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Abstract

We investigate entire radial solutions of the semilinear biharmonic equation ∆2u = λ exp(u) in
Rn, n ≥ 5, λ > 0 being a parameter. We show that singular radial solutions of the corresponding
Dirichlet problem in the unit ball cannot be extended as solutions of the equation to the whole
of Rn. In particular, they cannot be expanded as power series in the natural variable s = log |x|.
Next, we prove the existence of infinitely many entire regular radial solutions. They all diverge
to −∞ as |x| → ∞ and we specify their asymptotic behaviour. As in the case with power-type
nonlinearities [GG], the entire singular solution x 7→ −4 log |x| plays the role of a separatrix in
the bifurcation picture. Finally, a technique for the computer assisted study of a broad class
of equations is developed. It is applied to obtain a computer assisted proof of the underlying
dynamical behaviour for the bifurcation diagram of a corresponding autonomous system of ODEs,
in the case n = 5.

Mathematics Subject Classification: 35J60; 35J30, 35J65, 35 J40.

1 Introduction and results

We are interested in entire radial solutions of the semilinear supercritical biharmonic equation

∆2u = λeu in R
n, n ≥ 5, λ > 0, (1)

i.e. in solutions u = u(r), which exist for all r = |x| > 0. These may be singular at the origin,
and these solutions are studied in the first part of the present paper. However, our main concern
are entire regular radial solutions. We study existence/multiplicity, qualitative properties and, in
particular, their asymptotic behaviour as r → ∞.

Recently, in [AGGM] the boundary value problem






∆2u = λeu in B

u =
∂u

∂n
= 0 on ∂B

(2)

has been studied. Here B denotes the unit ball in R
n (n ≥ 5) centered at the origin and ∂

∂n
the

differentiation with respect to the exterior unit normal i.e. in radial direction. One expects that, at
least for one value of the parameter λ, problem (2) has a singular radial solution according to:

∗Financial support by the Vigoni programme of CRUI (Rome) and DAAD (Bonn) is gratefully acknowledged.
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Definition 1. Let p be some fixed exponent with p > n
4 and p ≥ 2. We say that u ∈ L2(B) is a

solution of (2) if eu ∈ L1(B) and

∫

B
u∆2v = λ

∫

B
euv for all v ∈ W 4,p ∩ H2

0 (B). (3)

We say that a solution u of (2) is regular (resp. singular) if u ∈ L∞(B) (resp. u 6∈ L∞(B)).

For 5 ≤ n ≤ 16 the existence of singular solutions was proved in [AGGM] by means of computer
assistance. An analytic proof, covering also larger dimensions, is still missing. Since the transfor-
mation v(s) = u(es) (s = log r) proved to be very useful, one may hope to represent a singular
solution as an analytic function in the s-variable. In Section 2, we show that this is not possible.
More precisely, we prove

Theorem 1. Assume that for some λ = λS (2) has a singular radial solution uS = uS(r). Then
s 7→ uS(es) is not an entire analytic function in the s = log r-variable.

Then, we study existence and asymptotic properties of radial regular entire solutions of (1) for
suitable initial data at the origin. Thanks to scaling it is enough to consider just one value of the
parameter λ. For reasons which become obvious below (e.g. in the proof of Lemma 5), we consider
only

λ = 8(n − 2)(n − 4).

For all α, β ∈ R we denote by uα,β the (local) solution of the initial value problem











∆2uα,β(r) = λ exp(uα,β(r)) for r ∈ [0, R(α, β)),

uα,β(0) = α, ∆uα,β(0) = β, u′
α,β(0) = (∆uα,β)′(0) = 0,

(4)

where [0, R(α, β)) is the maximal interval of existence. In Section 3 we prove

Theorem 2. The solution of (4) satisfies

uα,β(r) ≥ α +
β

2n
r2 for all r ∈ [0, R(α, β)). (5)

Moreover, the solutions of (4) are ordered, that is, if α1 ≥ α2 and β1 ≥ β2 then uα1,β1
(r) ≥ uα2,β2

(r)
for all r < min{R(α1, β1), R(α2, β2)}.

Furthermore, for any α ∈ R there exists β0 = β0(α) ∈ [−4neα/2, 0) such that

(i) if β < β0, then R(α, β) = +∞ and in addition to (5), one has the upper bound

uα,β(r) ≤ α − β0 − β

2n
r2 for all r ∈ [0,∞). (6)

(ii) if β = β0, then
lim

r→∞
[uα,β0

(r) + 4 log r] = 0. (7)

(iii) if β0 < β < 0, then R(α, β) < ∞, there exists a unique R0 ∈ [0, R(α, β)) such that u′
α,β(R0) =

0, u′
α,β(r) < 0 on (0, R0), u′

α,β(r) > 0 on (R0, R(α, β)) and lim
rրR(α,β)

uα,β = +∞.

(iv) if β ≥ 0, then R(α, β) < ∞, u′
α,β(r) > 0 on (0, R(α, β)) and lim

rրR(α,β)
uα,β(r) = +∞.
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The following picture shows the numerically computed solutions of (4) for n = 5, α = 1 and three
different values of β, corresponding to the cases (i), (ii) and (iii):
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Finite time blow up, entire and infinite time blow down solution with n = 5.

Theorem 2 deserves several comments. Firstly, it states that (1) has infinitely many entire solutions
for each fixed shooting level α, this being in sharp contrast with the supercritical equation with
odd power-type nonlinearity, see [GG]. Next, one should observe that x 7→ −4 log |x| is a singular
entire solution of (1) when λ = 8(n−2)(n−4). Therefore, (7) shows that the separatrix is “almost”
the singular solution. Moreover, statement (iii) tells us that all solutions below the separatrix tend
to −∞ at a much higher rate. A comparable behaviour cannot be observed in the corresponding
second order equation

−∆u = λ̃eu, λ̃ := 2(n − 2), (8)

since solutions of (8) only have one degree of freedom which is the shooting level α. All the solutions
of the corresponding initial value problem are global and behave asymptotically like the singular
one x 7→ −2 log |x|. This follows from the remark in [MP2, p.381] on the connecting orbit of the
two critical points of the corresponding 2× 2 autonomous system. For further results on the second
order problem (8), see [BCMR, BV, G, JL, MP1]. Finally, let us mention that for the proof of
Theorem 2 we benefit from the techniques recently developed in [GG].

In order to better understand the bifurcation behaviour of solutions of (4), we study a corre-
sponding 4 × 4 autonomous system of first order ODEs. More precisely, we put s = log r and
w(s) := u(es) + 4s, so that the equation in (4) becomes

d4w

ds4
+ 2(n − 4)

d3w

ds3
+ (n2 − 10n + 20)

d2w

ds2
− 2(n − 2)(n − 4)

dw

ds
= λ

(

ew(s) − 1
)

(9)

and then we set w = (w,w′, w′′, w′′′). The singular solution of (2) corresponds to the stationary
solution w0(s) ≡ 0 of (9). The stable manifold of the critical point w0 is three dimensional (see
[AGGM]) and locally divides the space into two (perturbed) half spaces. In order to study the
stable and unstable manifolds of w0, in Section 6 we set the problem in an analytic framework
and we introduce a general algorithm that can be used both for numerical experiments and for
computer assisted proofs concerning the solutions of a large class of ordinary differential equations.
In particular, it applies to radial solutions of equations such as

−∆u = f(u) or ∆2u = f(u) (10)
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in R
n, where f is an analytic function. In a forthcoming paper [AGGS], this technique will be

applied to a second order problem in order to study the bifurcation diagram. We recall the following
definition, given in [AGGM]:

Definition 2. A proof is called computer assisted if it consists in finitely many elementary
operations, but their number is so large that, although each step may be written down explicitly, it
is only practical to perform such operations with a computer.

We also refer to [KSW] for an extensive treatment of computer assisted proofs and for further
references.

A major problem one faces when dealing with the radial version of equations (10) is that the
coefficients of such equations are singular at the origin. Nonetheless, if f is analytic, then radial
solutions are also analytic and it is possible to compute explicitly the power expansion of the
solutions. In this paper we apply this technique to obtain the pictures shown in this section and to
prove

Theorem 3. Let n = 5 and α = 1. There exists β0 ∈ (−2.5173682746,−2.51736827425) such
that the solution u1,β0

of equation (4) with α = 1 and β = β0 satisfies (7). This means that the
corresponding solution w of (9) lies in the stable manifold of w0.

The solutions corresponding to β greater or smaller then β0 belong to different half spaces. The
following pictures concern the cases n = 5 and n = 13 with initial datum α = 1. In each case, the
solutions in the w variable are displayed, corresponding to two values of β very close to β0, one
value larger and the other smaller.
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Solutions close to the stable manifold for n = 5 and n = 13.

It appears from the pictures that both solutions are close to the stationary solution w = 0, before
blowing up to +∞ or down to −∞. But when n = 5 both solutions oscillate around w = 0, while
if n = 13 these solutions either satisfy w(s) < 0 for all s (in the blowing down case), or there exists
a unique s such that w(s) = 0 (in the blowing up case). We conjecture that the entire solution
converging to 0 has an oscillatory behaviour for all n = 5, . . . , 12 and converges monotonically for
all n ≥ 13, even if we do not have numerical evidence yet.

2 Proof of Theorem 1

Let uS be a singular radial solution of (2) with corresponding parameter λ = λS. We may assume
further that uS solves the differential equation

∆2uS(r) = λS exp(uS(r)) for r ∈ [0, Rmax) (11)
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on a maximal interval of existence [0, Rmax). If it were possible to represent uS(e
s) as an analytic

function in the s-variable, then the corresponding power series would have an infinite radius of
convergence, since r = 0 corresponds to s = −∞. Back in the r-variable, this would mean that
uS(r) would exist as a solution of (11) for all r > 0. Therefore, in order to prove Theorem 1 it is
enough to show that

Rmax < ∞. (12)

To this end, we first recall two comparison principles:

Lemma 1. [AGGM]
Assume that u ∈ L1(B) satisfies for all v ∈ C4

(

B
)

∩ H2
0 (B) with v ≥ 0 :

∫

B
u∆2v ≥ 0 ;

then u ≥ 0. Moreover, one has either u ≡ 0 or u > 0 almost everywhere in B.

For strongly superbiharmonic functions, this comparison result was previously found by Boggio [B].

The arguments proving [MKR, Lemma 3.2] directly yield the following result:

Lemma 2. Assume that f : R → R is differentiable and monotonically increasing. Let u, v ∈
C4([0, R)) be such that











∀r ∈ [0, R) : ∆2u(r) − f(u(r)) ≥ ∆2v(r) − f(v(r)),

u(0) ≥ v(0), u′(0) = v′(0) = 0, ∆u(0) ≥ ∆v(0), (∆u)′(0) = (∆v)′(0) = 0.

Then, for all r ∈ [0, R) we have

u(r) ≥ v(r), u′(r) ≥ v′(r), ∆u(r) ≥ ∆v(r), (∆u)′(r) ≥ (∆v)′(r). (13)

Moreover,

(i) the initial point 0 can be replaced by any initial point ρ > 0 if all four initial data are weakly
ordered,

(ii) a strict inequality in one of the initial data at ρ ≥ 0 or in the differential inequality on (ρ,R)
implies a strict ordering of u, u′,∆u,∆u′ and v, v′,∆v,∆v′ on (ρ,R).

Let us now compare uS with a solution u of the Dirichlet problem for ∆2u = f with some positive
regular f ≤ λS exp(uS). Since n > 4, uS is a weak solution of (2) in the whole of B. From [GS] we
know that ∆u(1) > 0. Moreover, Lemma 1 yields uS > u a.e. in B, so that we may conclude:

uS(1) = u′
S(1) = 0, ∆uS(1) > 0.

Hence uS and u′
S are certainly positive for r > 1, r close to 1. In fact, more can be said:

Lemma 3. We have u′
S(r) > 0 for all R ∈ (1, Rmax). Moreover, limrրRmax

uS(r) = +∞. Finally,
we also have that rn−1u′

S, ∆uS, rn−1(∆uS)
′ are positive and strictly increasing in a left neighbour-

hood of Rmax.
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Proof. For contradiction, assume that u′
S(R) = 0 for some R ∈ (1, Rmax). We choose R minimal,

so that uS > 0 on (1, R]. Application of Lemma 1 would give uS(r) ≥ uS(R) for all r ∈ (0, R]. In
particular, uS(1) ≥ uS(R) > 0. A contradiction!

Next, in both the cases Rmax = ∞ and Rmax < ∞, standard theory of ordinary differential
equations shows that limrրRmax

uS(r) = +∞.
Finally, by successive integration of the differential equation (11) we also infer that the maps

r 7→ rn−1u′
S(r), r 7→ ∆uS(r), and r 7→ rn−1(∆uS)′(r) are positive and strictly increasing in a

neighbourhood of Rmax. �

As mentioned above, Theorem 1 follows directly once we give the

Proof of (12). We start with the observation that

u0(r) :=
[n(n − 2)(n2 − 2n − 8)](n−4)/8

(1 − r2)(n−4)/2

solves the critical equation

∆2u0 = u
(n+4)/(n−4)
0 in B.

Certainly there exists α > 0 such that αt(n+4)/(n−4) ≤ λS exp(t) for all t > 0. Hence, for u1(r) :=
α−(n−4)/8u0(r) we have

∆2u1 = αu
(n+4)/(n−4)
1 ≤ λS exp(u1).

Finally, we scale: for any µ > 0, the function uµ(r) := µ(n−4)/2u1(µr) satisfies the same inequality

∆2uµ = αu(n+4)/(n−4)
µ ≤ λS exp(uµ).

Summarizing, for all r ∈ (0, 1
µ) we have

∆2uµ − λS exp(uµ) ≤ 0 = ∆2uS − λS exp(uS). (14)

By Lemma 3 we may find R0 ∈ (1, Rmax) such that

uS(R0) > 0, u′
S(R0) > 0, ∆uS(R0) > 0, (∆uS)′(R0) > 0 ;

furthermore, we may choose µ > 0 small enough so that R0 < 1
µ and

uS(R0) > uµ(R0), u′
S(R0) > u′

µ(R0), ∆uS(R0) > ∆uµ(R0), (∆uS)′(R0) > (∆uµ)′(R0). (15)

The comparison Lemma 2 allows us to conclude from (14)-(15) that

∀r ∈ [R0, Rmax) : uS(r) > uµ(r).

Since uµ blows up at r = 1
µ , we finally come up with

Rmax ≤ 1

µ
< ∞

which is precisely (12). �

6



3 Proof of Theorem 2

We recall that in the context of Theorem 2, without loss of generality we always confine ourselves
to

λ = 8(n − 2)(n − 4).

The first statements of Theorem 2 are easily obtained by comparison. Indeed, since the right hand
side of the equation in (4) is nonnegative, Lemma 2 (with f ≡ 0) readily proves (5). A further
application of Lemma 2 (with f(s) = λes) implies that the solutions of (4) are ordered.

The remaining statements in Theorem 2 (especially (ii)) are much more delicate, they require a
lengthy proof. We first prove a continuous dependence result:

Lemma 4. For fixed α, the map R ∋ β 7→ R(α, β) ∈ (0,∞] is nonincreasing and continuous.
Moreover, if R(α, β) < ∞, then lim

rրR(α,β)
uα,β(r) = +∞.

Proof. We observe first that with the arguments of the preceding section one can show that if there
is some r0 with u′(r0) = 0, then u blows up to ∞ in finite time. Hence, inequality (5) tells us that
either uα,β is global or it blows up to +∞ with finite R(α, β) < ∞. Since the solutions of (4) are
ordered, the map β 7→ R(α, β) is nonincreasing.

Assume now for contradiction that for some β0, β 7→ R(α, β) is discontinuous so that there exists
a sequence βk → β0 with R(α, β0) < limk→∞ R(α, βk) =: R1. Denote ε := 1

3 [R1 − R(α, β0)] and
consider uα,β0

at r1 = R(α, β0) − ε. Let

K := max{uα,β0
(r1), u

′
α,β0

(r1),∆uα,β0
(r1), (∆uα,β0

)′(r1)}.

Since we have (complete) blow up of uα,β0
at R(α, β0) we find r2 ∈ (r1, R(α, β0)) such that

min{uα,β0
(r2), u

′
α,β0

(r2),∆uα,β0
(r2), (∆uα,β0

)′(r2)} ≥ K + 2.

By continuous dependence on initial data we find some large enough k0 such that

R(α, βk0
) ≥ R1 − ε

and
min{uα,βk0

(r2), u
′
α,βk0

(r2),∆uα,βk0
(r2), (∆uα,βk0

)′(r2)} ≥ K + 1.

So, r 7→ uα,βk0
(r − r1 + r2) serves as a supersolution for uα,β0

for r ≥ r1, so that by Lemma 2

R(α, β0) ≥ R1 − ε − (r2 − r1) ≥ R1 − 2ε = R(α, β0) + ε > R(α, β0),

a contradiction. Hence, β 7→ R(α, β) is continuous. �

Using a suitable entire supersolution for (1), we may determine a lower bound for the switch between
global solutions and blow-up solutions of (4):

Lemma 5. Let α ∈ R. For all β ≤ −4neα/2, the solution uα,β of (4) is global and lim
r→+∞

uα,β(r) =

−∞.
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Proof. For any a > 0 let ûa(r) := −2 log(a + r2). Then, by direct calculation we find the following
facts:

û′
a(r) = − 4r

a + r2
so that û′

a(0) = 0.

∆ûa(r) = −4(n − 2)

a + r2
− 8a

(a + r2)2
so that ∆ûa(0) = −4n

a
.

(∆ûa)
′(r) =

8a(n + 2)r + 8(n − 2)r3

(a + r2)3
so that (∆ûa)

′(0) = 0.

∆2ûa(r) =
8(n − 2)(n − 4)

(a + r2)2
+

64(n − 4)a

(a + r2)3
+

192a2

(a + r2)4

≥ 8(n − 2)(n − 4)

(a + r2)2
= 8(n − 2)(n − 4) exp (ûa(r)) .

Now let α ∈ R and take β ≤ −4neα/2. Put a = e−α/2 and let ûa be defined as above. Then, we
have: ûa(0) = α = uα,β(0), û′

a(0) = 0 = u′
α,β(0), ∆ûa(0) = −4neα/2 ≥ β = ∆uα,β(0), (∆ûa)

′(0) =
0 = (∆uα,β)′(0). Moreover,

∆2ûa(r) − 8(n − 2)(n − 4) exp (ûa(r)) ≥ 0 = ∆2uα,β(r) − 8(n − 2)(n − 4) exp (uα,β(r)) .

Therefore, Lemma 2 shows that

ûa(r) ≥ uα,β(r) for all r ≥ 0.

Finally, this last inequality combined with Lemma 4 shows that uα,β(r) is global and that uα,β(r)
diverges to −∞ as r → +∞. �

With Lemma 4 and the arguments employed in Section 2 one can show:

Lemma 6. Let uα,β be the solution of the initial value problem (4). Then
Either:

One has u′
α,β(r) > 0 on the whole interval (0, R(α, β)). In this case, the blow-up-radius

is finite: R(α, β) < ∞, and lim
rրR(α,β)

uα,β(r) = +∞.

Or:

There is precisely one R0 ∈ [0, R(α, β)) with u′
α,β(R0) = 0. In this case, u′

α,β(r) < 0 on
(0, R0) and u′

α,β(r) > 0 on (R0, R(α, β)). The blow-up radius is again finite: R(α, β) <
∞, and lim

rրR(α,β)
uα,β = +∞.

Or:

One has u′
α,β(r) < 0 on the interval (0, R(α, β)). In this case R(α, β) = +∞ and

lim
r→∞

uα,β = −∞.

Thanks to Lemmas 4-5-6, we also deduce:

Lemma 7. For any α ∈ R there exists β0 = β0(α), −∞ < β0 < 0, such that

• If β ≥ 0, then the first case in Lemma 6 occurs.
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• If β0 < β < 0, then the second case in Lemma 6 occurs.

• If β ≤ β0, then the third case in Lemma 6 occurs.

Moreover, if β < β0, we can easily specify the “blow-down” behaviour for r → ∞:

Lemma 8. Let α ∈ R be fixed and β0 be as in Theorem 2. Then for β < β0 one has that

∀r ≥ 0 : uα,β(r) ≤ α − β0 − β

2n
r2.

Proof. Denote U(r) := uα,β(r) − uα,β0
(r). Then Lemma 2 shows first that for all r ≥ 0 we have

(∆U)′(r) ≤ 0 and hence that ∆U(r) ≤ ∆U(0) = −(β0 − β). It follows for all r ≥ 0 that

(

rn−1U ′(r)
)′ ≤ −(β0 − β)rn−1, rn−1U ′(r) ≤ −β0 − β

n
rn,

U ′(r) ≤ −β0 − β

n
r, U(r) ≤ −β0 − β

2n
r2,

uα,β(r) ≤ uα,β0
(r) − β0 − β

2n
r2 ≤ α − β0 − β

2n
r2,

thereby proving the claim. �

Statements (i), (iii) and (iv) of Theorem 2 follow directly from Lemmas 7 and 8. In order to
complete the proof of Theorem 2 it remains to prove (ii). This proof requires two quite technical
propositions whose proofs are postponed to Sections 4 and 5. Moreover, for our purposes it will
turn out to be convenient to study the differential equation in (4) in its radial form

d4u

dr4
+

2(n − 1)

r

d3u

dr3
+

(n − 1)(n − 3)

r2

d2u

dr2
− (n − 1)(n − 3)

r3

du

dr
= λeu(r) (16)

and also to perform the change of coordinates

s = log r w(s) := u(es) + 4s s ∈ R ,

so that (16) becomes

d4w

ds4
+ 2(n − 4)

d3w

ds3
+ (n2 − 10n + 20)

d2w

ds2
− 2(n − 2)(n − 4)

dw

ds
= λ

(

ew(s) − 1
)

(17)

which was already mentioned in the introduction as equation (9). The singular solution r 7→ −4 log r
of the differential equation in (4) corresponds to the trivial solution w(s) ≡ 0 of (17). From now on
we assume that the solution u0 = uα,β0

is the separatrix for (4), i.e. belongs to the marginal value
β0. Let w0 be the corresponding solution to (17). Then, to prove that (7) holds, we have to show
that

lim
s→∞

w0(s) = 0. (18)

To this end, we distinguish two possible situations for global solutions w of (17). Either w′ changes
sign infinitely many times or it is ultimately of one sign. In Section 4 we prove

Proposition 1. Let u = uα,β be a radial entire solution to (4) and let w be the corresponding global
solution of (17). We assume that there is a sequence sk ր ∞ satisfying w′(sk) = 0 and on the
intermediate successive intervals, w is increasing or decreasing, respectively. Then

lim
s→∞

w(s) = 0.
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On the other hand, in Section 5 we prove

Proposition 2. Let u = uα,β be a radial entire solution to (4) and let w be the corresponding global
solution of (17) such that w′(s) is ultimately of one sign. Then

either lim
s→∞

w(s) = 0 or lim
s→∞

w(s) = −∞. (19)

If w = w0, then the first case in (19) occurs.

Since w0 is a global solution of (17), Propositions 1 and 2 show that in any case (18) holds. This
completes the proof of (ii) in Theorem 2.

4 Proof of Proposition 1

In order to prove Proposition 1 we follow closely the approach in [GG]. We start with some
integrability properties of the solution:

Lemma 9. Assume that there is a sequence sk ր ∞ such that w′(sk) = 0 and on the intermediate
successive intervals, w is increasing or decreasing, respectively. Then,

(i)

∫ ∞

s1

w′(σ)2 dσ < ∞, (ii)

∫ ∞

s1

w′′(σ)2 dσ < ∞, (iii)

∫ ∞

s1

w′′′(σ)2 dσ < ∞,

(iv)

∫ ∞

s1

w(4)(σ)2 dσ < ∞, (v)

∫ ∞

s1

[

exp(w(σ)) − 1
]2

dσ < ∞.

Proof. In this oscillating case the following energy functional is very helpful:

E(s) :=
1

2
w′′(s)2 − 1

2
(n2 − 10n + 20)w′(s)2 + λ[exp(w(s)) − w(s)].

First, since exp(ω) − ω ≥ 1 for all ω ∈ R, we infer that E(sk) ≥ λ for any k. Hence, with two
integration by parts and recalling (17), we get

−∞ < λ − E(s1) ≤ E(sk) − E(s1) =

∫ sk

s1

E′(σ) dσ

= −
∫ sk

s1

w′(σ)
(

w(4)(σ) + (n2 − 10n + 20)w′′(σ) − λ
[

exp(w(σ)) − 1
]

)

dσ

=

∫ sk

s1

w′(σ)

(

2(n − 4)w′′′(σ) − λ

4
w′(σ)

)

dσ

= −2(n − 4)

∫ sk

s1

w′′(σ)2 dσ − λ

4

∫ sk

s1

w′(σ)2 dσ ≤ 0.

Letting k → ∞ proves (i) and (ii).
From the above computation we also immediately conclude that

E(s1) ≥ E(sk) ≥ λ
[

exp(w(sk)) − w(sk)
]

.

Since limω→±∞ (exp(ω) − ω) = +∞, this proves that there exists K > 0 such that |w(sk)| ≤ K for
all k and hence that

|w(s)| ≤ K for all s ≥ s1. (20)

10



Since w corresponds to the monotonically decreasing solution uα,β, we have

0 ≥ es u′
α,β(es) = w′(s) − 4. (21)

In order to prove (iii), we choose a monotone sequence of flex points (τk)k∈N of w where w is
increasing, i.e.

τk → ∞, 0 ≤ w′(τk) ≤ 4, w′′(τk) = 0, (22)

where we have used (21). We multiply equation (17) by w′′ and integrate over (s1, τk):

∫ τk

s1

(

w(4)(σ) + 2(n − 4)w′′′(σ) + (n2 − 10n + 20)w′′(σ) − 2(n − 2)(n − 4)w′(σ)
)

w′′(σ) dσ

= λ

∫ τk

s1

[

ew(σ) − 1
]

w′′(σ) dσ. (23)

Let us estimate all the terms in (23) as k → ∞. First, with an integration by parts we get

∣

∣

∣

∣

∫ τk

s1

[ew(σ) − 1]w′′(σ) dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

[ew(τk) − 1]w′(τk) −
∫ τk

s1

ew(σ) w′(σ)2 dσ

∣

∣

∣

∣

≤ O(1) (24)

by (20), (22) and (i). Again by (22) we get the two following estimates

∣

∣

∣

∣

∫ τk

s1

w′(σ)w′′(σ) dσ

∣

∣

∣

∣

=
w′(τk)

2

2
≤ 8 (25)

∫ τk

s1

w′′′(σ)w′′(σ) dσ =

[

w′′(σ)2

2

]τk

s1

= −w′′(s1)
2

2
. (26)

Finally, integrating by parts and using once more our choice of τk in (22), we find:

∫ τk

s1

w(4)(σ)w′′(σ) dσ =
[

w′′′(σ)w′′(σ)
]τk

s1

−
∫ τk

s1

w′′′(σ)2 dσ (27)

= −w′′′(s1)w
′′(s1) −

∫ τk

s1

w′′′(σ)2 dσ.

Letting k → ∞, (iii) follows by inserting (i) − (ii) and (24)–(27) into (23).
In view of (20) and (i) − (ii) − (iii) we may find a sequence (σk)k∈N such that

lim
k→∞

σk = ∞, w(σk) = O(1), lim
k→∞

w′(σk) = lim
k→∞

w′′(σk) = lim
k→∞

w′′′(σk) = 0.

We now multiply equation (17) by w(4) and integrate over [s1, σk]:

∫ σk

s1

w(4)(σ)2 dσ = λ

∫ σk

s1

[ew(σ) − 1]w(4)(σ) dσ+ (28)

+

∫ σk

s1

(

2(n − 2)(n − 4)w′(σ) − (n2 − 10n + 20)w′′(σ) − 2(n − 4)w′′′(σ)
)

w(4)(σ) dσ.

11



By arguing as in the proof of (iii), we obtain:

∫ σk

s1

w(4)(σ)w′′′(σ) dσ =

[

w′′′(σ)2

2

]σk

s1

= O(1);

∫ σk

s1

w(4)(σ)w′′(σ) dσ = O(1) −
∫ σk

s1

w′′′(σ)2 dσ = O(1);

∫ σk

s1

w(4)(σ)w′(σ) dσ = o(1) −
∫ σk

s1

w′′′(σ)w′′(σ) dσ = O(1);

∣

∣

∣

∣

∫ σk

s1

[ew(σ) − 1]w(4)(σ) dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

O(1) −
∫ σk

s1

ew(σ)w′′′(σ)w′(σ) dσ

∣

∣

∣

∣

≤ O(1) + C

(
∫ σk

s1

|w′′′(σ)|2 dσ

)
1

2

(
∫ σk

s1

|w′(σ)|2 dσ

)
1

2

≤ O(1).

Inserting all these estimates into (28) proves (iv).
Finally, (v) follows from (i) − (iv) and the differential equation (17). �

By Lemma 9, we can find a sequence (σk)k∈N such that

σk+1 > σk, lim
k→∞

(σk+1 − σk) = 0, lim
k→∞

σk = ∞,

lim
k→∞

(

|ew(σk) − 1| + |w′(σk)| + |w′′(σk)| + |w′′′(σk)| + |w(4)(σk)|
)

= 0. (29)

In order to prove Proposition 1, we assume for contradiction that there exists a subsequence (kℓ)ℓ∈N

with the following properties: for any small enough ε > 0 there exists ℓε such that for all ℓ ≥ ℓε one
has that σkℓ+1 − σkℓ

< ε2 and

|ew(σkℓ
) − 1| + |w′(σkℓ

)| + |w′′(σkℓ
)| + |w′′′(σkℓ

)| + |w(4)(σkℓ
)| < ε, (30)

and moreover that there exists θℓ ∈ (σkℓ
, σkℓ+1) with

∀s ∈ (σkℓ
, θℓ) : |ew(s) − 1| + |w′(s)| + |w′′(s)| + |w′′′(s)| + |w(4)(s)| < 2ε (31)

and
|ew(θℓ) − 1| + |w′(θℓ)| + |w′′(θℓ)| + |w′′′(θℓ)| + |w(4)(θℓ)| = 2ε.

The last equality is ensured because if w(s) 6→ 0, certainly |ew(s) − 1| becomes “large” and possibly
other terms of the above sum may become large. Together with (30) and the triangle inequality,
the last equality shows that

|ew(σkℓ
) − ew(θℓ)| + |w′(σkℓ

) − w′(θℓ)| + |w′′(σkℓ
) − w′′(θℓ)|+

+|w′′′(σkℓ
) − w′′′(θℓ)| + |w(4)(σkℓ

) − w(4)(θℓ)| > ε.

Hence, since θℓ − σkℓ
< ε2, we also have

|ew(σkℓ
) − ew(θℓ)| + |w′(σkℓ

) − w′(θℓ)| + |w′′(σkℓ
) − w′′(θℓ)|

θℓ − σkℓ

+

+
|w′′′(σkℓ

) − w′′′(θℓ)| + |w(4)(σkℓ
) − w(4)(θℓ)|

θℓ − σkℓ

>
1

ε
. (32)
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But then, at least one of the five terms in (32) is larger than 1
5ε so that, by Lagrange’s Theorem,

there exists τℓ ∈ (σkℓ
, θℓ) such that

max{|ew(τℓ)w′(τℓ)|, |w′′(τℓ)|, |w′′′(τℓ)|, |w(4)(τℓ)|, |w(5)(τℓ)|} >
1

5ε
.

By (31) the first four terms are smaller than 2ε, so that (provided ε is sufficiently small) we neces-
sarily have

|w(5)(τℓ)| >
1

5ε
. (33)

By differentiating (17) and evaluating at s = τℓ, we see that

w(5)(τℓ) + 2(n − 4)w(4)(τℓ) + (n2 − 10n + 20)w′′′(τℓ) − 2(n − 2)(n − 4)w′′(τℓ) = λew(τℓ)w′(τℓ).

This, combined with (31) and (33), leads to a contradiction which proves Proposition 1. �

5 Proof of Proposition 2

Let u = uα,β be an entire solution of (4) and w the corresponding solution of (17), where we assume
in this section that w′ is eventually of one sign. Then the map s 7→ w(s) is eventually monotonous
and lims→+∞ w(s) exists. We exclude the possibility of limits different from 0 and −∞. For the
proof of Proposition 2 we have to extend the approach in [GG]; the most delicate part will be to
specify the behaviour of w when w(s) → −∞.

We first prove that it is impossible that lims→∞ w(s) = +∞.

Lemma 10. Assume that w is a global solution of (17) such that w′ is eventually of one sign. Then
it cannot happen that lims→∞ w(s) = +∞.

Proof. Let us choose some p > 1 and keep this fixed in what follows. Assuming that lims→∞ w(s) =
∞, for large enough T ′ one has that

∀s ≥ T ′ : w(4)(s) + 2(n − 4)w′′′(s) + (n2 − 10n + 20)w′′(s) − 2(n − 2)(n − 4)w′(s) ≥ wp(s)

w′′′(T ′) + 2(n − 4)w′′(T ′) + (n2 − 10n + 20)w′(T ′) − 2(n − 2)(n − 4)w(T ′) > 0

Since (17) is autonomous, we may assume that T ′ = 0. Now, we are precisely in the same situation
as in [GG, Proposition 4]. The same application of the Mitidieri-Pohožaev [MP] test function
method as there yields a contradiction. �

Next, we have to exclude that w approaches a finite nontrivial limit.

Lemma 11. Assume that w is a global solution of (17) such that w′ is eventually of one sign. Then
it cannot happen that lims→∞ w(s) = w∞ ∈ R \ {0}.

Proof. For contradiction, assume that lims→∞ w(s) = w∞ ∈ R \ {0}. Then, ew(s) − 1 → α 6= 0 and
for all ε > 0 there exists T > 0 such that

α − ε ≤ w(4)(s) + 2(n − 4)w′′′(s) + (n2 − 10n + 20)w′′(s) − 2(n − 2)(n − 4)w′(s) ≤ α + ε (34)

for all s ≥ T . Take ε < |α| so that α − ε and α + ε have the same sign and let

δ := sup
s≥T

|w(s) − w(T )| < ∞.
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Integrating (34) over [T, s] yields for all s ≥ T that

(α − ε)(s − T ) + C − 2(n − 2)(n − 4)δ ≤ w′′′(s) + 2(n − 4)w′′(s) + (n2 − 10n + 20)w′(s) ≤

≤ (α + ε)(s − T ) + C + 2(n − 2)(n − 4)δ

where C = C(T ) is a constant containing all the terms w(T ), w′(T ), w′′(T ) and w′′′(T ). Repeating
twice more this procedure gives

α − ε

6
(s − T )3 + O(s2) ≤ w′(s) ≤ α + ε

6
(s − T )3 + O(s2) as s → ∞.

This contradicts the assumption that w∞ is finite. �

In order to study the case where lims→+∞ w(s) = −∞, we first prove a calculus result:

Lemma 12. Assume that n ≥ 8 so that n2−10n+20 > 0. Let f ∈ C0(R+, R−) and x ∈ C2(R+, R)
satisfy x′′(t) + 2(n − 4)x′(t) + (n2 − 10n + 20)x(t) = f(t) for t ≥ 0. Then

lim sup
t→+∞

x(t) ≤ 0.

Proof. For the roots of the characteristic equation of this differential equation we have

µ1 = −(n − 4) −
√

2(n − 2) < µ2 = −(n − 4) +
√

2(n − 2) < 0,

since n2 − 10n + 20 > 0. The general solution of the equation considered is

x(s) =

∫ s

0

eµ2(s−τ) − eµ1(s−τ)

µ2 − µ1
f(τ) dτ + c1e

µ1s + c2e
µ2s

with arbitrary c1, c2 ∈ R. Letting s → ∞ proves the claim. �

Assuming that lims→∞ w(s) = −∞ we can now specify the growth of w(s) as s → ∞:

Lemma 13. Assume that w is a global solution of (17) such that lims→∞ w(s) = −∞. Then, there
exists c > 0 such that eventually w(s) ≤ −cs2.

Proof. Since w(s) → −∞, by (17) we may assume that for s large enough

w(4)(s) + 2(n − 4)w′′′(s) + (n2 − 10n + 20)w′′(s) − λ

4
w′(s) ≤ −λ

2
.

Integrating this inequality, we may conclude that for s large enough

w′′′(s) + 2(n − 4)w′′(s) + (n2 − 10n + 20)w′(s) ≤ λ

4
w(s) − λ

4
s ≤ −λ

4
s (35)

and further

w′′(s) + 2(n − 4)w′(s) + (n2 − 10n + 20)w(s) ≤ − λ

16
s2. (36)

If n ≥ 8, then (n2 − 10n + 20) > 0 and the statement is obvious from Lemma 12 and the explicit
solution of (36) with equality instead of “≤”.

If n ∈ {5, 6, 7}, then (n2 − 10n + 20) < 0 and since also w < 0, we conclude from (36) that

w′′(s) + 2(n − 4)w′(s) ≤ − λ

16
s2
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so that eventually

w′(s) + 2(n − 4)w(s) ≤ − λ

96
s3.

A similar but simpler conclusion as in Lemma 12 shows that for s large enough

w(s) ≤ −c s3

with a suitable positive constant c > 0. �

Remark 1. In fact, Lemma 13 can be strengthened. Once it is known that w(s) ≤ −cs2, one
can improve (35) with w′′′(s) + 2(n − 4)w′′(s) + (n2 − 10n + 20)w′(s) ≤ −cs2 and (36) becomes
w′′(s) + 2(n − 4)w′(s) + (n2 − 10n + 20)w(s) ≤ −cs3. Then, the same arguments used in the proof
of Lemma 13 enable us to conclude that w(s) ≤ −cs3. Iterating this procedure, we obtain that
eventually w(s) ≤ −csk for any k > 0.

Below we shall see that for the corresponding solution uα,β of (4) it follows that β < β0 and hence
by Lemma 8 that eventually uα,β(r) ≤ −cr2 and w(s) ≤ −c exp(2s) with positive constants c. �

In terms of the u-variable Lemma 13 means that, with some possibly different constant c, one has
that eventually u(r) ≤ −c (log r)2. In particular,

∀K > 0 ∃RK > 0 ∀r ≥ RK : u(r) ≤ −K log r. (37)

Thanks to (37) we can prove

Lemma 14. Assume that β ≤ β0, that u = uα,β is a global solution to (4) and that w is the
corresponding global solution of (17). We assume further that lims→∞ w(s) = −∞. Then, for β
close enough to β, the solution uα,β to (4) is eventually below −4 log r and hence exists globally.

Proof. For our convenience, we denote u = uα,β. According to (37), for r sufficiently large we have
u(r) ≤ −(n + 1) log r. Hence,

|rn−1 (∆u)′ (r)| ≤ c + λ

∫ r

1
ρn−1 exp(−(n + 1) log ρ) dρ = c + λ

∫ r

1
ρ−2 dρ ≤ c

so that | (∆u)′ (r)| ≤ cr1−n and hence

∆u(r) = r1−n
(

rn−1u′(r)
)′

= c1 + O(r2−n)

rn−1u′(r) =
c1

n
rn + O(r2)

u′(r) =
c1

n
r + O(r3−n)

u(r) = c2 +
c1

2n
r2 + O(r4−n).

Since u(r) ≤ −(n + 1) log r for r large, it is obvious that

c1 < 0.

Let U(r) := −4 log r denote the entire singular solution of the differential equation in (4), then

U ′(r) = −4

r
, ∆U(r) = −4(n − 2)

1

r2
, (∆U)′(r) = 8(n − 2)

1

r3
.
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Hence, for some large enough r0:

U(r0) > u(r0), U ′(r0) > u′(r0), ∆U(r0) > ∆u(r0), (∆U)′(r0) > (∆u)′(r0).

By continuous dependence on initial data, we find that

U(r0) > uα,β(r0), U ′(r0) > u′
α,β(r0), ∆U(r0) > ∆uα,β(r0), (∆U)′(r0) > (∆uα,β)′(r0),

provided that β is close enough to β. By Lemma 2, we infer that uα,β(r) ≤ −4 log r for all r ≥ r0.
So, for β close enough to β we have existence of global solutions to (4). �

By definition of β0, a straightforward consequence of Lemma 14 is the following:

Lemma 15. Assume that uα,β is a global solution of (4) and let w be the corresponding global
solution of (17). We assume further that lims→∞ w(s) = −∞. Then w 6= w0, β < β0.

Proposition 2 follows from Lemmas 10, 11 and 15.

6 Computer assisted proof of the dynamical behaviour

6.1 Technical lemmas

In this subsection we introduce the functional analytic framework. Let R > 0, let HR be the space
of analytic functions in the open disk DR = {z ∈ C : |z| < R} and let XR and YR be the subspaces
of HR with finite norm

‖u‖XR
=

∞
∑

k=0

|uk|Rk and ‖u‖YR
= sup

t∈DR

|u(t)|

respectively, where

u(t) =

∞
∑

k=0

ukt
k (38)

and uk ∈ R. In the sequel of this section we denote by ZR either XR or YR, and by || · || the
respective norm. The following lemma is straighforward:

Lemma 16. The spaces ZR are Banach algebras, i.e. for all u, v ∈ ZR we have uv ∈ ZR and
||uv||ZR

≤ ||u||ZR
||v||ZR

.

Remark 2. Lemma 16 implies that ||um||ZR
≤ ||u||mZR

for all m ∈ N and ||eu||ZR
≤ e||u||ZR .

The derivative operator DR : ZR → HR is unbounded, but if we choose R′ < R we may define
DR,R′ : ZR → ZR′ and we have the following

Lemma 17. ||DR,R′ || ≤ CR,R′ , where CR,R′ =
(

eR′ log R
R′

)−1
when ZR = XR and CR,R′ = (R −

R′)−1 when ZR = YR.

Proof. For all u ∈ XR we have

||Du||X
R′

=

∞
∑

k=1

k|uk|R′k−1 ≤ CR,R′

∞
∑

k=1

|uk|Rk ≤ CR,R′ ||u||XR
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with CR,R′ given above, because k(R′)k−1 ≤ CRk is equivalent to k (R′/R)k ≤ CR′ and we have

maxk k (R′/R)k =
(

e log R
R′

)−1
.

For all u ∈ YR we have

∥

∥u′
∥

∥

Y
R′

= sup
t∈D

R′

|u′(t)| = sup
t∈D

R′

∣

∣

∣

∣

1

2πi

∫

γ

u(ξ)

(ξ − t)2
dξ

∣

∣

∣

∣

≤ ||u||YR

(R − R′)
,

where γ = γ(ϑ) = t + (R − R′)eiϑ, ϑ ∈ [0, 2π].

Since we want the computer to handle functions in ZR, we need to represent such functions by
using only a finite set of representable numbers (see [AKT] for a discussion on the topic). Our
choice is to write functions in ZR as follows:

u(t) =
N−1
∑

k=0

ukt
k + tNEu(t) , (39)

where Eu ∈ ZR. We choose to store the N (real) coefficients {uk} and a bound for the norm of Eu;
more precisely, we store 2N + 1 representable numbers. N pairs represent lower and upper bounds
for the value of the coefficients, while the last number is an upper bound of the norm of Eu.

Lemma 18. Let 0 < R′ < R. If u ∈ ZR is represented as in (39), then u′ ∈ ZR is represented as

u′(t) =
N−1
∑

k=0

vkt
k + tNEv(t) ,

where vk = (k+1)uk+1 for k = 0, . . . , N−2, vN−1 = [−N ||Eu||,N ||Eu||], ||Ev ||XR
≤ ||Eu||XR

(N/R+
CR,R′) and ||Ev||YR

≤ ||Eu||YR
(2N/R + CR,R′).

Proof. By differentiating (39) we have

u′(t) =

N−1
∑

k=1

kukt
k−1 + NtN−1Eu(t) + tNE′

u(t) ; (40)

The representation for u′ follows, when keeping into account that Eu(t) = uN +tE1(t), |uN | ≤ ||Eu||
and ||E1|| ≤ ||Eu||/R. The last two statements are trivial if u ∈ XR. If u ∈ YR then |uN | ≤ 2||Eu||YR

follows by Cauchy’s representation formula, while ||E1||YR
≤ ||Eu||YR

/R follows from the maximum
modulus principle, which states that

max
t∈D

R′

|E1(t)| =
∣

∣

∣
E1(R

′eiϑ)
∣

∣

∣
≤ 1

R′
max
t∈D

R′

|tE1(t)|

for all R′ < R. The estimate follows because

max
t∈D

R′

|tE1(t)| ≤ max
t∈D

R′

|Eu(t) − uN | ≤ ||Eu|| + |uN | ≤ 2||Eu|| .

17



6.2 Algorithm for solving the equation

In this subsection we describe the algorithm used to study the solution of the equation (16), which
we recall for convenience

u(4)(t) +
2(n − 1)

t
u′′′(t) +

(n − 1)(n − 3)

t2
u′′(t) − (n − 1)(n − 3)

t3
u′(t) = λeu(t) (41)

with initial conditions u(0) = 1, u′′(0) = β and u′(0) = u′′′(0) = 0. As a first step, we wish to have
a rigorous estimate of the solution and its derivatives at a given time t ∈ [0, T ], where T > 0 is as
large as possible. Fix R > 0 and let

X̃R = {u ∈ XR : u(0) = 1, u′′(0) = β} .

Let L : X̃R → HR be defined by

(Lu)(t) = u(4)(t) +
2(n − 1)

t
u′′′(t) +

(n − 1)(n − 3)

t2
u′′(t) − (n − 1)(n − 3)

t3
u′(t)

and f : X̃R → XR be defined by
f(u) = λeu . (42)

Lemma 19. The operator L is invertible and solutions of equation (41) with the assigned initial
conditions correspond to fixed points of the operator F = (L−1f) : X̃R → X̃R.

Proof. It follows directly from the definitions of L and f .

If u ∈ X̃R is given as in (38), then

(Lu)(t) =
∞
∑

k=0

C(k, n)uk+4t
k

with
C(k, n) = (k + 4)(k + 2)

[

(k + 3)(k + 1) + 2(n − 1)(k + 3) + (n − 1)(n − 3)
]

and therefore
(

L−1u
)

(t) = 1 +
β

2
t2 +

∞
∑

k=4

uk−4t
k

C(k − 4, n)
. (43)

Lemma 20. Let BK = {u ∈ XR , ||u||XR
≤ K}. The Lipschitz constant of the function F restricted

to BK is at most λeKR4

C(0,n) .

Proof. From (42) and Lemma 16 it follows that the Lipschitz constant of f restricted to BK is λeK .
By (43) we have

(L−1u − L−1v)(t) =

∞
∑

k=4

(uk−4 − vk−4)t
k

C(k − 4, n)
,

therefore the Lipschitz constant of L−1 is bounded by R4

C(0,n) .

Assume that we have an approximate solution ū(t) =
∑N−1

k=0 ūkt
k, where {ūk} are interval values

satisfying 1 ∈ ū0 and β/2 ∈ ū2. The following lemma (the proof is straightforward, but see [AKT]
for a discussion) yields a true solution close to ū:
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Lemma 21. Let ū ∈ ZR, C : ZR → ZR and ε, ρ > 0. If ||C(ū) − ū||ZR
< ε and the restriction of

C to the ball B(ū, ρ) has Lipschitz constant L(C) ≤ 1 − ε/ρ, then there exists a fixed point of C in
B(ū, ρ).

By applying Lemmas 17 and 18 we can now rigorously compute u(t) and its derivatives for all
t ∈ [0, T ], where 0 < T < R.

We remark that, independently of the accuracy of the computations and of the order N , it is
clear that we cannot use this approach for computing the solution at values of T larger than the
(unknown) radius of analyticity of the solution of the problem. Nonetheless, since we know the
solution at some positive time T , we can reiterate the procedure by computing the power expansion
centered at t = T . This is not very convenient from the numerical point of view, since we would
have to compute the power expansion at t = T of the functions t−1, t−2 and t−3. It is more
convenient to make use of the change of variables which we employed to deduce (17). Like there,
let w(s) = u(es) + 4s, so that, if u solves (41), then w satisfies the autonomous equation

w(4)(s) + 2(n − 4)w′′′(s) + (n2 − 10n + 20)w′′(s) − 2(n − 2)(n − 4)w′(s) = λ(ew(s) − 1) , (44)

for which we may always assume that an initial value problem is set at s = 0. Given the initial
conditions (w(0), w′(0), w′′(0), w′′′(0)) = (w0, w1,w2, w3), we wish to compute a (w,w′, w′′, w′′′)(s),
where s ∈ [0, S] and S > 0. To this purpose we set

X̂R = {w ∈ XR : (w(0), w′(0), w′′(0), w′′′(0)) = (w0, w1,w2, w3)} .

Let L : X̂R → HR be the (unique) inverse of the fourth derivative and let f : X̂R → XR be defined
by f(w) = f1(w) + f2(w), where

f1(w) = −2(n − 4)w′′′ − (n2 − 10n + 20)w′′ + 2(n − 2)(n − 4)w′

and
f2(w) = λ (ew − 1) .

The operator L is invertible, therefore solutions of equation (44) with the assigned initial conditions
correspond to fixed points of the map G = (L−1f) : X̂R → X̂R. If u ∈ X̂R is given as in (38), then

(Lu)(t) =
∞
∑

k=0

(k + 1)(k + 2)(k + 3)(k + 4)uk+4t
k

and therefore

(

L−1u
)

(t) = w0 + w1t +
w2

2!
t2 +

w3

3!
t3 +

∞
∑

k=4

uk−4t
k

k(k − 1)(k − 2)(k − 3)
.

Lemma 22. The Lipschitz constant of the function G restricted to BK is at most

2(n − 4)R + |n2 − 10n + 20|R2/2 + (n − 2)(n − 4)R3/3 +
λR4

24

(

eK + 1
)

.

Proof. A simple computation shows that the Lipschitz constant of the inverse of the k-th derivative
in X̂R is Rk

k! while the Lipschitz constant of f2 in BK is λ
(

eK + 1
)

.
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6.3 Rigorous bounds for the manifolds

We focus on the case n = 5. We write (44) as the first order system

ẋ = Ax + N(x), (45)

where x = (w,w′, w′′, w′′′), N(x) = (0, 0, 0, 24(ex1 − 1 − x1)) and

A =

















0 1 0 0

0 0 1 0

0 0 0 1

24 6 5 −2

















.

The characteristic polynomial of A is P (λ) = λ4 + 2λ3 − 5λ2 − 6λ − 24, the eigenvalues are λk =

1
2

(

−1 + ik
√

(−1)k13 + 4
√

33

)

, k = 0, 1, 2, 3, therefore λ0 ∈ R, λ0 > 0, while Reλk < 0 when

k = 1, 2, 3. Let ϕ(x, t) be the flow induced by equation (45). We recall (see [GH] for an exhaustive
treatment of the subject) that the set of points x ∈ R

4 such that ϕ(x, t) → 0 as t → +∞ (resp.
t → −∞) is called the stable manifold (resp. the unstable manifold). Such manifolds are tangent
at the origin to the stable (unstable) manifold of the linearized equation ẋ = Ax, which, due to the
sign of the real part of the eigenvalues, have dimensions 3 and 1 respectively. Let {ej}j=0,...,3 be the
eigenvectors of A. Since λ1 and λ3 are complex conjugate, let µ0 = λ0, µ1 = Reλ1 = −1

2 , µ2 = λ2

and µ3 = Imλ1. Correspondingly, let v0 = e0, v1 = Re(e1), v2 = e2, and v3 = Im(e1), and to fix
a scale, assume that the Euclidean norm of vj is 1 for all j. Introduce a scalar product (·, ·) such
that {vj}j=0,...,3 is orthonormal and let || · || be the induced norm. Let P,Q : R

4 → R
4 be defined

by Px = (x, e0)e0 and Qx = x − Px.

Lemma 23. Let x =
∑3

j=0 αjvj. Then (Ax,Px) = λ0α
2
0 and (Ax,Qx) = λ2α

2
2 + µ1

(

α2
1 + α2

3

)

.

Proof. Since Av1 = µ1v1−µ3v3 and Av3 = µ1v3+µ3v1, the statement follows by a direct computation
and the orthogonality of {vj}j=0,...,3.

The following lemmas provide a general criterion to establish the location of the stable manifold.
Given r > 0 and c ∈ (0, 1) let B(r) = {x ∈ R

4 : ||x|| ≤ r},

Π±
r,c = {x ∈ B(r) : (x, e0) = ±c||x||} and Ξr,c = {x ∈ B(r) : (x, Px) ≤ c2||x||2} .

The sets Π±
r,c are the intersections of a cone with the ball B(r), Π+

r,c ∩ Π−
r,c = {0} and the sets Π±

r,c

split the ball B(r) in three regions. The set Ξr,c is the region between the two sides of the cone.
We prove that, if r and c are chosen appropriately, then the intersection of the stable manifold with
B(r) lies in Ξr,c.

Lemma 24. Let r, ε > 0 and c ∈ (0, 1). If

• (Ax + N(x), Px) ≥ ε||x||2 for all x ∈ B(r) \ Ξr,c

• (Ax + N(x), Qx) ≤ −ε||x||2 for all x ∈ Ξr,c

then, for all paths γ : [−1, 1] → B(r) such that γ(±1) ∈ Π±
r,c, there exists τ ∈ (−1, 1) such that γ(τ)

belongs to the stable manifold of 0.
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Proof. The assumptions imply that the flow generated by equation (45) can leave Ξr,c only through
Π±

r,c. Choose a path γ satisfying the assumptions. After possibly passing to a suitable subinterval
and relabelling, we may assume that γ(τ) ∈ Ξr,c for all τ ∈ [0, 1]. Let T± be the sets of τ ’s such that
the flow starting at γ(τ) eventually crosses the set Π+

r,c or Π−
r,c. By continuity, T+ contains a left

neighbourhood of 1 and it is open in [−1, 1] and similarly T− contains a right neighbourhood of −1
and it is open in [−1, 1]. It follows that there exists at least a value τ such that ϕ(γ(τ), t) ∈ Ξr,c for all
t ≥ 0. The assumption (Ax + N(x), Qx) ≤ −ε||x||2 for all x ∈ Ξr,c implies that ||Qϕ(γ(τ), t)|| → 0.
Since x ∈ Ξr,c implies (1 − c2)||x|| ≤ (x,Qx), then ϕ(γ(τ), t) → 0.

Lemma 25. If r = 0.45, c = 0.37 and ε = 0.13, then the assumptions of Lemma 24 hold.

Proof. Let x =
∑3

j=0 αjvj and note that |x1| =
∣

∣

∣

∑3
j=0 αj(vj)1

∣

∣

∣
≤ ||x||

√

∑3
j=0(vj)21 = C1||x||,

therefore
||N(x)|| ≤ 24(ex1 − 1 − x1) ≤ 12e|x1|x2

1 ≤ 12C2
1eC1||x||||x||2 .

If |(x, Px)| ≥ c2||x||2, then

(Ax + N(x), Px) ≥ λ0α
2
0 − 12C2

1eC1||x||||x||3 ≥ ||x||2
(

c2λ0 − 12C2
1eC1rr

)

.

Analogously, if |(x, Px)| ≤ c2||x||2, then |(x,Qx)| ≥ (1 − c2)||x||2 and

(Ax + N(x), Qx) ≤ λ2α
2
2 + µ1

(

α2
1 + α2

3

)

+ 12C2
1eC1||x||||x||3

≤ ||x||2
(

(1 − c2)λ2 + 12C2
1eC1rr

)

.

The explicit computations of C1, c2λ0 − 12C2
1eC1rr and (1 − c2)λ2 + 12C2

1eC1rr are performed by
the computer program, see [Files].

Lemma 26. Let r = 0.45, c = 0.37. The solutions u1, u2 of equation (41) with initial second
derivative β1 = −2.5173682746 and β2 = −2.51736827425 intersect the sets Π+

r,c and Π−
r,c respectively

in the w–coordinates. Furthermore, all solutions of equation (41) with initial second derivative
β ∈ [β1, β2] intersect the set B(r) in the w–coordinates.

Proof. The proof is obtained with computer assistance. We choose N = 150. As a first step, the
coefficients uk of the Taylor expansion of the solution centered at 0 are computed recursively, using
interval arithmetics. Then the assumptions of Lemma 21 are checked with computer assistance for
suitable values of R, ρ and ε. The values of the solution and the first three derivatives at t = 1 are
computed. At this point a change of variable as described above is performed, and the algorithm
for the solution w(s) is applied repeatedly until the solution intersects the sets as described in the
statement of the lemma. This requires the computation of the solution for 1002 interval values of
β. More precisely, the solution is computed for β = β1 and β = β2, then the interval [β1, β2] is
partitioned into 1000 equal parts and for all such values of β the equation is solved and it is checked
that the solution intersects the set B(r). See [Files] for the details of the proof.

Theorem 3 follows by Lemmas 24 and 26.
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