

6
‖vt‖x̄d(x̄, x)‖ẏt‖2yt

− δ|f̈(t)|.

Since MTW(K, C) implies that the sectional curvature of M is bounded below by K > 0 (see
the discussion after Definition 2.2), the exponential mapping expyt

is 1-Lipschitz, which implies

that the norm of the operator
(
dxy ĉ(x̄, yt)

)−1 : T ∗yt
M → Tx̄M is bounded by 1. Hence, we have

‖vt‖x̄ ≤ ‖q̂t‖yt
, d(x̄, x) ≤ ‖q̂t‖yt

, (3.9)

which give

ḧ(t) ≥ 1
3

(
K‖q̂t‖yt‖ẏt‖yt − Cδ|ḟ(t)|

)
‖q̂t‖yt‖ẏt‖yt −

K

6
‖q̂t‖2yt

‖ẏt‖2yt
− δ|f̈(t)|

≥
(K

6
‖q̂t‖yt

‖ẏt‖yt
− C

3
δ|ḟ(t)|

)
‖q̂t‖yt

‖ẏt‖yt
− δ|f̈(t)|.

If t /∈ [1/4, 3/4] then ḟ(t) = f̈(t) = 0, which combined with (3.9) implies

ḧ(t) ≥ K

6
‖q̂t‖2yt

‖ẏt‖2yt
≥ K

6
d(x̄, x)2‖ẏt‖2yt

.

On the other hand, if t ∈ [1/4, 3/4], recalling that δ = λd(x̄, x)2 and the definition of λ we
obtain

C

3
δ|ḟ(t)| = C

3
λd(x̄, x)2|ḟ(t)| ≤ K

12
d(x̄, x)‖ẏt‖yt ≤

K

12
‖q̂t‖yt‖ẏt‖yt ,

which using again (3.9) and the definition of λ yields

ḧ(t) ≥ K

12
‖q̂t‖2yt

‖ẏt‖2yt
− δ|f̈(t)| ≥ K

12
d(x̄, x)2‖ẏt‖2yt

− δ|f̈(t)| ≥ K

24
d(x̄, x)2‖ẏt‖2yt

. (3.10)

In any case, thanks to (3.7), we have ḧ(t) > 0, which shows that h cannot have a maximum
on any interval (tj , tj+1). Thus, as h is continuous on [0, 1], it has to achieve its maximum at
one of the times tj (0 ≤ j ≤ N). The goal is to show that necessarily j = 0 or j = N . Indeed,
let j ∈ {1, . . . , N − 1}. We first note that, since t → c(x, yt) = d2(x, yt)/2 is semiconcave and
t 7→ ‖pt‖2x̄ is smooth, h(t) is semiconvex. If ḣ is continuous at tj and ḣ(tj) 6= 0, clearly tj cannot
be a maximum of h. The same is true if ḣ is discontinuous at tj , because by semiconvexity
necessarily ḣ(t+j ) > ḣ(t−j ). Finally, if ḣ is continuous at tj and ḣ(tj) = 0, the same computations
as before show that ḧ(t) is strictly positive when t is close to (but different from) tj , which
implies that h cannot have a maximum at tj . The only possibility left out for h is to achieve
its maximum at t0 = 0 or tN = 1, and we obtain (3.2).

3.2 Convexity of injectivity domains on regular manifolds

One main feature of our definition of regularity is that it immediately implies the convexity of
all injectivity domains:

Theorem 3.4. Let (M, g) be a regular Riemannian manifold. Then I∗(x) is convex for all
x ∈ M .

Proof. It is sufficient to show that I∗(x) is convex for all x ∈ M . We fix x̄ ∈ M , and choose
x = x̄ in the definition of regularity. Then, considering pt := tp1 + (1 − t)p0 with p0 6= p1 ∈
I∗(x̄) ⊂ NF∗(x̄), we get

d(x̄, yt) ≥ ‖pt‖x̄ ∀ t ∈ [0, 1].

This gives pt ∈ I∗(x̄), that is I∗(x̄) is convex.
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Remark 3.5. One can actually prove that, if (M, g) is strictly regular, then strict convexity of
all injectivity domains holds. Indeed, let us assume by contradiction that there are p0 6= p1 ∈
NF∗(x̄) ∩ I∗(x̄) such that that tp1 + (1 − t)p0 6∈ I∗(x̄) for all t ∈ (0, 1). Consider x = x̄ in
the proof of Lemma 3.3, and using the same notation we perturb the segment into a curve
(pt)0≤t≤1 such that pt ∈ NF∗(x̄)\I∗(x̄) for all t ∈ (1/4, 3/4), and ‖p̈t‖yt ≤ K

6 ‖qt− q̄t‖yt‖ẏt‖2yt
,

where qt := −dyc(x̄, yt) 6= q̄t for t ∈ (1/4, 3/4) (this can always be done as the segment
tp1 + (1 − t)p0 lies at positive distance from ∂

(NF∗(x̄)
)

for t ∈ (1/4, 3/4)). The function
h(t) = −c(x̄, yt)+‖pt‖2x̄/2 is identically zero on [0, 1/4]∪ [3/4, 1], and it is smooth on (1/4, 3/4).
Since now δ = 0, by the first inequality in (3.10) we get

ḧ(t) ≥ K

12
‖qt − q̄t‖2yt

‖ẏt‖2yt
> 0 ∀ t ∈ (1/4, 3/4)

whenever ḣ(t) = 0. This fact implies that h cannot attain a maximum on (1/4, 3/4). Hence,
for any t ∈ (1/4, 3/4),

0 = d(x̄, yt)2 − d(x̄, yt)2 < ‖pt‖2x̄ − d(x̄, yt)2 ≤ 2 max
s∈[0,1]

h(s) = 0,

a contradiction.

3.3 Continuity of optimal transport maps on regular manifolds

Here is another main motivation for our definition of extended regularity:

Theorem 3.6. Any Riemannian manifold (M, g) which is stricly regular satisfies T CP.

The proof of this theorem closely follows the proof of [20, Theorem 5.1].

Proof. Condition (i) in the definition of T CP insures that µ gives no mass to set with σ-finite
(n−1)-dimensional Hausdorff measure. Thanks to McCann’s Theorem read in the Hamiltonian
formalism, there exists a unique optimal transport map between µ and ν, which is given by
T (x) = π∗ ◦ φH

1 (x, dxψ), where ψ is a semiconvex function. Moreover dxψ ∈ I∗(x) ⊂ NF∗(x)
at all point of differentiability of ψ. Since NF∗(x) is convex for all x, the subdifferential of ψ

satisfies ∂ψ(x) ⊂ NF∗(x) for all x ∈ M . To prove that ψ is C1, we need to show that ∂ψ(x)
is everywhere a singleton. The proof is by contradiction.

Assume that there is x̄ ∈ M such that p0 6= p1 ∈ ∂ψ(x̄). Let y0 = expx̄ p0, y1 = expx̄ p1.
Thus yi ∈ ∂cψ(x̄), i.e.

ψ(x̄) +
1
2
d2(x̄, yi) = min

x∈M

{
ψ(x) +

1
2
d2(x, yi)

}
, i = 0, 1.

In particular

1
2
d2(x, yi)− 1

2
d2(x̄, yi) ≥ ψ(x̄)− ψ(x), ∀x ∈ M, ∀i = 0, 1. (3.11)

Fix η0 > 0 small (the smallness to be chosen later). For ε ∈ (0, 1), we define Dε ⊂ NF∗(x̄)
as follows: Dε consists of the set of points p ∈ T ∗x̄ M such that there exists a path (pt)0≤t≤1 ⊂
NF∗(x̄) from p0 to p1 such that, if we set yt := π∗ ◦φH

1 (x̄, pt), we have p̈t = 0 for t 6∈ [1/4, 3/4],
‖p̈t‖yt ≤ εη0‖ẏt‖2yt

for t ∈ [1/4, 3/4], and p = pt for some t ∈ [1/4, 3/4].
By the strict convexity of NF∗(x̄), if η0 is sufficiently small then Dε lies a positive distance

σ away from ∂
(NF∗(x̄)

)
for all ε ∈ (0, 1). Thus all paths (pt)0≤t≤1 used in the definition of Dε

satisfy
‖ẏt‖yt ≥ c‖p0 − p1‖x̄ ∀ t ∈ [1/4, 3/4],
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with c independent of ε ∈ (0, 1). Moreover condition (3.1) is satisfied if η0 ≤ ρ and d(x̄, x) ≥ ε.
By simple geometric consideration, we see that Dε contains a parallelepiped Eε centered at
(p0 + p1)/2 with one side of length ∼ ‖p0 − p1‖x̄, and the other sides of length ∼ ε‖p0 − p1‖2x̄,
such that all points y in such parallelepiped can be written as yt for some t ∈ [1/3, 2/3], with
yt as in the definition of Dε. Therefore

L n(Eε) ≥ cεn−1,

with L n denoting the Lebesgue measure on Tx̄M . Since Eε lies a positive distance from
∂
(NF∗(x̄)

)
, we obtain

vol (Yε) ∼ L n(Eε) ≥ cεn−1, Yε := π∗ ◦ φH
1 (x̄, Eε).

We then apply Theorem 3.2 to the paths (pt)0≤t≤1 used in the definition of Dε to obtain that,
for any y ∈ Yε and x ∈ M \Bε(x̄),

d(x, y)2−d(x̄, y)2 ≥ min
(
d(x, y0)2−d(x̄, y0)2, d(x, y1)2−d(x̄, y1)2

)
+λ inf

t∈[1/3,2/3]

(
f(t)

)
d(x̄, x)2,

with inft∈[1/3,2/3]

(
f(t)

)
> 0. Combining this inequality with (3.11), we conclude that

for any y ∈ Yε, y 6∈ ∂cψ(x) ∀x ∈ M \Bε(x̄).

This implies that all the mass brought into Yε by the optimal map comes from Bε(x̄), and so

µ(Bε(x̄)) ≥ ν(Yε).

We now remark that by condition (ii) in the definition of T CP and a standard covering ar-
gument, there exists a constant c1 > 0 such that ν(A) ≥ c1vol (A) for all Borel sets A ⊂ M .
Thus, as µ(Bε(x̄)) ≤ o(1)εn−1 and ν(Yε) ≥ c1vol (Yε) ≥ cεn−1, we obtain a contradiction as
ε → 0.

4 Stability of MTW near the sphere

In this section, we show that any C4-deformation of the standard 2-sphere satisfiesMTW(K, C)
for some K, C > 0. Let (M, g) be a smooth, compact and positively curved surface. It is easy
to show that, for every x ∈ M , the set NF∗(x) ⊂ T ∗x M is a compact set with smooth boundary
(see [7]). In fact it can even be shown that, if M = S2 and g is C4-close to the round metric
gcan, then all the NF∗(x) are uniformly convex. Thus Theorems 1.2 and 1.3 are a consequence
of Theorems 3.2, 3.6, 3.4 and Remark 3.5, together with the following result:

Theorem 4.1. There exist K, C > 0 such that any C4-deformation of (S2, gcan) satisfies
MTW(K, C).

Proof. For ε ≥ 0, let gε be a smooth metric on S2 such that ‖gε−gcan‖C4 ≤ ε (so that g0 = gcan).
We see S2 as the sphere centered at the origin with radius one in R3, so that we can identify
covectors with vectors. Let x ∈ S2; we observe that for g0 the set NF∗(x) ∪ {0} corresponds
to the open ball centered at x with radius π intersected with the hyperplane tangent to S2 at
x, while for gε the nonfocal domain NF∗ε(x)∪ {0} is a C2-perturbation of the ball. Our aim is
to show that there exist K,C > 0 such that, if ε > 0 is sufficiently small, then for every x ∈ S2

and every p ∈ NF∗ε(x) one has

Ŝ(x, p) · (ξ, η) ≥ Kgε
x(ξ, ξ)gε

x(η, η)− C
∣∣〈ξ, η〉

∣∣gε
x(ξ, ξ)1/2gε

x(η, η)1/2

for all ξ ∈ TxSn, η ∈ T ∗xSn. Since the property holds true on (S2, gcan) with K = C = K0

for some K0 > 0 (see Appendix), the above inequality holds by continuity on (S2, gε) with
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K = K0/2 and C = 2K0 when p is uniformly away from the boundary of NF∗ε(x)∪ {0}, and ε
is sufficiently small. Thus all we have to prove is that the above inequality remains true when
p is close to ∂

(NF∗ε(x) ∪ {0}). Moreover, by the homogeneity of (S2, gcan), it will suffice to
prove the estimate only for a fixed point x ∈ S2 and along a fixed geodesic t 7→ π∗ ◦ φH

t (x, p).

Consider the stereographic projection of the sphere S2 ⊂ R3 from the north pole N = (0, 0, 1)
onto the space R2 ' R2×{0} ⊂ R3. The projection of some point x = (x1, x2, x3) ∈ S2 is given
by

σ(x) =
(

x1

1− x3
,

x2

1− x3

)
.

The function σ is a smooth diffeomorphism from S2 \ {N} onto R2, whose inverse is

σ−1(y) =
(

2y1

1 + |y|2 ,
2y2

1 + |y|2 ,
|y|2 − 1
1 + |y|2

)
∀ y = (y1, y2) ∈ R2,

where | · | denotes the Euclidean norm on R2. The pushforward of the metric gε under σ induces
a metric on R2, that we still denote by gε, and which for ε = 0 is given by

g0
y(v, v) =

4
(1 + |y|2)2 |v|

2 ∀ y, v ∈ R2.

Note that since we work in R2, we can identify covectors with vectors. We denote by Hε(y, p)
the Hamiltonian canonically associated to gε, which for ε = 0 is given by

H0(y, p) =
(1 + |y|2)2

8
|p|2 ∀ y, p ∈ R2.

We observe that ‖Hε −H0‖C4 . ε. The Hamiltonian system associated to Hε is
{

ẏε = ∂Hε

∂p (yε, pε)
ṗε = −∂Hε

∂y (yε, pε),

and the linearized Hamiltonian system along a given solution (yε(t), pε(t)) is
{

ḣε = ∂2Hε

∂p2 (yε, pε)qε + ∂2Hε

∂y∂p (yε, pε)hε

q̇ε = −∂2Hε

∂y∂p (yε, pε)qε − ∂2Hε

∂y2 (yε, pε)hε

We note that hε is a Jacobi vector field along the geodesic t 7→ yε(t).

Set Y = (−1, 0) ∈ R2, and consider the geodesic θε
α starting from Y with velocity of norm

1 and making angle α (computed with respect to gε) with the line {x2 = 0}. For ε = 0 this
geodesic is given by

θ0
α(t) =

(
cos(t− π)

1− cos(α) sin(t− π)
,

sin(α) sin(t− π)
1− cos(α) sin(t− π)

, 0
)

,

and it is a minimizing geodesic between Y and (1, 0). Since the first conjugate time for θα is
t = π for all α, and we are perturbing the metric in the C4 topology, there exists a smooth
function α 7→ tεc(α) such that tεc(α) is the first conjugate time of θε

α, and ‖tεc(α) − π‖C2 . ε.
Fix t̄ε(α) ∈ (0, tεc(α)), and set V ε

α := t̄ε(α)θ̇ε
α(0).

As we notice in Paragraph 2.2, in order to compute the MTW tensor at (Y, V ε
α ), we can

use the horizontal space given by any choice of a symplectic set of local coordinates. Therefore,
we can work with the standard splitting R4 = R2 ⊕ R2 and take as horizontal vertical spaces

H(Y,V ε
α ) = R2 × {0} ⊂ R4 and V(Y,V ε

α ) = {0} × R2 ⊂ R4.
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In the sequel, we shall denote by Kε(Y, V ε
α ) (which corresponds to the operator K̃ε(Y, V ε

α ) of
Paragraph 2.2) the 2× 2 matrix such that

J(Y,V ε
α ) =

{
(h,Kε(Y, V ε

α )h) ∈ R2 × R2 | h ∈ R2
}

.

By an easy rescaling, it is not difficult to see that Kε(Y, V ε
α ) is given by

Kε(Y, V ε
α ) = t̄ε(α)Sε

α(t̄ε(α))

where Sε
α(t̄ε(α)) is the 2×2 symmetric matrix such that any solution of the linearized Hamilto-

nian system along θε
α starting from (h, Sε

α(t̄)h) satisfies hε(t̄ε(α)) = 0. Let us compute Sε
α(t̄ε(α)).

Let Eε
1(t, α) := θ̇ε

α(t) and Eε
2(t, α) be a basis of parallel vector fields along θε

α such that
gε

(
Eε

1(0, α), Eε
2(0, α)

)
= 0, and gε

(
Eε

i (0, α), Eε
i (0, α)

)
= 1 for i = 1, 2. For ε = 0 they are given

by

E0
1(t, α) := θ̇α(t) =

(
cos(α)− sin(t− π)

(1− cos(α) sin(t− π))2
,

sin(α) cos(t− π)
(1− cos(α) sin(t− π))2

, 0
)

,

E0
2(t, α) :=

( − sin(α) cos(t− π)
(1− cos(α) sin(t− π))2

,
cos(α)− sin(t− π)

(1− cos(α) sin(t− π))2
, 0

)
,

Let (hε
α, qε

α) be a solution of the linearized Hamiltonian system along θε
α such that hε

α(t̄ε(α)) = 0
for some t̄ε(α) ∈ (0, tεc(α)). Since Eε

1(t, α), Eε
2(t, α) form a basis of parallel vector fields along

θα, there are two smooth functions uε
α,1(t), u

ε
α,2(t) such that

hε
α(t) = uε

α,1(t)E
ε
1(t, α) + uε

α,2(t)E
ε
2(t, α).

If we denote by uε
α(t) ∈ R2 the vector (uε

α,1(t), u
ε
α,2(t)), and by Aε

α(t) the 2× 2 matrix having
Eε

1(t, α) and Eε
2(t, α) as column vectors, we can write

hε
α(t) = Aε

α(t)uε
α(t).

As hε
α(t) is a Jacobi vector field along θε

α we have

ḧε
α + Rε

(
hε

α, θ̇ε
α

)
θ̇ε

α = 0,

where Rε denotes the Riemann tensor, and using the symmetries of Rε we get

Rε
(
hε

α, θ̇ε
α

)
θ̇ε

α = Rε
(
hε

α, Eε
1

)
Eε

1 = Rε
(
uε

α,1E
ε
1 + uε

α,2E
ε
2 , Eε

1

)
Eε

1 = Rε
(
uε

α,2E
ε
2 , Eε

1

)
Eε

1

= uε
α,2

〈
Rε(Eε

2 , Eε
1)Eε

1 , Eε
1

〉
Eε

1 + uε
α,2

〈
Rε(Eε

2 , Eε
1)Eε

1 , Eε
2

〉
Eε

2

= uε
α,2

〈
Rε(Eε

2 , Eε
1)Eε

1 , Eε
2

〉
Eε

2 .

This gives {
üε

α,1(t, α) = 0
üε

α,2(t, α) = −gε
(
Rε(Eε

2 , Eε
1)Eε

1 , Eε
2

)
uε

α,2(t, α),

so that
{

uε
α,1(t, α) = λ1 + λ2t

üε
α,2(t, α) = −gε

(
Rε(Eε

2 , Eε
1)Eε

1 , Eε
2

)
uε

α,2(t, α) = −aε(t, α)uε
α,2(t, α),

where (t, α) 7→ aε(t, α) is close to 1 in C2-topology. Hence we can write

uε
α(t) = Uε

1 (t, α)uε
α(0) + Uε

2 (t, α)u̇ε
α(0),

with

Uε
1 (t, α) =

(
1 0
0 fε

1 (t, α)

)
, Uε

2 (t, α) =
(

t 0
0 fε

2 (t, α)

)
,
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with fε
1 (t, α) and fε

2 (t, α) are close to cos(t) and sin(t) in the C2-norm, respectively. Recalling
that hε

α(t̄ε(α)) = 0, we have

0 = Uε
1 (tεα, α)uε

α(0) + Uε
2 (tεα, α)u̇ε

α(0) =⇒ u̇ε
α(0) = −[

Uε
2 (tεα, α)

]−1
Uε

1 (tεα, α)uε
α(0).

and as uε
α(0) =

(
Aε

α(0)
)−1

hε
α(0) we get

ḣε
α(0) = Ȧε

α(0)uε
α(0) + Aε

α(0)u̇ε
α(0) =

[
Ȧε

α(0)−Aε
α(0)

[
Uε

2 (tεα, α)
]−1

Uε
1 (tεα, α)

]
uε

α(0)

=
[
Ȧε

α(0)−Aε
α(0)

[
Uε

2 (tεα, α)
]−1

Uε
1 (tεα, α)

](
Aε

α(0)
)−1

hε
α(0).

Hence from the linearized Hamiltonian system we finally obtain

qε
α(0) =

[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1

ḣε
α(0)−

[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1 ∂2Hε

∂y∂p
(Y, θ̇ε

α(0))hε
α(0)

= Sε
α(t)hε

α(0),

with

Sε
α(t) = Cε

α −
[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1

Aε
α(0)

[
Uε

2 (tεα, α)
]−1

Uε
1 (tεα, α)

(
Aε

α(0)
)−1

,

where

Cε
α =

[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1[

Ȧε
α(0)

(
Aε

α(0)
)−1 − ∂2Hε

∂y∂p
(Y, θ̇ε

α(0))
]
.

Defining

Nε
α(t) := tfε

2 (t, α)
[
Uε

2 (t, α)
]−1

Uε
1 (t, α) =

(
fε
2 (t, α) 0

0 tfε
1 (t, α)

)

we can write

Sε
α(t) = Cε

α −
1

tfε
2 (t, α)

[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1

Aε
α(0)Nε

α(t)
(
Aε

α(0)
)−1

.

We observe that Nε
α(t) is smooth up to t = tεc(α). As a matter of fact we remark that, for

ε = 0,

C0
α = I

[
−R2αR−α − 2

( − cos(α) 0
sin(α) 0

)]
= 2

(
cos(α) − sin(α)
− sin(α) − cos(α)

)
,

and A0
α(0) = Rα, where we used the notation

Rα =
(

cos(α) sin(α)
− sin(α) cos(α)

)
.

Let us now focus on the matrix
[∂2Hε

∂p2
(Y, θ̇ε

α(0))
]−1

Aε
α(0)Nε

α(t)
(
Aε

α(0)
)−1

.

Denoting by Gε the matrix associated to the metric gε at the point Y , we have
[

∂2Hε

∂p2 (Y, θ̇ε
α(0))

]−1 =
Gε. Moreover

GεAε
α(0)Nε

α(t)
(
Aε

α(0)
)−1 = (Gε)1/2

[
(Gε)1/2Aε

α(0)
]
Nε

α(t)
(
Aε

α(0)
)−1

= (Gε)1/2
[
(Gε)1/2Aε

α(0)
]
Nε

α(t)
[
(Gε)1/2Aε

α(0)
]−1(Gε)1/2.

Recalling that Aε
α(0) =

(
Eε

1(0, α), Eε
2(0, α)

)
, we have

(Gε)1/2Aε
α(0) =

(
(Gε)1/2Eε

1(0, α), (Gε)1/2Eε
2(0, α)

)
,
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and since

1 = gε
(
Eε

1(0, α), Eε
1(0, α)

)
= gε

(
Eε

2(0, α), Eε
2(0, α)

)
, 0 = gε

(
Eε

1(0, α), Eε
2(0, α)

)
,

we immediately get that (Gε)1/2Aε
α(0) is an orthogonal matrix for all α. Thus, there exists ᾱε

and αε such that

(Gε)1/2Aε
α(0) = (Gε)1/2Aε

0(0)
(

cos(αε) sin(αε)
− sin(αε) cos(αε).

)
=: RᾱεRαε

(that is, ᾱε is the angle between (1, 0) = θ̇ε
0 and (Gε)1/2(1, 0) = (Gε)1/2θ̇ε

0), and we obtain

1
tfε

2 (t, α)

(
GεAε

α(0)Nε
α(t)

(
Aε

α(0)
)−1

)

= (Gε)1/2

[
1

tfε
2 (t, α)

(
(Gε)1/2Aε

α(0)Nε
α(t)

(
(Gε)1/2Aε

α(0)
)−1

)]
(Gε)1/2

= (Gε)1/2Rᾱε

[
1

tfε
2 (t, α)

(
RαεNε

α(t)R−αε

)]
R−ᾱε(Gε)1/2.

A simple computations gives that RαεNε(t, αε)R−αε is equal to the matrix
(

cos2(αε)fε
2 (t, αε) + t sin2(αε)fε

1 (t, αε) − cos(αε) sin(αε)
(
fε
2 (t, αε)− tfε

1 (t, αε)
)

− cos(αε) sin(αε)
(
fε
2 (t, αε)− tfε

1 (t, αε)
)

sin2(αε)fε
2 (t, αε) + t cos2(αε)fε

1 (t, αε)

)
,

so that

1
tfε

2 (t, αε)
(
RαεNε(t, αε)R−αε

)
=

1
t

(
cos2(αε) − cos(αε) sin(αε)

− cos(αε) sin(αε) sin2(αε)

)

+
1

fε
2 (t, αε)

(
sin2(αε)fε

1 (t, αε) cos(αε) sin(αε)fε
1 (t, αε)

cos(αε) sin(αε)fε
1 (t, αε) cos2(αε)fε

1 (t, αε)

)
.

We now define T ε(s) as the gε-norm at Y of the vector (v, 0) + sη, and αε(s) is the angle
(computed with respect to gε) between (v, 0) and (v, 0) + sη. In the sequel we denote by

f̂ε
1 (resp. f̂ε

2 ) the function s 7→ fε
1 (T ε(s), αε(s)) (resp. s 7→ fε

2 (T ε(s), αε(s))), and by ˙̂
fε
1 ,

¨̂
fε
1

(resp. ˙̂
fε
2 ,

¨̂
fε
2 ) its first and second derivative. We want to compute the second derivative of

Kε(s) := Kε(Y, (v, 0) + sη) for T ε(0) close to tεc(α) ∼ π, so that 1/f̂ε
2 (0) ∼ 1/ sin(tεc(α)) will be

dominant with respect to all other terms. Thanks to the computations made above, we have

d2

ds2
{Kε(s)}|s=0 =

d2

ds2

{
T ε(s)Cε

αε(s)

}
|s=0

+ (Gε)1/2Rᾱε

[
Mε

0 +
1

f̂ε
2 (0)

Mε
1 +

1

f̂ε
2 (0)2

Mε
2 +

1

f̂ε
2 (0)3

Mε
3

]
R−ᾱε(Gε)1/2

with

Mε
i =

(
Mε

i (1) Mε
i (2)

Mε
i (2) Mε

i (3)

)
∀ i = 0, 1, 2, 3,

and
Mε

0 (1) = 2 (α̇ε(0))2 , Mε
0 (2) = α̈ε(0), Mε

0 (3) = −2 (α̇ε(0))2 ,

and
Mε

1 (1) = −2T ε(0)f̂ε
1 (0) (α̇ε(0))2 ,

Mε
1 (2) = −2f̂ε

1 (0)Ṫ ε(0)α̇ε(0)− 2T ε(0) ˙̂
fε
1 (0)α̇ε(0)− T ε(0)f̂ε

1 (0)α̈ε(0),
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Mε
1 (3) = −f̂ε

1 (0)T̈ ε(0)− 2 ˙̂
fε
1 (0)Ṫ ε(0)− T ε(0) ¨̂

fε
1 (0) + 2T ε(0)f̂ε

1 (0) (α̇ε(0))2 ,

and
Mε

2 (1) = 0, Mε
2 (2) = 2T ε(0)f̂ε

1 (0) ˙̂
fε
2 (0)α̇ε(0),

Mε
2 (3) = 2T ε(0) ˙̂

fε
1 (0) ˙̂

fε
2 (0) + 2f̂ε

1 (0) ˙̂
fε
2 (0)Ṫ ε(0) + T ε(0)f̂ε

1 (0) ¨̂
fε
2 (0),

and
Mε

3 (1) = Mε
3 (2) = 0, Mε

3 (3) = −2T ε(0)f̂ε
1 (0)

( ˙̂
fε
2 (0)

)2

.

We now observe that αε(s) is given by the angle between the two vectors

(Gε)1/2

(
v
0

)
and (Gε)1/2

[(
v
0

)
+ sη

]
.

Therefore, if we define
(

vε

0

)
= R−ᾱε(Gε)1/2

(
v
0

)
and ηε = R−ᾱε(Gε)1/2η, we get

αε(s) = − arctan
(

sηε
2

vε + sηε
1

)

which implies

αε(0) = 0, α̇ε(0) = −ηε
2

vε
, α̈ε(0) =

2ηε
1η

ε
2

(vε)2
.

Regarding T ε(s), we have

T ε(s) =
∣∣∣∣(Gε)1/2

(
v + sη1

sη2

)∣∣∣∣ =
∣∣∣∣R−ᾱε(Gε)1/2

(
v + sη1

sη2

)∣∣∣∣

=
∣∣∣∣
(

vε + sηε
1

sηε
2

)∣∣∣∣ =
√

(vε + sηε
1)2 + s2(ηε

2)2,

hence

T ε(0) = vε, Ṫ ε(0) = ηε
1, T̈ ε(0) =

(ηε
2)

2

vε
.

Moreover |vε − v| . ε|v|, |ηε − η| . ε|η|. Thus we finally obtain

Mε
0 =

2
(vε)2

(
(ηε

2)
2 ηε

1η
ε
2

ηε
1η

ε
2 −(ηε

2)
2

)
,

Mε
1 =

(
− 2f̂ε

1 (0)
vε (ηε

2)
2 2 ˙̂

fε
1 (0)ηε

2

2 ˙̂
fε
1 (0)ηε

2
f̂ε
1 (0)
vε (ηε

2)
2 − 2 ˙̂

fε
1 (0)ηε

1 − vε ¨̂
fε
1 (0)

)
,

Mε
2 =

(
0 −2f̂ε

1 (0) ˙̂
fε
2 (0)ηε

2

−2f̂ε
1 (0) ˙̂

fε
2 (0)ηε

2 2vε ˙̂
fε
1 (0) ˙̂

fε
2 (0) + 2f̂ε

1 (0) ˙̂
fε
2 (0)ηε

1 + vεf̂ε
1 (0) ¨̂

fε
2 (0)

)
,

Mε
3 =

(
0 0

0 −2vεf̂ε
1 (0)

( ˙̂
fε
2 (0)

)2

)
.

We note that for ε = 0

d2

ds2

{
T 0(s)C0

α0(s)

}
|s=0

=

(
T̈ 0(0)− T 0(0)

(
α̇0(0)

)2 −2Ṫ 0(0)α̇0(0)− T 0(0)α̈0(0)
−2Ṫ 0(0)α̇0(0)− T 0(0)α̈0(0) −T̈ 0(0) + T 0(0)

(
α̇0(0)

)2

)
= 0,
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which implies ∣∣∣∣
d2

ds2

{
T ε(s)Cε

αε(s)

}
|s=0

∣∣∣∣ . ε|η|2.

Therefore, defining ξε = R−ᾱε(Gε)1/2ξ, we end up with

〈ξ, d2

ds2
{Kε(s)}|s=0 ξ〉 = 〈ξε,Mε

0 ξε〉+
1

f̂ε
2 (0)

〈ξε, Mε
1 ξε〉

+
1

f̂ε
2 (0)2

〈ξε, Mε
2 ξε〉+

1

f̂ε
2 (0)3

〈ξε,Mε
3 ξε〉+ O(ε)|η|2|ξ|2.

We now observe that, as f̂ε
1 (0) ∼ cos(vε), we have f̂ε

1 (0) ≤ 0 for vε ≥ 2π/3, and so in this case

1

f̂ε
2 (0)3

Mε
3 (3)(ξε

2)
2 + 2

1

f̂ε
2 (0)2

Mε
2 (2)ξε

1ξ
ε
2 +

1

f̂ε
2 (0)

Mε
1 (1)(ξε

1)
2

= −2f̂ε
1 (0)

f̂ε
2 (0)

[√
vε

˙̂
fε
2 (0)

f̂ε
2 (0)

ξε
2 +

1√
vε

ηε
2ξ

ε
1

]2

≥ 0

Therefore for vε ≥ 2π/3

〈ξ, d2

ds2
{Kε(s)}|s=0 ξ〉 ≥ 〈ξε,Mε

0 ξε〉

+
1

f̂ε
2 (0)

[
2Mε

1 (2)ξε
1ξ

ε
2 + Mε

1 (3)(ξε
2)

2
]
+

1

f̂ε
2 (0)2

Mε
2 (3)(ξε

2)
2 + O(ε)|η|2|ξ|2.

Now, easy computations give for i = 1, 2

˙̂
fε

i (0) =
∂fε

i

∂t
(vε, 0)ηε

1 −
1
vε

∂fε
i

∂α
(vε, 0)ηε

2,

¨̂
fε

i (0) =
[
∂2fε

i

∂t2
(vε, 0)

]
(ηε

1)
2 +

[
1

(vε)2
∂2fε

i

∂α2
(vε, 0) +

1
vε

∂fε
i

∂t
(vε, 0)

]
(ηε

2)
2

+
[

2
(vε)2

∂fε
i

∂α
(vε, 0)− 2

vε

∂2fε
i

∂α∂t
(vε, 0)

]
ηε
1η

ε
2.

Let us now observe the following: since (as functions of vε) f̂ε
1 (0) and f̂ε

2 (0) are close to
cos(vε) and sin(vε) in the C2-norm respectively, if we define `ε := tεc(0)− vε we easily get

|f̂ε
1 (0) + 1| . ε + `ε, 0 ≤ f̂ε

2 (0) . ε + `ε,

| ˙̂
fε
1 (0)| . (ε + `ε)|ηε|, | ˙̂

fε
2 (0) + η1| . (ε + `ε)|ηε|,

| ¨̂fε
1 (0)− η2

1 | . (ε + `ε)|ηε|2, | ¨̂fε
2 (0) +

1
vε

(ηε
2)

2| . (ε + `ε)|ηε|2.
From these estimates it is easy to see that

|Mε
2 (3)− 2(ηε

1)
2 − (ηε

2)
2| . (ε + `ε)|ηε|2 =⇒ Mε

2 (3) ≥ (
1− C(ε + `ε)

)[
2(ηε

1)
2 + (ηε

2)
2
]
,

and
|Mε

1 (2)| . (ε + `ε)|ηε|ηε
2.
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Since 1
f̂ε
2 (0)

→ +∞ as `ε → 0 (i.e. vε → tεc(α)), we obtain

Mε
0 (3) +

1

f̂ε
2 (0)

Mε
1 (3) +

1

f̂ε
2 (0)2

Mε
2 (3) ≥

(
1− C(ε + `ε)

)

f̂ε
2 (0)2

|ηε|2,
∣∣∣∣∣M

ε
0 (2) +

1

f̂ε
2 (0)

Mε
1 (2)

∣∣∣∣∣ ≤
C(ε + `ε)

f̂ε
2 (0)

|ηε||ηε
2|,

(from now on, C is a positive constant, independent of ε for ε > 0 sufficiently small, which may
change from line to line). Hence, combining all together,

〈ξ, d2

ds2
{Kε(s)}|s=0 ξ〉 ≥ 2

(vε)2
(ηε

2)
2(ξε

1)
2 − C(ε + `ε)

f̂ε
2 (0)

|ηε
2||ηε||ξε

1||ξε
2|

+

(
1− C(ε + `ε)

)

f̂ε
2 (0)2

[
2(ηε

1)
2 + (ηε

2)
2
]
(ξε

2)
2 + O(ε)|η|2|ξ|2

≥ 2
(vε)2

(ηε
2)

2(ξε
1)

2 − C(ε + `ε)

f̂ε
2 (0)

|ηε
2||ηε||ξε

1||ξε
2|

+

(
1− C(ε + `ε)

)

f̂ε
2 (0)2

|ηε|2(ξε
2)

2 + O(ε)|η|2|ξ|2

≥
(
2− C(ε + `ε)

)

π2
(ηε

2)
2(ξε

1)
2 +

(
1− C(ε + `ε)

)

f̂ε
2 (0)2

|ηε|2(ξε
2)

2 + O(ε)|η|2|ξ|2

≥
(
2− C(ε + `ε)

)

π2

[
(ηε

2)
2(ξε

1)
2 + |ηε|2(ξε

2)
2
]
+ O(ε)|η|2|ξ|2.

From this formula, since |ηε − η| ≤ Cε|η| and |ξε − ξ| ≤ Cε|ξ|, we finally get

3
2
〈ξ, d2

ds2
{Kε(s)}|s=0 ξ〉 ≥ 3

(
2− C(ε + `ε)

)

2π2

[
η2
2ξ2

1 + |η|2ξ2
2

]
+ O(ε)|η|2|ξ|2

≥ 3
(
2− C(ε + `ε)

)

2π2

[
η2
2ξ2

1 + η2
1ξ2

2

]
+ O(ε)|η|2|ξ|2

≥ 3
(
1− C(ε + `ε)

)

2π2

[|η|2|ξ|2 − 〈η, ξ〉2] + O(ε)|η|2|ξ|2

≥ 3
(
1− C(ε + `ε)

)

2π2
|η|2|ξ|2 − 3

(
1 + C(ε + `ε)

)

2π2
〈η, ξ〉2.

Fix δ > 0. From the above estimate we deduce that, if ε ≤ δπ2/(3C) and `ε ≤ δπ2/(3C), then
MTW(3/(2π2)− δ, 3/(2π2) + δ) holds for all v ∈ NF∗ε(x) ∪ {0} such that dist

(
v, ∂

(NF∗ε(x) ∪
{0})) ≤ δ/C. Since as we already said MTW(K, C) trivially holds if v is uniformly away from
∂
(NF∗ε(x) ∪ {0}) for ε > 0 small enough, the result follows.

5 Final comments

• Our approach applies to more general situations than the one we presented. In particular, we
do not necessarily need the strict convexity of the cotangent nonfocal domains: let (M, g) be a
compact Riemannian manifold, and define M∗ > 0 and m∗ ∈ (0, +∞] by

M∗ := max
{
‖p‖x | p ∈ I∗(x), x ∈ M

}
and m∗ := min

{
‖p‖x | p /∈ NF∗(x), x ∈ M

}
.

Assume that the two following conditions are satisfied:
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(i) M∗ < m∗,

(ii) there is K > 0 such that for every x ∈ M ,

∀ ξ ∈ TxM, ∀ η ∈ T ∗x M, 〈η, ξ〉 = 0 =⇒ Ŝ(x, p) · (ξ, η) ≥ K‖ξ‖2x‖η‖2x
for any p ∈ T ∗x M satisfying ‖p‖x ∈ (0,M∗].

Following the proof of [20, Lemma 2.3], it is not difficult to show that under these assumptions
there exists C > 0 such that, for every x ∈ M and every p ∈ T ∗x M satisfying ‖p‖x ∈ (0,M∗],

Ŝ(x, p) · (ξ, η) ≥ K‖ξ‖2x‖η‖2x − C
∣∣〈η, ξ〉

∣∣‖ξ‖x‖η‖x ∀ ξ ∈ TxM, ∀ η ∈ T ∗x M.

Then, one can easily check that both the proof of Lemma 3.3 and the proof of Theorem 3.6
still work, and so (M, g) satisfies T CP, and all its injectivity domains are strictly convex. In
particular, this allows to recover in a simple way the result (proved independently in [11, 20])
that any C4-deformation of a quotient of the standard sphere Sn (say for instance RPn) satisfies
T CP. Indeed (ii) follows from the fact that our extended MTW condition is stable far from
the boundary of NF∗(x) ∪ {0} (while the classical MTW condition is a priori stable only far
from the boundary of I∗(x)).

• It can be shown [7] that the cotangent injectivity domains of any smooth complete Rieman-
nian manifold have locally semiconcave boundaries. In fact, if g is a smooth Riemannian metric
which is C4-close to the round metric on the sphere Sn, then for all x ∈ Sn the sets NF∗(x)
are uniformly convex [7] (while it is not known whether the sets I∗(x) are convex or not). As a
consequence, if (Sn, g) is a C4-deformation of the standard sphere which satisfies MTW(K, C)
for some K, C > 0, then it satisfies T CP, and all its injectivity domains are strictly convex.

• In [11, 20] the authors can improve T CP to higher regularity thanks to the stay-away prop-
erty of the optimal transport map T . More precisely, in [20] the authors assume that the cut
locus is nonfocal (which is for example the case if one considers C4-deformation of a quotient
of the standard sphere Sn), and combining this hypothesis with T CP one gets the existence of
a constant σ > 0 such that d(T (x), cut(x)) ≥ σ for all x ∈ M . On the other hand, in [11] the
authors show that if (M, g) is C4-deformation of (Sn, gcan), and one imposes some boundedness
constraint on the measures µ and ν (the constraint depending on the size of the perturbation),
then the stay-away property of the optimal map holds. Once the stay-away property is estab-
lished, T CP allows to localize the problem and to apply the a priori estimates of Ma, Trudinger
and Wang [21], obtaining C∞ regularity on T (under C∞ assumptions on the measures). In
our case it is not clear whether the stay-away property is true or not, and this is why our result
cannot be easily improved to higher regularity.

• As we already said, if a Riemannian manifold (M, g) satisfiesMTW(K, C) for some K, C > 0,
then its sectional curvature is bounded below by K. As it was shown by Kim [16], the converse
result is false. Describing the positively curved and simply connected Riemannian manifolds
which satisfy MTW(K, C) for some K, C > 0 is a formidable challenge.

A Appendix : The round sphere

The purpose of the appendix is to provide a proof of the following result.

Theorem A.1. There exists K0 > 0 such that, for every n ≥ 2, the round sphere (S, gcan)
satisfies MTW(K0,K0).
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Proof. Let us see the round sphere Sn as a submanifold of Rn+1 equipped with the Riemannian
metric induced by the Euclidean metric. More precisely, we see Sn as the sphere centered at the
origin with radius one in Rn+1. Since we work in Rn+1, we can identify covectors with vectors.
For every x ∈ Sn, the set NF∗(x)∪ {0} corresponds to the open ball centered at x with radius
π intersected with the hyperplane tangent to Sn at x. Our aim is to show that there exists a
constant K0 > 0 such that, for every x ∈ Sn ⊂ Rn+1 and p ∈ NF∗(x), one has

Ŝ(x, p) · (ξ, η) =
3
2

d2

ds2

(〈K(x, p + sη)ξ, ξ〉)|s=0
≥ K0‖ξ‖2x‖η‖2x −K0

∣∣〈ξ, η〉∣∣‖ξ‖‖η‖,

for all ξ ∈ TxSn, η ∈ T ∗xSn. This is equivalent to show that, for every x ∈ Sn and every
v ∈ TxSn,

−3
2

d2

ds2

d2

dt2
c
(
expx(tξ), expx(v + sη)

)
|t=s=0

≥ K0‖ξ‖2x‖η‖2x −K0

∣∣〈ξ, η〉
∣∣‖ξ‖‖η‖ ∀ ξ, η ∈ TxSn,

where c := d2/2. Since the function (t, s) 7→ c
(
expx(tξ), expx(v + sη)

)
depends only on the

behavior of the Riemannian distance in the affine space containing x and spanned by the three
vectors v, ξ, η, we just have to prove Theorem A.1 for n = 3. Moreover, by the homogeneity
of (S, gcan), it suffices to prove the estimate only for a fixed point x ∈ Sn and along a fixed
geodesic t 7→ expx(tv).

Consider the stereographic projection of the sphere S3 ⊂ R4 centered at the origin and of
radius 1 from the north pole N = (0, 0, 0, 1) onto the space R3 ' R3×{0} ⊂ R4. The projection
of some point x = (x1, x2, x3, x4) ∈ S3 is given by

σ(x) =
(

x1

1− x4
,

x2

1− x4
,

x3

1− x4

)
.

The function σ is a smooth diffeomorphism from S3 \ {N} onto R3, whose inverse is

σ−1(y) =
(

2y1

1 + |y|2 ,
2y2

1 + |y|2 ,
2y3

1 + |y|2 ,
|y|2 − 1
1 + |y|2

)
∀ y = (y1, y2, y3) ∈ R3,

where | · | denotes the Euclidean norm on R3. The pushforward of the round metric on S3 is
given by

gy(v, v) =
4

(1 + |y|2)2 |v|
2 ∀ y, v ∈ R3,

and the Hamiltonian canonically associated to g is

H(y, p) =
(1 + |y|2)2

8
|p|2 ∀ y, p ∈ R3.

The Hamiltonian system associated to H is
{

ẏ = ∂H
∂p (y, p) = (1+|y|2)2

4 p

ṗ = −∂H
∂y (y, p) = − (1+|y|2)|p|2

2 y,

and the linearized Hamiltonian system along a given solution (y(t), p(t)) is
{

ḣ = (1 + |y|2)〈y, h〉p + (1+|y|2)2
4 q

q̇ = − (1+|y|2)2|p|2
2 h− |p|2〈y, h〉y − (1 + |y|2)(p · q)y

We note that h is a Jacobi vector field along the geodesic t 7→ y(t).
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Set x1 = (−1, 0, 0, 0) and x2 = (1, 0, 0, 0), and for |α| small, let γα be the minimizing geodesic
on S3 joining x1 to x2 defined by

γα(t) := (cos(t− π), sin(α) sin(t− π), 0, cos(α) sin(t− π)) ∀ t ∈ [0, π].

Its image by the stereographic projection is given by

θα(t) := σ(γα(t)) =
(

cos(t− π)
1− cos(α) sin(t− π)

,
sin(α) sin(t− π)

1− cos(α) sin(t− π)
, 0

)
.

It is a minimizing geodesic between Y := σ(x1) = (−1, 0, 0) and σ(x2) = (1, 0, 0). Fix t̄ ∈ (0, π),
and set V := t̄θ̇α(0). We need to compute the matrix K(Y, V ). By an easy rescaling argument,
we have

K(Y, V ) = t̄Sα(t̄),

where Sα(t̄) is the 3× 3 symmetric matrix such that any solution of the linearized Hamiltonian
system along θα starting from (h, Sα(t̄)h), satisfies h(t̄) = 0. Let us compute Sα(t̄).

Define three vector fields E1, E2, E3 along θα by

E1(t) := θ̇α(t) =
(

cos(α)− sin(t− π)
(1− cos(α) sin(t− π))2

,
sin(α) cos(t− π)

(1− cos(α) sin(t− π))2
, 0

)
,

E2(t) :=
( − sin(α) cos(t− π)

(1− cos(α) sin(t− π))2
,

cos(α)− sin(t− π)
(1− cos(α) sin(t− π))2

, 0
)

,

E3(t) := (0, 0, 1).

The vectors E1(t), E2(t), E3(t) form a basis of parallel vector fields along θα. Let (h, q) be a
solution of the linearized Hamiltonian system along θα such that h(t) = 0 for some t̄ > 0.
Since E1(t), E2(t), E3(t) form a basis of parallel vector fields along θα, there are three smooth
functions u1, u2, u3 such that

h(t) = u1(t)E1(t) + u2(t)E2(t) + u3(t)E3(t) ∀ t.

Hence, as h is a Jacobi vector field along θα, its second covariant derivative along θα is given
by

D2
t h(t) = ü1(t)E1(t) + ü2(t)E2(t) + ü3(t)E3(t).

Therefore, since (R3, g) has constant curvature, we have

0 = D2
t h + R(h, θ̇α)θ̇α

= D2
t h + g

(
θ̇α, θ̇α

)
h− g

(
h, θ̇α

)
θ̇α

= ü1(t)E1(t) + ü2(t)E2(t) + ü3(t)E3(t) + u1(t)E1(t) + u2(t)E2(t) + u3(t)E3(t)− u1(t)θ̇α(t)
= ü1(t)E1(t) + [ü2(t) + u2(t)]E2(t) + [ü3(t) + u3(t)]E3(t).

We deduce that there are six constants λ1, λ2, λ3, λ4, λ5, λ6 such that




u1(t) = λ1 + λ2t
u2(t) = λ3 cos(t) + λ4 sin(t)
u3(t) = λ5 cos(t) + λ6 sin(t).

Since

E1(0) = (cos(α),− sin(α), 0), E2(0) = (sin(α), cos(α), 0), E3(0) = (0, 0, 1).
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the equality h(0) = u1(0)E1(0) + u2(0)E2(0) + u3(0)E3(0) yields




h1(0) = u1(0) cos(α) + u2(0) sin(α)
h2(0) = −u1(0) sin(α) + u2(0) cos(α)
h3(0) = u3(0),

which gives

λ1 = cos(α)h1(0)− sin(α)h2(0), λ3 = sin(α)h1(0) + cos(α)h2(0), λ5 = h3(0).

Furthermore,

Ė1(0) = (− cos(2α), sin(2α)) , Ė2(0) = (− sin(2α),− cos(2α)) , Ė3(0) = 0.

Differentiating h(t) = u1(t)E1(t) + u2(t)E2(t) + u3(t)E3(t) at t = 0, we obtain




ḣ1(0) = λ2 cos(α) + λ4 sin(α)− λ1 cos(2α)− λ3 sin(2α)
ḣ2(0) = −λ2 sin(α) + λ4 cos(α) + λ1 sin(2α)− λ3 cos(2α)
ḣ3(0) = λ6.

From the linearized Hamiltonian system, since Y (0) = (−1, 0, 0) and P (0) = V (0) = E1(0), we
have

q(0) = ḣ(0) + 2h1(0)E1(0).

Recalling that h(t̄) = 0 ⇒ u(t) = 0, we get

λ2 = −λ1

t̄
, λ4 = −λ3

cos(t̄)
sin(t̄)

, λ6 = −λ5
cos(t̄)
sin(t̄)

.

Thus we finally obtain



q1(0)
q2(0)
q3(0)


 = q(0) = Sα(t̄)h(0) =




aα(t̄) bα(t̄) 0
bα(t̄) cα(t̄) 0

0 0 d(t̄)







h1(0)
h2(0)
h3(0)


 ,

where

aα(t̄) := −cos2(α)
t̄

− cos(t̄) sin2(α)
sin(t̄)

+ cos(α),

bα(t̄) :=
cos(α) sin(α)

t̄
− cos(α) sin(α) cos(t̄)

sin(t̄)
− sin(α),

cα(t̄) := − sin2(α)
t̄

− cos2(α) cos(t̄)
sin(t̄)

− cos(α), d(t̄) = −cos(t̄)
sin(t̄)

.

Hence

K(Y, V ) = t̄Sα(t̄) =




k1(Y, V ) k2(Y, V ) 0
k2(Y, V ) k3(Y, V ) 0

0 0 k4(Y, V )


 ,

with

k1(Y, V ) = t̄aα(t̄), k2(Y, V ) = t̄bα(t̄), k3(Y, V ) = t̄cα(t̄), k4(Y, V ) = t̄d(t̄).

Let us now show that MTW(K0,K0) holds. For that, it is sufficient to show that for for
every V of the form V = (r, 0, 0) with r ∈ (0, π), every ξ = (ξ1, ξ2, ξ3) ∈ R3 with |ξ| = 1 and
every η = (η1, η2, 0) ∈ R3 with |η| = 1, one has

〈ξ, ¨̃K(0)ξ〉 ≥ 2
3
K0

(
1−

∣∣〈ξ, η〉
∣∣) ,

24



where K̃(s) is defined as

K̃(s) := K(Y, V + sη) =




k̃1(s) k̃2(s) 0
k̃2(s) k̃3(s) 0

0 0 k̃4(s)


 .

By the discussion above, we have

K̃(s) = T (s)Sα(s)(T (s)),

where

α(s) = − arctan
(

sη2

r + sη1

)
, T (s) =

∣∣∣∣
(

r + sη1

sη2

)∣∣∣∣ =
√

(r + sη1)2 + s2η2
2 .

We note that
α(0) = 0, α̇(0) = −η2

r
α̈(0) =

2η1η2

r2
,

and

T (0) = r, Ṫ (0) = η1, T̈ (0) =
η2
2

r
.

The second derivatives at s = 0 of the functions k̃1, k̃2, k̃3, k̃4 are given by

¨̃
k1(0) = 2

[
1
r2
− cos(r)

r sin(r)

]
η2
2 ,

¨̃
k2(0) = 2

[
1
r2
− 1

sin2(r)

]
η1η2,

¨̃
k3(0) = 2

[
1

sin2(r)
− r cos(r)

sin3(r)

]
η2
1 +

[
− 2

r2
+

cos(r)
r sin(r)

+
1

sin2(r)

]
η2
2 ,

¨̃
k4(0) = 2

[
1

sin2(r)
− r cos(r)

sin3(r)

]
η2
1 +

[
1

sin2(r)
− cos(r)

r sin(r)

]
η2
2 ,

and so

〈ξ, ¨̃K(0)ξ〉 = ¨̃
k1(0)ξ2

1 + 2¨̃
k2(0)ξ1ξ2 + ¨̃

k3(0)ξ2
2 + ¨̃

k4(0)ξ2
3

= 2
[

1
r2
− cos(r)

r sin(r)

]
ξ2
1η2

2 − 4
[

1
sin2(r)

− 1
r2

]
ξ1ξ2η1η2

+ 2
[

1
sin2(r)

− r cos(r)
sin3(r)

]
ξ2
2η2

1 +
[
− 2

r2
+

cos(r)
r sin(r)

+
1

sin2(r)

]
ξ2
2η2

2

+ 2
[

1
sin2(r)

− r cos(r)
sin3(r)

]
ξ2
3η2

1 +
[

1
sin2(r)

− cos(r)
r sin(r)

]
ξ2
3η2

2 .

Define the functions c1, c2, c3, c4, c5 on [0, π) by

c1(r) :=
1
r2
− cos(r)

r sin(r)
, c2(r) :=

1
sin2(r)

− 1
r2

, c3(r) :=
1

sin2(r)
− r cos(r)

sin3(r)
,

c4(r) := − 2
r2

+
cos(r)
r sin(r)

+
1

sin2(r)
, c5(r) :=

1
sin2(r)

− cos(r)
r sin(r)

.

We need the following two lemmas, whose proof is postponed to the end.

Lemma A.2. One has

ci(r) ≥ ci(0) =
1
3

∀r ∈ [0, π), ∀i = 1, 2, 3.
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Lemma A.3. The function c4 = c2− c1 is nonnegative on [0, π), and there exists α ∈ (0, 2/π2)
such that (

c1(r)− α
)(

c3(r)− α
)− (

c2(r)− α
)2 ≥ 0 ∀r ∈ [0, π).

We note that c4 = c2 − c1 and c5 = c1 + c2 . Set c̃i(r) := ci(r)− 1
3 for every r ∈ (0, π) and

i = 1, 2, 3. By Lemmas A.2 and A.3, together with the fact that |η|2 = 1 = η2
1 + η2

2 , we get

〈ξ, ¨̃K(0)ξ〉 = 2c1(r)ξ2
1η2

2 − 4c2(r)ξ1ξ2η1η2 + 2c3(r)ξ2
2η2

1 + c4(r)ξ2
2η2

2 + 2c3(r)ξ2
3η2

1 + c5(r)ξ2
3η2

2

≥ 2c1(r)ξ2
1η2

2 − 4c2(r)ξ1ξ2η1η2 + 2c3(r)ξ2
2η2

1 + c4(r)ξ2
2η2

2 +
2
3
ξ2
3η2

1 +
2
3
ξ2
3η2

2

= 2c1(r)ξ2
1η2

2 − 4c2(r)ξ1ξ2η1η2 + 2c3(r)ξ2
2η2

1 +
(
c2(r)− c1(r)

)
ξ2
2η2

2 +
2
3
ξ2
3

≥ 2c1(r)ξ2
1η2

2 − 4c2(r)ξ1ξ2η1η2 + 2c3(r)ξ2
2η2

1 +
2
3
ξ2
3 .

For any r ∈ (0, π) and i = 1, 2, 3, set ĉi(r) := ci(r)− α, with α given by Lemma A.3. Then

〈ξ, ¨̃K(0)ξ〉 ≥ 2ĉ1(r)ξ2
1η2

2 − 4ĉ2(r)ξ1ξ2η1η2 + 2ĉ3(r)ξ2
2η2

1 + 2α
(
ξ2
1η2

2 − 2ξ1ξ2η1η2 + ξ2
2η2

1

)
+ 2αξ2

3

≥ 2ĉ1(r)ξ2
1η2

2 − 4ĉ2(r)ξ1ξ2η1η2 + 2ĉ3(r)ξ2
2η2

1 + 2α
(
1− 〈ξ, η〉2)

≥ 2ĉ1(r)ξ2
1η2

2 − 4ĉ2(r)ξ1ξ2η1η2 + 2ĉ3(r)ξ2
2η2

1 + 2α (1− |〈ξ, η〉|)
≥ 2ĉ1(r)ξ2

1η2
2 − 4ĉ2(r)|ξ1ξ2η1η2|+ 2ĉ3(r)ξ2

2η2
1 + 2α (1− |〈ξ, η〉|)

≥ 2ĉ1(r)ξ2
1η2

2 − 4
√

ĉ1(r)ĉ3(r)|ξ1ξ2η1η2|+ 2ĉ3(r)ξ2
2η2

1 + 2α (1− |〈ξ, η〉|)
≥ 2

(√
ĉ1(r)|ξ1η2| −

√
ĉ3(r)|ξ2η1|

)2

+ 2α (1− |〈ξ, η〉|)
≥ 2α (1− |〈ξ, η〉|) ,

where we used again Lemma A.3. Thus we finally obtain

3
2
〈ξ, ¨̃K(0)ξ〉 ≥ 3α (1− |〈ξ, η〉|) ,

which shows that the round sphere satisfies MTW(K0,K0) with K0 := 3α.

Proof of Lemma A.2. Define f : [0, π) → R by f(r) := 1 − r cos(r)
sin(r) . The Taylor expansion of f

at r = 0 is given by

f(r) =
r2

3
+

r4

45
+ o(r4).

This means that f(r) > r2

3 for small r in (0, π). Define g : [0, π) → R by g(r) := f(r)− r2

3 . By
the latter remark, g is strictly positive for small r in (0, π). One has

c1(r) =
f(r)
r2

and c3(r) =
f(r)

sin2(r)
∀r ∈ (0, π).

Therefore showing that c1, c3 ≥ 1/3 is equivalent to showing that g ≥ 0. Define h : [0, π) → R
by h(r) := r2c2(r)− r2/3. The derivatives of g and h are respectively given by

g′(r) =
r

sin2(r)
− cos(r)

sin(r)
− 2r

3
∀r ∈ (0, π).

and

h′(r) =
2r

sin2(r)
− 2r2 cos(r)

sin3(r)
− 2r

3

=
2r

sin2(r)

(
f(r)− sin2(r)

3

)
≥ 2rg(r)

sin2(r)
.
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This shows that if g(r) > 0 for every r ∈ (0, r̄), then h(r) > 0 on (0, r̄]. But if r̄ ∈ (0, π) is such
that g(r̄) = 0, then cos(r̄)

sin(r̄) = 1
r̄ − r̄

3 , so that

g′(r̄) =
r̄

sin2(r̄)
− 1

r̄
− r̄

3
= r̄

(
c2(r̄)− 1

3

)
=

h(r̄)
r̄

> 0.

Since g is strictly positive for r small, we conclude easily that g, h ≥ 0 on [0, π), which proves
the lemma. ¤

Proof of Lemma A.3. First of all we observe that the Taylor expansions of c1, c2, c3 at r = 0
are given by

c1(r) =
1
3

+
r2

45
+ o(r2), c2(r) =

1
3

+
r2

15
+ o(r2), c3(r) =

1
3

+
2r2

15
+ o(r2). (A.1)

Define ` : [0, π) → R by `(r) := r2c4(r). Its derivative is given by

`′(r) = r
(
2c3(r)− c2(r)− c1(r)

)
.

We first reamark that obviously c3 ≥ c1 on [0, π). Moreover the derivative of the function
m : [0, π) → R defined as m(r) := r2(c3(r)− c2(r)) is given by

m′(r) =
r3

sin2(r)

(
3(c2(r) + c1(r))− 2

)
,

and it is nonnegative by Lemma A.2. Since by (A.1) limr→0+ m(r) = 1/15 > 0, we obtain that
m(r) ≥ 0 on [0, π). This gives `′(r) ≥ 0 for every r ∈ [0, π), and so c4 = c2 − c1 is nonnegative
on [0, π).

Let us now prove the second assertion of the lemma. We first want to show that the function
c1c3 − c2

2 is strictly positive on (0, π). With the notation of Lemma A.2, we have

c1(r)c3(r) =
f2(r)

r2 sin2(r)
.

Thus we need to prove that

f(r)
r sin(r)

> c2(r) ∀ r ∈ (0, π),

or equivalently

F (r) := f(r)− r sin(r)c2(r) = f(r)− r

sin(r)
+

sin(r)
r

> 0 ∀ r ∈ (0, π).

It is easily seen that F (r) = r4

90 + o(r4), so that F (r) > 0 for r > 0 small. Differentiating the
above expression we get

F ′(r) =
r

sin2(r)
− cos(r)

sin(r)
− 1

sin(r)
+

r cos(r)
sin2(r)

+
cos(r)

r
− sin(r)

r2

=
1
r

(
r2

sin2(r)
− 1 + f(r)

)
− 1

sin(r)
f(r)− sin(r)

r2
f(r)

=
1
r

(
r2

sin2(r)
− 1

)
+

(
1
r
− 1

sin(r)
− sin(r)

r2

)
f(r)

=
1
r

[(
r2

sin2(r)
− 1

)
+

r sin(r)− r2 − sin2(r)
r sin(r)

f(r)
]

.
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Assume by contradiction that there exists r̄ > 0 such that F (r̄) = 0. Then

f(r̄) =
r̄

sin(r̄)
+

sin(r̄)
r̄

=
sin(r̄)

r̄

(
r̄2

sin2(r̄)
− 1

)

which gives

F ′(r̄) =
1
r̄

(
r̄2

sin2(r̄)
− 1

)[
1− r̄2 + sin2(r̄)− r̄ sin(r̄)

r̄2

]
.

Since
r2 > sin2(r) and r2 + sin2(r)− r sin(r) < r2 ∀ r ∈ (0, π),

we get F ′(r̄) > 0, absurd. Thus c1c3 − c2
2 > 0 on (0, π). We now observe that, thanks to (A.1),

for every α > 0 we have

(
c1(r)− α

)(
c3(r)− α

)− (
c2(r)− α

)2 =
(

1
3
− α

)
r2

45
+ o(r2).

On the other hand, for r close to π and every α > 0,

(
c1(r)− α

)(
c3(r)− α

)− (
c2(r)− α

)2 ∼
(

2
π − πα

)

sin3(r)
.

Combining all together, we conclude easily that there exists α ∈ (0, 2/π2) such that
(
c1(r)− α

)(
c3(r)− α

)− (
c2(r)− α

)2 ≥ 0 ∀r ∈ [0, π).

¤

Remark A.4. Starting from the formula for 〈ξ, ¨̃K(0)ξ〉 given just after Lemma A.3, it is not
difficult to see that (Sn, gcan) satisfies MTW(1, 1) if and only if the quantity

2c̃1(r)ξ̂2
1 η̂2

2 − 4c̃2(r)ξ̂1ξ̂2η̂1η̂2 + 2c̃3(r)ξ̂2
2 η̂2

1 +
(
c̃2(r)− c̃1(r)

)
ξ̂2
2 η̂2

2 +
2
3

∣∣〈ξ̂, η̂〉
∣∣
(
1−

∣∣〈ξ̂, η̂〉
∣∣
)

is nonnegative for any ξ̂, η̂ ∈ S1 and any r ∈ (0, π), where c̃i(r) := ci(r) − 1
3 . Numerical

simulations suggest that the above inequality should be true.
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Sèr. I Math., 329(3):199–202, 1999.
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[11] P. Delanoë and Y. Ge. Regularity of optimal transportation maps on compact, locally
nearly spherical, manifolds. J. Reine Angew. Math., to appear.

[12] A. Figalli, Y.-H. Kim and R. J. McCann. Hölder continuity of optimal maps for non-
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