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Abstract

We prove existence and uniqueness of the gradient flow of the Entropy func-
tional under the only assumption that the functional is λ-geodesically convex
for some λ ∈ R. Also, we prove a general stability result for gradient flows of
geodesically convex functionals which Γ−converge to some limit functional. The
stability result applies directly to the case of the Entropy functionals on compact
spaces.

1 Introduction

In [12] and [9] Sturm and Lott-Villani proposed a definition of bound from below of
the Ricci curvature of metric-measure spaces, i.e. for metric spaces equipped with a
reference positive measure. The main features of their approach are:
Compatibility. If the metric-measure space is a Riemannian manifold equipped with
the volume measure, then the bound provided by the abstract definition coincides with
the lower bound on the Ricci curvature of the manifold.
Intrinsicness. The definition is based on intrinsic properties of the space and it does
not refer to extrinsic properties (e.g. approximability by smoother spaces).
Stability. Curvature bounds are stable w.r.t. the natural passage to the limit of the
objects used to define them (in this case, measured-Gromov-Hausdorff convergence).
Interest. From a bound on the Ricci curvature they can derive geometrical and
analytical consequences on the space itself.

In this setting, a natural - rather general - question is: which properties/constructions
valid for Riemannian manifolds with a uniform bound from below on the Ricci curva-
ture can be generalized to general metric measure spaces satisfying a curvature bound?

Among others, a pretty basic one (also recently posed in Villani’s monograph [14])
concerns the Heat flow: indeed, we know that on a Riemannian manifold we can define
a mass-preserving Heat flow if and only if the Ricci curvature is uniformly bounded
from below.

Let us recall the basic facts of the theory. The weak lower bound on Ricci curvature
for metric measure spaces (X, d,m) proposed by Sturm and Lott-Villani is: the Ricci
curvature is bounded from below by λ provided the Entropy functional relative to
the reference measure m is λ-geodesically convex on the space (P2(X),W2) (they also
propose a definition of weak curvature bound plus bound from above on the dimension
of the space, but this is outside the analysis of this paper).
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Also, on a Riemannian manifold with Ricci curvature bounded from below, the
Heat flow is given by the (unique) curve of maximal slope of the Entropy functional
relative to the volume measure.

Therefore it is quite natural to define the Heat flow on a metric-measure space
satisfying a weak Ricci curvature bound as the curve of maximal slope of the Entropy
relative to the reference measure. However, this definition arises a problem: neither
existence, nor uniqueness of these curves are ensured in general.

Let us recall what the general theory of curves of maximal slope - as developed in
[1] - provides concerning existence and uniqueness for λ-geodesically convex and lower
semicontinuous functionals under additional technical assumptions:
Existence. Existence is guaranteed provided the functional is finite for the initial
datum and the metric space is locally compact. Nothing in general is known without
this assumption. This means that if we want to apply this result to the Entropy
functional on (P2(X),W2), we need to assume X to be compact, because otherwise
P2(X) is not locally compact.
Uniqueness. At this level of generality, nothing is known. This is not particularly
surprising if one observes that in R2 endowed with the sup-norm the functional (x, y) 7→
x is convex and has uncountably many curves of maximal slope for any given initial
datum. Clearly this is a limit example, because neither the norm nor the functional
are strictly convex. But, at least this shows that uniqueness is problematic at a very
general level.

The aim of this paper is twofold. On one side we show that for the case of the
Entropy functional the λ-geodesic convexity hypothesis is enough to ensure uniqueness
and - for boundedly compact spaces - existence, as soon as the initial datum has finite
Entropy. On the other side, we prove a general stability result - valid in a compact
setting - which roughly said ensures that Gromov-Hausdorff convergence of metric
spaces and Γ-convergence of λ-geodesically convex functionals imply convergence of
the corresponding curves of maximal slope.

Existence and uniqueness are based on a property of the slope of the Entropy
which we believe of an independent interest: its square is convex w.r.t. (usual) linear
combination of measures. We think that this is an interesting link between geodesic
convexity in P2(X) and linear convexity: indeed, from the only assumption that
Entropy is λ-geodesically convex for some λ we can deduce that the squared slope is
convex w.r.t. linear interpolation. Once this convexity is proven, uniqueness follows
by a 1-line argument (see the proof of Theorem 15). Also, once we have convexity, it
is mainly a technical difficulty to prove that there is weak lower semicontinuity, and
once the latter is proven, existence for the boundedly compact case follows with the
techniques described in [1] (see the proof of Theorem 17).

Finally, we collect some problems concerning the Heat flow which remain open:
General initial datum. All our results require the initial datum to have finite En-
tropy. What can be said for general ones, e.g. Delta’s?
Stability for the locally compact case. The stability result that we proved ap-
plies to λ-geodesically convex functionals on compact spaces. Can this be generalized?
A variant of Theorem 21 valid for boundedly compact spaces is not hard to obtain,
but since if (X, d) is boundedly compact, (P2(X),W2) is not boundedly compact
anymore, such generalization cannot be applied to the study of the Entropy on non
compact spaces.
Non normalized spaces. Among the results proven here, which ones can be gener-
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alized to σ-finite metric-measure spaces?
Heat flow as GF of the Dirichlet energy. In [13] Sturm and Ohta proved that in
a Finsler manifold the gradient flow of the Entropy w.r.t. W2 and the gradient flow
of the Dirichlet energy w.r.t. L2(m) coincide. The fact that these two approaches
coincide on such a rather general case, raises the question on whether the same can be
proven in abstract or not. Observe that here it is part of the problem the definition
of the Dirichlet energy itself.
Heat equation. Is there any ‘PDE’ solved by the Heat flow in this generality? This
is of course a very loose question, as before even trying to write down an equation we
should understand better the structure of spaces with bounds from below on the Ricci
curvature. In particular, a first step should be the proof of existence of the tangent
space.

I would like to thank Giuseppe Savaré for an important contribution he gave to the
development of this paper. Specifically, while I was trying to prove the convexity of the
squared slope via Propositions 11, 12 and 13, Savaré showed me some calculations,
still unpublished. It turned out that his calculations are closely related to part 1 of
Proposition 11, and only after having spoken with him I became convinced of the validity
of the proposition.
I also thank Luigi Ambrosio and Alessio Figalli for useful comments on a preliminary
version of this paper.

2 Preliminaries

All the metric spaces (X, d) we will consider are complete, separable and geodesic.
We assume the reader to be familiar with the definition of the space (P2(X),W2),

which is complete, separable and geodesic as well, due to our assumptionS on the base
space. We will denote the cost of a plan γ by C(γ):

C(γ) :=
∫
d2(x, y)dγ(x, y).

Given two measures µ, ν ∈P2(X) the set of admissible plans from µ to ν is denoted
by Adm(µ, ν), i.e. γ ∈ Adm(µ, ν) if and only if π1

#γ = µ and π2
#γ = ν. The set

of optimal plans Opt(µ, ν) ⊂ Adm(µ, ν) is the set of those plans with minimal cost
among those in Adm(µ, ν), i.e. γ ∈ Opt(µ, ν) if and only if C(γ) = W 2

2 (µ, ν).
A functional E : X → R∪{+∞} is said to be λ-geodesically convex (in the literature

sometimes also called weakly λ-geodesically convex) provided for any x, y ∈ X there
exists a constant speed geodesic t 7→ γ(t) ∈ X such that γ(0) = x, γ(1) = y and

E(γ(t)) ≤ (1− t)E(γ(0)) + tE(γ(1))− λ

2
d2(x, y), ∀t ∈ [0, 1].

The slope of a functional E : X → R∪{+∞} is the map |∇E| : {E <∞} → R∪{+∞}
defined as

|∇E|(x) := lim
y→x

(
E(x)− E(y)

)+
d(x, y)

.

If E is λ-geodesically convex the slope admits the representation

|∇E|(x) := sup
y 6=x

(
E(x)− E(y)

d(x, y)
− λ−

2
d(x, y)

)+

,
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(this formula is just a small variant of equation 2.4.14 of [1]), where λ− := max{0,−λ}.
If E is λ-geodesically convex and lower semicontinuous, the slope is a strong up-

per gradient (in the terminology of [1]). This means that for any locally absolutely
continuous curve (0,+∞) 3 t 7→ x(t) ∈ X it holds

|E(x(s))− E(x(t))| ≤
∫ s

t

|ẋ(r)||∇E|(x(r))dr, 0 < t ≤ s

where |ẋ(t)| is the metric derivative of t 7→ x(t). From the above inequality it follows
that for any locally absolutely continuous curve (0,+∞) 3 t 7→ x(t) ∈ X such that
E(x(t)) <∞ for t > 0 it holds

E(x(t)) ≤ E(x(s)) +
1
2

∫ s

t

|ẋ(r)|2dr +
1
2

∫ s

t

|∇E|2(x(r))dr 0 < t ≤ s. (1)

A curve (0,+∞) 3 t 7→ x(t) ∈ X is called of maximal slope for E starting from x
provided E(x(t)) <∞ for t > 0, x(t)→ x as t→ 0 and the opposite inequality holds:

E(x(t)) ≥ E(x(s)) +
1
2

∫ s

t

|ẋ(r)|2dr +
1
2

∫ s

t

|∇E|2(x(r))dr 0 < t ≤ s, (2)

or, which is the same, if equality holds. If E(x) < ∞ then the above (in)equality is
required to hold also for t = 0.

A metric space (X, d) equipped with a reference Borel probability measure m ∈
P(X) is called normalized metric measure space.

On a normalized metric measure space (X, d,m), the Entropy functional Entm (·) :
P(X)→ R ∪ {+∞} is defined as:

Entm (µ) :=


∫
e(ρ(x))dm(x) if µ = ρm,

+∞ otherwise,

where e : [0,+∞)→ [0,+∞) is given by

e(z) := z log z.

In the sequel, we will often use the fact that densities in the sublevels of the Entropy
are equi-integrable. This is a well known consequence of inequality∫

e(ρ)dm + 1 ≥
∫
A

e(ρ)dm = m(A)
(

1
m(A)

∫
A

e(ρ)dm
)
≥ m(A)e

(∫
A
ρdm

m(A)

)
,

and the superlinearity of e.
Throughout the whole paper we will assume that the normalized metric measure

spaces we are dealing with satisfy the following:

Assumption 1 (Bound on the Ricci curvature) The space (X, d,m) is such that
the Entropy functional is λ-geodesically convex on (P2(X),W2) for some λ ∈ R.

We pass now to the description of convergence of metric spaces and metric measure
spaces.
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The distortion of a map f from a metric space (X, d) to a metric space (X ′, d′) is
defined as

Dis(f) := sup
x,y∈X

∣∣d(x, y)− d′(f(x), f(y))
∣∣.

A map between two metric spaces (X, d) and (X ′, d′) is called ε-isometry provided:

Dis(f) ≤ ε, sup
x′∈X′

d(x′, f(X)) ≤ ε.

Definition 2 (Gromov-Hausdorff convergence) Let (Xn, dn), n ∈ N, and (X, d)
be compact metric spaces. We say that the sequence (Xn, dn) converges to (X, d) in
the Gromov-Hausdorff sense if for every n there is a map fn : X → Xn which is an
εn-isometry, with εn → 0 as n→∞.

A sequence of εn-isometries with εn → 0 is called a sequence of approximate isome-
tries. Recall that for any such sequence there exists a sequence of approximate inverses,
i.e. maps gn : Xn → X such that

sup
x∈X

d
(
x, gn(fn(x))

)
→ 0, sup

xn∈Xn
dn
(
xn, fn(gn(xn))

)
→ 0,

as n→∞. It is immediate to verify that for any choice of such gn’s it holds

Dis(gn)→ 0, sup
x∈X

d(x, gn(Xn))→ 0,

as n→∞.
Two sequences of approximate isometries (fn), (f ′n) are said equivalent provided

sup
x∈X

dn
(
fn(x), f ′n(x)

)
→ 0

as n→∞. Similarly for sequences of approximate inverses (gn), (g′n). It is immediate
to verify that being approximate inverses is a statement which depends only on the
equivalence class of the approximate isometries, i.e. (gn) is a sequence of approximate
inverses of (fn) if and only if (g′n) is a sequence of approximate inverses of (f ′n) whenever
(f ′n) and (g′n) are equivalent to (fn) and (gn) respectively.

Definition 3 (Convergence of points) Let (Xn, dn), n ∈ N, (X, d) be compact
metric spaces, fn : X → Xn approximate isometries and gn : Xn → X be approx-
imate inverses of the fn’s. We say that n 7→ xn ∈ Xn converges to x ∈ X via (fn)
provided gn(xn) converges to x in (X, d).

It is immediate to verify that this notion of convergence depends only on the equiva-
lence class of the approximate isometries.

Definition 4 (De Giorgi’s Γ−convergence of functionals) Let (Xn, dn), n ∈ N,
be compact metric spaces which converge to the space (X, d) in the GH topology. Let
(fn) be a family of approximate isometries ensuring the GH convergence of Xn to X,
as in the definition above. Also, let En : Xn → R∪{±∞}, E : X → R∪{±∞} be given
functionals. We say that the sequence n 7→ En Γ−converges to E via the approximate
isometries fn if En ◦ fn : X → R ∪ {±∞} Γ−converges to E .
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Using the above definition of convergence of points, the one of Γ-convergence may
be written in the more familiar way (see [3]) as follows: En is Γ-converging to E if

inf
(xn)

lim
n→∞

En(xn) ≥ E (x),

inf
(xn)

lim
n→∞

En(xn) ≤ E (x),

where the infima are taken among all sequences n 7→ xn ∈ Xn converging to x via
(fn).

Remark 5 (Importance of the chosen approximate isometries) It is important
to explicitly refer to some chosen approximate isometries when defining Γ−convergence:
it is needed to avoid self isometries of the limit space. In other words, we need to know
which sequences n 7→ xn ∈ Xn are converging to some limit x ∈ X and to identify the
limit.

To be more explicit, consider the case Xn ≡ X where X is a space admitting an
isometry I : X → X different from the identity. Now let E : X → R be a lower
semicontinuous functional satisfying E 6= E ◦ I and let En = E for every n. In this
situation we would like to say that the sequence of functionals (En) Γ−converges to
E . However, it is unclear whether this is the case or not if we don’t fix a sequence of
approximate isometries: for instance, if we take as isometry from X to Xn the map I,
in general we won’t have that E ◦ I Γ−converges to E .

Still, observe that the definition of Γ-limit depends only on the equivalence class of
approximate isometries chosen.

Definition 6 (Measured Gromov-Hausdorff convergence) Let (Xn, dn,mn), n ∈ N,
(X, d,m) be normalized compact metric measure spaces. We say that (Xn, dn,mn) con-
verge to (X, d,m) in the measured Gromov-Hausdorff topology (MGH in the following)
if (Xn, dn) is converging to (X, d) in the GH sense and there exist approximate isome-
tries fn : X → Xn with approximate inverses gn : Xn → X such that (gn)#mn weakly
converge to m as n→∞.

In the above definition and in the rest of the work, weak convergence of measures
stands for convergence tested against continuous and bounded functions. For more
details on the Measured-Gromov-Hausdorff convergence, see [7] and [6]. In [9] the
definition was used in order to study the stability properties of Ricci curvature bounds,
while in [12] the approach is slightly different.

3 Existence and uniqueness

3.1 γ-variation of the Entropy

Let Pac
2 (X) ⊂P2(X) be the set of measures absolutely continuous w.r.t. m ∈P(X).

Definition 7 (‘Good plans’) The set GP ⊂P(X2) is the set of plans γ such that:

i) π1
#γ, π2

#γ are absolutely continuous with density uniformly bounded away from
0 and ∞,

ii) sup
(x,y)∈Supp(γ)

d(x, y) <∞.
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Given γ ∈ GP and µ = fm ∈Pac
2 (X), we define the plan γµ ∈P(X2) as:

dγµ(x, y) :=
dµ(x)

dπ1
#γ(x)

dγ(x, y),

and the measure νγ,µ as νγ,µ := π2
#γµ. Observe that since γµ � γ, we have νγ,µ �

π2
#γ � m. We will denote the density of νγ,µ with gγ,f .

Notice that from (ii) of the definition of GP we have that the cost of a plan γ ∈ GP
is always finite (even if γ /∈ P2(X2)) and that µ ∈ P2(X) implies νγ,µ ∈ P2(X) as
well.

Letting π1
#γ = fm and π2

#γ = gm, the function gγ,f is given by

gγ,f (y) = g(y)
∫
f(x)
f(x)

dγy(x),

where {γy} is the disintegration of γ w.r.t. its second marginal.
It is not part of the definition of GP the requirement that the plans are optimal.

Still, observe that if an optimal plan γ belongs to GP, then γµ is optimal as well
(because Supp(γµ) ⊂ Supp(γ)).

Lemma 8 Let γ ∈ GP and µ ∈Pac
2 (X) such that Entm (µ) <∞. Then Entm (νγ,µ) <

∞.

Proof Let π1
#γ = fm and π2

#γ = gm. We have

Entm (νγ,µ) =
∫
e(gγ,f (y))dm(y) =

∫
e

(
g(y)

∫
f(x)
f(x)

dγy(x)
)
dm(y)

=
∫
e(g(y))

∫
f(x)
f(x)

dγy(x)dm(y) +
∫
g(y)e

(∫
f(x)
f(x)

dγy(x)
)
dm(y)

≤
e
(

supy g(y)
)

infy g(y)

∫
g(y)

∫
f(x)
f(x)

dγy(x)dm(y)

+
∫
g(y)

∫
e

(
f(x)
f(x)

)
dγy(x)dm(y).

(3)

Now observe that for any positive Borel function h : X → R ∪ {+∞} it holds∫
g(y)

∫
h(x)
f(x)

dγy(x)dm(y) =
∫
h(x)
f(x)

dγ(x, y)

=
∫
h(x)
f(x)

dπ1
#γ(x) =

∫
h(x)dm(x),

(4)

so that from (3) we have

Entm
(
νγ,µ

)
≤
e
(

supy g(y)
)

infy g(y)
+
∫
e

(
f(x)
f(x)

)
f(x)dm(x),

and the conclusion follows from the fact that f is bounded away from 0 and ∞. �
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Lemma 9 (Continuity) Fix γ ∈ GP. The maps µ 7→ γµ, µ 7→ νγ,µ are continuous
on Pac

2 (X) w.r.t. the weak convergence on the sublevels of the Entropy.

Proof It is sufficient to prove that µ 7→ γµ is continuous w.r.t. the weak convergence
on the sublevels of the Entropy, as then the result follows by the continuity of the
projection.

Choose a sequence n 7→ µn = fnm weakly converging to µ = fm in P(X) and
assume that supn Entm (µn) < ∞. Then we know that the sequence (fn) is equi-
integrable. Therefore (fn) converges to f in duality with L∞ functions (and not just
with continuous and bounded ones).

Now fix ϕ ∈ Cb(X2). We need to show that∫
ϕ(x, y)

fn(x)
f(x)

dγ(x, y)→
∫
ϕ(x, y)

f(x)
f(x)

dγ(x, y),

as n goes to infinity, where f is the density of π1
#γ. Observe that∫

ϕ(x, y)
fn(x)
f(x)

dγ(x, y) =
∫ (∫

ϕ(x, y)dγx(y)
)
fn(x)dm(x).

Define h(x) :=
∫
ϕ(x, y)dγx(y) and observe that sup |h| ≤ sup |ϕ| to conclude. �

Lemma 10 (Approximability in Entropy and distance) Let µ, ν ∈Pac
2 (X). Then

there exists a sequence (γn) ⊂ GP such that Entm (νγn,µ) → Entm (ν) and C(γn) →
W 2

2 (µ, ν) as n→∞.

Proof Let µ = fm, ν = gm and find νn = gnm such that W2(νn, ν)→ 0, Entm (νn)→
Entm (ν) as n → ∞ and gn is (essentially) bounded for every n. Fix n and choose
γn ∈ Opt(µ, νn). Choose ε > 0 and define

γn,ε := (1− ε)γn + ε(Id, Id)#m.

Clearly πi#γn,ε = (1− ε)πi#γn + εm, i = 1, 2. Now define γn,ε by

dγn,ε(x, y) :=
1

(1− ε)f(x) + ε
dγn,ε(x, y).

Since 1
(1−ε)f(x)+ε ≤

1
ε , π2

#γn,ε ≤ 1
επ

2
#γn,ε and therefore has bounded density. Also

clearly π1
#γn,ε = m. Consider now the plan γn,εµ and let νn,ε := π2

#γn,εµ = gn,εm. It
is obvious that

C(γn,εµ ) =
∫
d2(x, y)

f(x)
(1− ε)f(x) + ε

dγn,ε(x, y)

= (1− ε)
∫
d2(x, y)

f(x)
(1− ε)f(x) + ε

dγn(x, y),

converges to C(γn) = W 2
2 (µ, νn) as ε ↓ 0. Similarly, from the identity

gn,ε(y) =
(
(1− ε)g(y) + ε

) ∫ f(x)
(1− ε)f(x) + ε

dγy(x),

it is immediate to verify that Entm (νn,ε)→ Entm (νn) as ε ↓ 0.
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We still need to modify a bit the plan γn,ε as it could be that the density of
π2

#γn,ε is not bounded from below and that property (ii) of the definition of GP is
not satisfied. Thus we first define

γn,ε,ε
′

:= (1− ε′)γn,ε + ε′(Id, Id)#m,

so that πi#γn,ε,ε
′

has density bounded away from 0 and ∞ for i = 1, 2 and, obviously,

C(γn,ε,ε
′

µ )→ C(γn,εµ ) and Entm
(
π2

#γn,ε,ε
′

µ

)
→ Entm

(
π2

#γn,εµ

)
as ε′ ↓ 0.

We conclude with a truncation argument. Pick a continuous function χ : [0,∞)→
R such that 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1] and χ ≡ 0 on (2,∞), fix R > 0 big enough and
define

dγn,ε,ε
′,R(x, y) :=

χ

(
d(x, y)
R

)
∫
χ

(
d(x, y)
R

)
dγn,ε,ε

′
(x, y)

dγn,ε,ε
′
(x, y).

By construction, γn,ε,ε
′,R ∈ GP and

Entm
(
π2

#γn,ε,ε
′,R

µ

)
→ Entm

(
π2

#γn,ε,ε
′

µ

)
, R→∞,

C(γn,ε,ε
′,R

µ )→ C(γn,ε,ε
′

µ ), R→∞,

therefore the conclusion follows from a diagonalization argument.

�

Now, given γ ∈ GP consider the following functional, which can be thought as a
γ-dependent variation of the Entropy:

DEγ(µ) :=
{

Entm (µ)− Entm (νγ,µ) , if Entm (µ) <∞,
+∞ otherwise

The importance of the functional DEγ is due to the following result:

Proposition 11 The functional µ 7→ DEγ(µ) is convex w.r.t. linear interpolation
and lower semicontinuous w.r.t. the weak topology on the subleves of the Entropy.

Proof Step 1: Convexity. Fix µ0, µ1 ∈ P2(X). If either Entm (µ0) = +∞ or
Entm (µ1) = +∞ the claim is trivial. So we can assume µ0 = f0m, µ1 = f1m both
with finite Entropy. By Lemma 8 we know that νγ,µi = gim, has finite Entropy as
well, i = 0, 1. Let µt := (1− t)µ0 + tµ1 = ftm, νt := νγ,µt = gtm = ((1− t)g0 + tg1)m
and observe that both the functions t 7→ Entm (µt) and t 7→ Entm (νt) are convex and
continuous on [0,1]. In particular t 7→ DEγ(µt) is continuous and real valued. Also,
notice that the ratio f0/ft is uniformly bounded from above by 1

1−t as soon as t < 1,
similarly, f1/ft ≤ 1

t for t > 0. This means that∫
(f1 − f0)2

ft
dm < +∞, ∀t ∈ (0, 1).

It holds:

d2

dt2
Entm (µt) =

d2

dt2

∫
e(ft)dm =

∫
e′′(ft)(f1 − f0)2dm =

∫
(f1 − f0)2

ft
dm, (5)
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for every t ∈ (0, 1).
Now recall that f, g are the densities of π1

#γ, π2
#γ w.r.t. m and observe that it

holds:

d2

dt2
Entm (νt) =

d2

dt2

∫
e(gt(y))dm(y) =

∫
(g1(y)− g0(y))2

gt(y)
dm(y)

=
∫ (∫

g(y) f1(x)−f0(x)
f(x)

dγy(x)
)2

∫
g(y) ft(x)

f(x)
dγy(x)

dm(y).

(6)

Now apply Jensen inequality to the convex and lower semicontinuous function Ψ :
R2 → R defined by

Ψ(a, b) :=


a2

b
if b > 0,

0 if a = b = 0,
+∞ if a 6= 0, b = 0 or b < 0,

(7)

to obtain

∫ (∫ g(y) f1(x)−f0(x)
f(x)

dγy(x)
)2

∫
g(y) ft(x)

f(x)
dγy(x)

dm(y)

=
∫

Ψ
(∫

g(y)
f1(x)− f0(x)

f(x)
dγy(x),

∫
g(y)

ft(x)
f(x)

dγy(x)
)
dm(y)

≤
∫ ∫

Ψ
(
g(y)

f1(x)− f0(x)
f(x)

, g(y)
ft(x)
f(x)

)
dγy(x)dm(y)

=
∫ ∫

(f1(x)− f0(x))2

ft(x)
g(y)
f(x)

dγy(x)dm(x)

=
∫

(f1(x)− f0(x))2

ft(x)
dm(x),

where in the last step we used equality (4). This inequality, valid for any t ∈ (0, 1),
together with (5) and (6) gives

d2

dt2

(
Entm (µt)− Entm (νt)

)
≥ 0, ∀t ∈ (0, 1),

which gives the convexity of DEγ in (0, 1). By continuity, we have convexity on the
whole [0,1].
Step 2: Semicontinuity. We claim that for every f such that Entm (fm) < ∞ it
holds

DEγ(fm) = sup
µ

DEγ(µ) +
∫

(f − f̃)e′(f̃)−
∫

(g − g̃)e′(g̃),

where the supremum is taken among all µ = f̃m ∈ Pac
2 (X) with density bounded

away from 0 and ∞, g, g̃ are the densities of νγ,fm, νγ,µ respectively.
The inequality ≥ follows immediately from the convexity, so we have to prove the

converse inequality. If f is bounded, then we can find a sequence (fn) of densities
bounded away from 0 and infinity converging to f in the sup norm. In this case
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it is immediate to verify that DEγ(fnm) → DEγ(fm),
∫

(f − fn)e′(fn) → 0 and∫
(g − gn)e′(gn) → 0 as n → ∞, where gn are the densities of νγ,fnm. Thus we have

only to deal with the case of f unbounded. In this situation define fn as:

fn := min{max{f, an}, n},

where an > 0 is chosen such that
∫
fndm = 1. With this choice, it is obvious that

Entm (fnm)→ Entm (fm) and
∫

(f − fn) log(fn)→ 0 as n→∞, so that

lim
n→∞

Entm (fnm) +
∫

(f − fn) log(fn) = Entm (fm) . (8)

Also, by the convexity of the Entropy we have that

Entm (gnm) +
∫

(g − gn) log(gn) ≤ Entm (gm) ,

which gives

lim
n→∞

−Entm (gnm)−
∫

(g − gn) log(gn) ≥ −Entm (gm) . (9)

Adding equations (8) and (9) we get the claim.
To conclude we need only to show that the map

fm 7→ DEγ(µ) +
∫

(f − f̃)e′(f̃)−
∫

(g − g̃)e′(g̃),

is continuous w.r.t. weak convergence on sublevels of the Entropy. But this is clear,
as on sublevels of the Entropy we have equi-integrability at the level of the f ’s and,
from Lemma 8 and its proof we have a uniform bound on the Entropy of νγ,fm which
gives equi-integrability at the level of the g’s. Since f̃ , g̃ are bounded away from 0 and
∞ the thesis follows. �

3.2 Convexity and lower semicontinuity of the squared slope

Theorem 12 (Representation formula for the slope) For every µ such that Entm (µ) <
∞ it holds

sup
ν∈P2(X)
ν 6=µ

(
Entm (µ)− Entm (ν)− λ−

2 W
2
2 (µ, ν)

)+

W2(µ, ν)

= sup
γ∈GP

(
Entm (µ)− Entm

(
νγ,µ

)
− λ−

2 C(γµ)
)+

√
C(γµ)

,

(10)

where the value of the second expression is taken by definition as 0 if C(γµ) = 0.

Proof We start with ≥. Observe that the following inequality trivially holds:

a, b, c ∈ R, 0 < b ≤ c ⇒ (a− b)+√
b

≥ (a− c)+√
c

.
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Thus pick γ ∈ GP and assume, without loss of generality, that C(γµ) 6= 0 and νγ,µ 6= µ.
From C(γµ) ≥W 2

2 (µ, νγ,µ) > 0 we get(
Entm (µ)− Entm (νγ,µ)− λ−

2 W
2
2 (µ, νγ,µ)

)+

W2(µ, νγ,µ)

≥

(
Entm (µ)− Entm (νγ,µ)− λ−

2 C(γµ)
)+

√
C(γµ)

,

which gives the inequality ≥.
To prove the converse inequality we will use Lemma 10. Fix ν ∈P2(X) with finite

Entropy and different from µ. Use Lemma 10 to find a sequence (γn) ⊂ GP such that
Entm (νγn,µ)→ Entm (ν) and C(γnµ)→W 2

2 (µ, ν) as n→∞ to get(
Entm (µ)− Entm (ν)− λ−

2 W
2
2 (µ, ν)

)+

W2(µ, ν)

= lim
n→∞

(
Entm (µ)− Entm (νγn,µ)− λ−

2 C(γnµ)
)+

√
C(γnµ)

�

Corollary 13 (Convexity and lower semicontinuity of the squared slope) The
squared slope is convex w.r.t. linear interpolation of measures and lower semicontinu-
ous w.r.t. weak convergence on sublevels of the Entropy.

Proof Thanks to formula (10) it is enough to show that for every γ ∈ GP the map

µ 7→

((
Entm (µ)− Entm (νγ,µ)− λ−

2 C(γµ)
)+
)2

C(γµ)
,

is convex w.r.t. linear interpolation of measures and lower semicontinuous w.r.t. weak
convergence on sublevels of the Entropy.

Consider the map

µ = fm 7→ C(γµ) =
∫
d2(x, y)

f(x)
f(x)

dγ(x, y) =
∫
f(x)h(x)dm(x),

where f is the density of π1
#γ and h(x) :=

∫
d2(x, y)dγx(y). It is clearly linear. Also,

from property (ii) in the definition of GP we have that h is (essentially) bounded;
finally, on sublevels of the Entropy we have equi-integrability. Therefore weak conver-
gence implies convergence in duality with bounded functions and thus µ 7→ C(γµ) is
weakly continuous on sublevels of the Entropy.

Thus, from Proposition 11 we know that the map

µ 7→ Entm (µ)− Entm (νγ,µ)− λ−

2
C(γµ),

is convex w.r.t. linear interpolation of measures and lower semicontinuous w.r.t. weak
convergence on sublevels of the Entropy. Thus the same is true for its positive part.
The conclusion follows from the fact that the function Ψ : [0,+∞)2 → R ∪ {+∞}
defined by (7) is convex, continuous on [0,∞)2 \ {(0, 0)} and increasing in a. �
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3.3 Proof of existence and uniqueness

We start with uniqueness. The proof is based on the convexity of the squared slope
and of the squared metric derivative:

Lemma 14 (Convexity of squared metric derivative) Let (µ0
t ), (µ

1
t ) be two ab-

solutely continuous curves on some interval I ⊂ R and define µ
1/2
t := (µ0

t + µ1
t )/2,

t ∈ I. Then (µ1/2
t ) is absolutely continuous and the following bound on its metric

derivative holds:

|µ̇1/2
t |2 ≤

|µ̇0
t |2 + |µ̇1

t |2

2
.

Proof Fix, t, s ∈ I and pick γ0 ∈ Opt(µ0
t , µ

0
s), γ1 ∈ Opt(µ1

t , µ
1
s). The plan (γ0+γ1)/2

belongs to Adm(µ1/2
t , µ

1/2
s ) and therefore it holds

W 2
2 (µ1/2

t , µ1/2
s ) ≤

∫
d2(x, y)d

γ0 + γ1

2
(x, y)

=
∫
d2(x, y)dγ0(x, y) +

∫
d2(x, y)dγ1(x, y)

2

=
W 2

2 (µ0
t , µ

0
s) +W 2

2 (µ1
t , µ

1
s)

2
,

which gives the absolute continuity. Dividing by (s− t)2 and letting s go to t we get
the conclusion. �

Theorem 15 (Uniqueness) Let (X, d,m) be a normalized metric measure space with
Ricci curvature bounded from below, and let µ ∈ P2(X) be such that Entm (µ) < ∞.
Then there exists at most one curve of maximal slope starting from µ.

Proof Argue by contradiction and assume that there are two curves of maximal slope
(µ0
t ) and (µ1

t ), starting from µ. Since Entm (µ) <∞ this means that

Entm (µ) = Entm
(
µ0
t

)
+

1
2

∫ t

0

|µ̇0
s|2ds+

1
2

∫ t

0

|∇Ent|2(µ0
s)ds,

Entm (µ) = Entm
(
µ1
t

)
+

1
2

∫ t

0

|µ̇1
s|2ds+

1
2

∫ t

0

|∇Ent|2(µ1
s)ds.

Assume that these two curves are different, i.e. for some T0 it holds µ0
T0
6= µ1

T0
. Now

define

µ
1/2
t :=

µ0
t + µ1

t

2
, ∀t ≥ 0.

From the strict convexity of the Entropy, the convexity of the squared metric derivative
and the convexity of the squared slope we have that

Entm (µ) > Entm
(
µ

1/2
T0

)
+

1
2

∫ T0

0

|µ̇1/2
s |2ds+

1
2

∫ T0

0

|∇Ent|2(µ1/2
s )ds,

which contradicts the inequality (1). �

Now we turn to the existence. Here we will make an additional assumption: we
assume that X is boundedly compact, i.e. closed balls are compact (recall that since X
is geodesic, this is equivalent to assume that X is locally compact - see e.g. Theorem
2.5.28 of [2]).

This assumption is needed to obtain the following well known result:
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Lemma 16 Assume that X is boundedly compact. Then for every x0 ∈ X and C > 0
the subset of P2(X) of those measures µ such that∫

d2(x, x0)dµ(x) ≤ C,

is tight.

Proof Just observe that

C ≥
∫
d2(x, x0)dµ(x) ≥

∫
X\BR(x0)

d2(x, x0)dµ(x) ≥ R2µ(X \BR(x0)).

�

Theorem 17 (Existence) Let (X, d,m) be a locally compact, normalized metric mea-
sure space with Ricci curvature bounded from below, and let µ ∈ P2(X) be such that
Entm (µ) <∞. Then there exists a curve of maximal slope starting from µ.

Proof The proof immediately follows from the arguments presented in [1, Chapter
3] and the weak lower semicontinuity of the slope on sublevels of the Entropy proven
here. We briefly recall the main steps of the proof.
Notation and discrete estimate. For any τ > 0 and any ν ∈P2(X) let Jτ (ν) be
the minimum of

σ 7→ Entm (σ) +
W 2

2 (σ, ν)
2τ

,

(which exists and is unique). Define recursively the discrete solution as: µτ0 := µ,
µτn+1 := Jτ (µτn). Then define the curve t 7→ µτ (t) by reparametrization and variational
interpolation:

µτ (nτ) := µτn,

µτ (t) := Jt−nτ (µτn), ∀t ∈
(
nτ, (n+ 1)τ

)
.

Finally, let |µ̇τ |(t) be the discrete speed defined by

|µ̇τ |(t) :=
W2(µτn, µ

τ
n+1)

τ
, ∀t ∈

[
nτ, (n+ 1)τ

)
Recall inequalities 3.2.3 and 3.2.4 of [1]:

1
2

∫ T

0

|µ̇τ |2(t)dt+
1
2

∫ T

0

|∇Ent|2(µτ (t))dt ≤ Entm (µ)− Entm (µτ (T )) (11)

Compactness. From (11) we have

W 2
2 (µτ (T ), µ) ≤

(∫ T

0

|µ̇τ |(t)dt

)2

≤ T
∫ T

0

|µ̇τ |2(t)dt

≤ 2T (Entm (µ)− Entm (µτ (T ))) ≤ 2TEntm (µ) ,

which shows that for every T the distance between µτ (T ) and µ is bounded uniformly
on τ . Thus also the second moments are uniformly bounded, and therefore the set
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{µτ (T )}τ is tight for any T .
Passage to the limit. Using the tightness, the lower semicontinuity of W2 w.r.t.
weak convergence and the discrete estimate it is not hard to see that there exists a
sequence τn ↓ 0 such that µτn(t) weakly converge to some µ(t) as n → ∞ for every
t ≥ 0. By the lower semicontinuity of W2 w.r.t. weak convergence we have that
t 7→ µ(t) is absolutely continuous. By the Fatou Lemma and the lower semicontinuity
of the Entropy w.r.t. weak convergence we know that the limit curve satisfies

Entm (µ(t)) +
1
2

∫ T

0

|µ̇|2(t)dt+
1
2

∫ T

0

lim
n→∞

|∇Ent|2(µτn(t))dt ≤ Entm (µ) .

Here we make the crucial use of Corollary 13: since the squared slope is lower semi-
continuous w.r.t. weak convergence on the sublevels of the Entropy (observe that
Entm (µτ (t)) ≤ Entm (µ) for every t, τ) we have:

lim
n→∞

|∇Ent|2(µτn(t)) ≥ |∇Ent|2(µ(t)),

and thus

Entm (µ(t)) +
1
2

∫ T

0

|µ̇|2(t)dt+
1
2

∫ T

0

|∇Ent|2(µ(t))dt ≤ Entm (µ) ,

which is the thesis. �

4 Stability

The main result of this section is Theorem 21, where it is proven stability of curves of
maximal slope of λ−geodesically convex functionals. We will see thereafter how this
Theorem applies to the flow of the Entropy.

We start recalling the following two propositions:

Proposition 18 Let (Xn, dn) be compact metric spaces converging to (X, d) via some
maps fn and let t 7→ xn(t) ∈ Xn be curves on [0, 1]. Assume that these curves are
equi-absolutely continuous, that is

sup
n∈N

dn
(
xn(t), xn(s)

)
≤
∫ s

t

h(r)dr, ∀t ≤ s, (12)

for some h ∈ L1(0, 1). Then, possibly extracting a subsequence, the sequence (xn)
converges to (x) on t ∈ [0, 1], via the fn’s. The curve t 7→ x(t) is absolutely continuous
and satisfies ∫ s

t

|ẋ(r)|dr ≤ lim
n→∞

∫ s

t

|ẋn(r)|dr, ∀0 ≤ t < s ≤ 1. (13)

Also, if the function h in (12) belongs to L2(0, 1) (so that the curves t 7→ xn(t) are
equi-2-absolutely continuous) it holds∫ s

t

|ẋ(r)|2dr ≤ lim
n→∞

∫ s

t

|ẋn(r)|2dr, ∀0 ≤ t < s ≤ 1. (14)

15



Proof Possibly extracting a subsequence, not relabeled, we may assume that n 7→ xn(t)
converges to some x(t) via the fn’s for any t ∈ [0, 1] ∩ Q. Fix t < s ∈ [0, 1] ∩ Q and
observe that

d
(
x(t), x(s)

)
= lim
n→∞

d
(
xn(t), xn(s)

)
≤
∫ s

t

h(r)dr.

This shows that the map x(t) can be extended to the whole [0, 1] to an absolutely
continuous curve. The fact that this curve is actually the limit of n 7→ xn(t) for any t
is obvious. To prove (13) notice that∫ s

t

|ẋ(r)|dr = sup
∑
i

d
(
x(ti), x(ti+1)

)
= sup lim

n→∞

∑
i

dn
(
xn(ti), xn(ti+1)

)
≤ lim
n→∞

sup
∑
i

dn
(
xn(ti), xn(ti+1)

)
= lim
n→∞

∫ s

t

|ẋn(r)|dr,

where the supremum is taken among all the partitions of [t, s]. Similarly for (14):∫ s

t

|ẋ(r)|2dr = sup
∑
i

d2
(
x(ti), x(ti+1)

)
ti+1 − ti

= sup lim
n→∞

∑
i

d2
n

(
xn(ti), xn(ti+1)

)
ti+1 − ti

≤ lim
n→∞

sup
∑
i

d2
n

(
xn(ti), xn(ti+1)

)
ti+1 − ti

= lim
n→∞

∫ s

t

|ẋn(r)|2dr,

�

Proposition 19 Let (Xn, dn) be compact metric spaces converging to (X, d) in the
Gromov-Hausdorff convergence via the maps fn. Let En : Xn → R ∪ {+∞} be λ-
geodesically convex functionals, with λ independent on n, equibounded from below and
Γ-converging to some E : X → R ∪ {+∞} . Then E is bounded from below and
λ-geodesically convex.

Proof The fact that E is bounded from below is trivial. Pick x, y ∈ X and choose
xn, yn ∈ Xn such that En(xn)→ E (x) and En(yn)→ E (y) (this is possible by definition
of Γ-limit). Choose a geodesic t 7→ γn(t) ∈ Xn from xn to yn parametrized on [0, 1] and
with constant speed. Up to passing to a subsequence, not relabeled, we may assume
that these geodesics converge to a limit geodesic γ from x to y. Now observe that from
the λ-geodesic convexity of En we have

En
(
γn(t)

)
≤ (1− t)En(xn) + tEn(yn)− λ

2
t(1− t)d2

n(xn, yn)

while from the Γ−convergence of the En’s and the fact that γn(t)→ γ(t) for any t we
have

E
(
γ(t)

)
≤ lim
n→∞

En
(
γn(t)

)
.

Plugging together these two inequalities and recalling the choice made of xn and yn
we get

E
(
γ(t)

)
≤ (1− t)E (x) + tE (y)− λ

2
t(1− t)d2(x, y).

This shows the λ-geodesic convexity of E . �
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The proof of stability is based on the following bound on the slope of the limit
functional E :

Proposition 20 Let (Xn, dn), (X, d), En and E as in the statement of the previous
proposition. Then on the domain of E it holds

|∇E | ≤ Γ− lim
n→∞

|∇En|.

Proof Fix x ∈ X such that E (x) <∞ and recall that

|∇E |(x) = sup
y∈X

(
E (x)− E (y)
d(x, y)

− λ−

2
d(x, y)

)+

and similarly for the En’s. Fix y ∈ X and find a sequence n 7→ yn ∈ Xn converging
to y via the fn’s such that En(yn) → E (y). Also, let n 7→ xn ∈ Xn be any sequence
converging to x. We have

lim
n→∞

dn(xn, yn) = d(x, y), lim
n→∞

En(xn) ≥ E (x)

and therefore(
E (x)− E (y)
d(x, y)

− λ−

2
d(x, y)

)+

≤ lim
n→∞

(
En(xn)− En(yn)

dn(xn, yn)
− λ−

2
dn(xn, yn)

)+

≤ lim
n→∞

|∇En|(xn).

�

Theorem 21 (Stability of curves of maximal slope) With the same notation and
assumptions of Proposition 19, assume that n 7→ xn ∈ Xn is a sequence converging to
some x ∈ X via the fn’s such that En(xn)→ E (x) as n→∞.

Then for any choice of t 7→ xn(t) of curves of maximal slope for En in Xn starting
from xn it holds:

i) every subsequence of n 7→ (xn(t)) admits a further extraction which converges to
a limit curve (x(t)) in X.

ii) any limit curve is a curve of maximal slope for E starting from x.

Proof (i): compactness of the set of curves. By equation 2.4.26 and inequality
2.4.24 of [1] we have

|ẋn|(t) ≤
√

(1 + 2λ+t)e−2λt(En(xn)− inf En)
t

,

so that from the assumptions we get that the curves (xn(t)) are equi-absolutely con-
tinuous. To get (i) just apply Proposition 18.

(ii): any limit curve is of maximal slope. We know from Proposition 19
that E is bounded from below and λ-geodesically convex. Now assume for notational
simplicity that the full sequence of curves t 7→ xn(t) converges to some t 7→ x(t). We
know that

En(xn) ≥ En(xn(t)) +
1
2

∫ t

0

|ẋn(s)|2ds+
1
2

∫ t

0

|∇En|2(xn(s))ds,
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for every n ∈ N, t ≥ 0 and we want to prove that

E (x) ≥ E (x(t)) +
1
2

∫ t

0

|ẋ(s)|2ds+
1
2

∫ t

0

|∇E |2(x(s))ds.

Since we know that

lim
n→∞

En(xn) = E (x) by assumption,

lim
n→∞

En(xn(t)) ≥ E (x(t)) by Γ− convergence,

lim
n→∞

∫ t

0

|ẋn(s)|2ds ≥
∫ t

0

|ẋ(s)|2ds by Proposition 18,

lim
n→∞

|∇En(xn(t))| ≥ |∇E (x(t))| by Proposition 20,

the conclusion follows. �

It is immediate to apply this result to the spaces (P(Xn),W2) and the Entropy
functionals Entmn (·), where (Xn, dn,mn) are normalized compact metric measure
spaces converging to some (X, d,m) in the MGH sense.

Indeed, recall that if (Xn, dn) converges to (X, d) in the GH sense and fn : X →
Xn are approximate isometries, then the spaces (P(Xn),W2) (which are compact)
converge to (P(X),W2) in the GH sense as well. Also, a natural choice of approximate
isometries is given by (fn)# : P(X)→P(Xn).

Thus we need only to show that Entmn (·) Γ-converges to Entm (·) as n→∞. This
is just a restatement of well known results in this setting. Observe that the Γ − lim
inequality follows by:

lim
n→∞

Entmn (µn) ≥ lim
n→∞

Ent(gn)#mn ((gn)#µn) ≥ Entm (µ) , (15)

where (µn) is any sequence converging to µ via the maps (fn)#’s (here the gn’s are
approximate inverse of the fn’s, and it is immediate to verify that in this case the
(gn)#’s are approximate inverses of the (fn)#’s). For the validity of the first inequality
in (15) see Lemma 9.4.5 of [1], while the second one is a consequence of the joint lower
semicontinuity of the relative Entropy, see e.g. Lemma 9.4.3 of [1] for a proof of this
in Hilbert spaces and [12], [9] for general metric spaces.

The Γ − lim inequality is more technical. Given µ = ρm, it can be proved either
by smoothing the density ρ ◦ gn, as in the proof of Theorem 4.15 of [9], or via a
coupling of the metric measures spaces as in Section 4.5 of [12], we omit the details
(observe that the construction of our map µ 7→ νγ,µ is actually pretty similar to
Sturm’s construction - although our case is technically simpler, because we work on a
fixed space, while Sturm was coupling measures in different spaces).

Let us repeat that these inequalities concerning limit of Entropies are not new at
all. Actually, they are the heart of the proof of stability of Ricci curvature bounds,
and here we are just restating these results in the terminology of Γ-convergence.

5 Final comments

• Not necessarily finite variation. We never assumed m ∈P2(X).

• Lack of linearity. Let us recall that it is not true that the Heat flow, in this
generality, is linear. This means that if (µt) and (νt) are two curves of maximal
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slope of the Entropy, then not necessarily (µt+νt2 ) is. Indeed, as Sturm and Ohta
showed in [13], in the case of Finsler manifolds with Ricci curvature bounded
from below, the Heat equation is not linear. On the other side, Savaré showed
that if a normalized metric metric space satisfy a certain Local Angle Condition,
then the flow of the Entropy satisfies: the Evolution Variational Inequality, the
λ-exponential contractivity and the linearity (see [11]).

• Porous media. As we argued, the Heat flow can be naturally defined as curve
of maximal slope of the Entropy in a space with Ricci curvature bounded from
below. Now, we know from [12] and [9] that a suitable definition of bound on
the Ricci curvature plus bound from above on the dimension concerns the study
of the (distorted) geodesic convexity properties of the functional

ρ 7→ Um(ρ) :=
∫
em(ρ), em(z) :=

1
m− 1

zm,

for suitable m < 1 (see [12], [9] or Chapter 29 of [14] for the definition of distorted
geodesic convexity).

We also know that the gradient flow of such functional on Rd w.r.t. W2 produces
solutions of the porous medium equation (as shown in the seminal paper of Otto
[10]). It is then natural to ask whether the same techniques that we used here
for the study of the Entropy functional can be applied to these other functionals.

For what concerns the stability, the answer is yes, at least for the case of non-
negative Ricci curvature. Indeed in this case the functional Um is geodesically
convex and there is Γ-convergence as soon as the sequence of metric measure
spaces converges in the MGH sense, as shown in [9] and [12].

For what regards existence and uniqueness, quite surprisingly, the approach pro-
posed here gives no insights. The reason is the following: the key fact that we
used to prove the convexity of the squared slope is the convexity of the map
µ 7→ DEγ(µ) = Entm (µ) − Entm (νγ,µ). Now, shortly said, the convexity of
µ 7→ DEγ(µ) follows by application of the Jensen inequality to the function:

(0,∞)2 3 (a, b) 7→ a2e′′(b),

as shown in the proof of Proposition 11. Thus, if we want to replicate the
approach for the functionals Um, we need the convexity of the map

(0,∞)2 3 (a, b) 7→ a2e′′m(b).

However, this map is never convex for m < 1 (while it is for 1 < m ≤ 2). And
it is not hard to cook up from this observation an explicit counterexample to
the convexity of µ 7→ Um(µ) − Um(νγ,µ). We actually found pretty curious to
discover that our arguments work only because of some very special properties
of the Entropy.

• Contractivity. There is no contractivity result behind our proof of uniqueness
(and I personally don’t believe that in this generality there is λ-exponential
contraction of W2 along two flows).

• Other uses of the convexity of the slope. The fact that convexity of the
squared slope plus strict convexity of the functional implies uniqueness of the
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curve of maximal slope is true in general. Thus it could be applied, in principle,
also to non-geodesically convex functionals. A first attempt in this direction
could be the Entropy functional on the Heisenberg group, in order to obtain
uniqueness of the flow without calling into play the hypoelliptic Heat equation
(recall that the Heisenberg group has no bound from below on the Ricci cur-
vature, or, which is the same, the Entropy is not λ-geodesically convex for any
λ ∈ R. See [8]).

Other situations of potential use are those coming from the study of gradient
flows w.r.t. the distance Wb2 introduced in [5].
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in spaces of probability measures, Birkäuser, 2005.
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